
A KL divergence for the truncated log-normal distribution

We need to introduce some notation to work with the truncated normal distribution. Consider a distribution
tN (x |µ,�2

, a, b), where µ and � are the mean and the standard deviation of the corresponding normal
distribution before truncation, and a and b are the left and right truncation thresholds respectively. Denote

↵ =

a� µ

�

� =

b� µ

�

Z = �(�)� �(↵)

Now we can calculate the KL divergence between a truncated log-normal distribution q(✓

i

) and a log-uniform
distribution p(✓

i

) with a bounded support ✓i 2 [e

a

, e

b

].
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b

a
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, a, b) log
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U(x | a, b) dx =

= �H(tN (x |µ,�2
, a, b)) + log(b� a)

Entropy for the truncated normal distribution is

H(tN (x |µ,�2
, a, b)) = log(

p
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Finally, we obtain
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= log(b� a)� log(
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B Sampling from the truncated log-normal distribution

To sample ✓

i from the truncated log-normal distribution, we first sample log ✓

i ⇠ tN (log ✓

i |µ
i

,�

2
i

, a, b) and
then take the exponent. In order to sample from the truncated normal distribution we use the inverse cumulative
density function. The CDF for the truncated normal distribution is

F (x) =

�(

x�µ

�

)� �(

a�µ

�

)

Z

= y

Hence inverse CDF can be written as

F

�1
(y) = µ+ ��

�1

✓
�(↵) + Zy

◆
= x

Sampling y from U [0, 1] one can obtain x samples from truncated normal distribution. The final expression for
the reparameterization trick for ✓ ⇠ log tN (✓ |µ,�2

, a, b) looks like this:

✓ = exp

⇢
µ+ ��

�1

✓
�(↵) + Zy

◆�
, where y ⇠ U(y | a, b)

C Mean of the truncated log-normal ditribution

Let’s derive the expected value of ✓. In order to this, let’s first find the PDF of the truncated log-normal
distribution.

tN (x |µ,�2
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1
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2
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◆
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The obtained PDF is very similar to the log-normal distribution PDF. Hence,

E
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Now we need the formula for
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Using the derived formula, we finally obtain the expectation Ex
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D Signal-to-noise ratio of the truncated log-normal distribution

It is useful to calculate the signal-to-noise ratio Ex/
p

Var(x) for the truncated log-normal distribution in order
to investigate the sparsity of the resulting layer. We need the variance Var(x) to calculate it.
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So we have to calculate
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We already have the expression for p(a)
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For the rest two summands we introduce a new variable t.
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Using the expression for Ex we obtain
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Finally, we obtain the signal-to-noise ratio

SNR(x) =
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E Stable Computation of Statistics

Straightforward computation of the SNR and the mean of the truncated log-normal distribution can lead to
indeterminate values like 0 ·1 when the values of � are high. In order to make our calculations stable we use
the scaled complementary error function erfcx(x) = exp(x

2
)erfc(x). Given the equation
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we can rewrite equations (19), (20) in the following form
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E✓ = exp(µ)
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