
Supplementary Material: Adaptive Classification for
Prediction Under a Budget

May 19, 2017

0.1 Adapt-Lstsq
Other Symmetrized metrics: KL divergence is not symmetric and leads to widely different
properties in terms of approximation. We also consider a symmetrized metric:

D(r(z), s(z)) =

(
log

r(0)

r(1)
− log

s(0)

s(1)

)2

This metric can be viewed intuitively as a regression of g(x) = log(Pr(1|g;x)/Pr(0|g;x) against
the observed log odds ratio of q(z|x).

The main advantage of using KL is that optimizing w.r.t. q can be solved in closed form. The
disadvantage we observe is that in some cases, the loss for minimizing w.r.t. g, which is a weighted
sum of log-losses of opposing directions, becomes quite flat and difficult to optimize especially
for linear gating functions. The symmetrized measure, on the other hand, makes the optimization
w.r.t. g better conditioned as the gating function g fits directly to the log odds ratio of q. However,
the disadvantage of using the symmetrized measure is that optimizing w.r.t. q no longer has closed
form solution; furthermore, it is even non-convex. We offer an ADMM approach for q optimization.

We still follow an alternating minimization approach. To keep the presentation simply, we
assume g, f1 to be linear classifiers and there is no feature costs involved. To minimize over q, we
must solve

min
qi∈[0,1]

1
N

∑N
i=1

[
(1− qi)Ai + (log qi

1−qi − g(x
(i)))2

]
s.t. 1

N

∑N
i=1 qi ≤ Pfull,

(OPT5)

where qi = q(z = 0|x(i)), Ai = log(1 + e−y
(i)fT

1 x(i)

) + log p(y(i)|z(i) = 1; f0). Unlike (OPT3), this
optimization problem no longer has a closed-form solution. Fortunately, the qi’s in the objective
are decoupled and there is only one coupling constraint. We can solve this problem using an
ADMM approach [1]. To optimize over g, we simply need to solve a linear least squares problem:

min
g

1

N

N∑
i=1

(log
qi

1− qi
− gT (x(i)))2. (OPT6)

To optimize over f1, we solve a weighted logistic regression problem:

min
f1

1

N

N∑
i=1

(1− qi) log(1 + e−y
(i)fT

1 x(i)

). (OPT7)

We shall call the above algorithm Adapt-Lstsq, summarized in Algorithm 1. However, on a
number of datasets, we found that Adapt-Lstsq is comparable to Adapt-Gbrt thus we did not
include it in the main plots.

0.2 Experimental Details
We provide detailed parameter settings and steps for our experiments here.

1

Algorithm 1 Adapt-Lstsq

Input: (x(i), y(i)), B
Train a full accuracy model f0.
Initialize g, f1.
repeat
Solve (OPT5) for q given g, f1.
Solve (OPT6) for g given q.
Solve (OPT7)for f1 given q.

until convergence

0.3 Synthetic-1 Experiment
We generate the data in Python using the following command:

X, y = make_classification(n_samples=1000, flip_y=0.01, n_features=2,
n_redundant=0, n_informative=2,random_state=17, n_clusters_per_class=2)

For Adapt-Gbrt we used 5 depth-2 trees for g and f1.

0.4 Synthetic-2 Experiment:
We generate 4 clusters on a 2D plane with centers: (1,1), (-1,1), (-1,-1), (-1, -3) and Gaussian noise
with standard deviation of 0.01. The first two clusters have 20 examples each and the last two
clusters have 15 examples each. We sweep the regularization parameter of L1-regularized logistic
regression and recover feature 1 as the sparse subset, which leads to sub-optimal adaptive system.
On the other hand, we can easily train a RBF SVM classifier to correctly classify all clusters and
we use it as f0. If we initialize g and f1 with Gaussian distribution centered around 0, Adapt-Lin
with can often recover feature 2 as the sparse subset and learn the correct g and f1. Or, we could
initialize g = (1, 1) and f1 = (1, 1) then Adapt-Lin can recover the optimal solution.

0.5 Letters Dataset [4]
This letters recognition dataset contains 20000 examples with 16 features, each of which is assigned
unit cost. We binarized the labels so that the letters before "N" is class 0 and the letters after
and including "N" are class 1. We split the examples 12000/4000/4000 for training/validation/test
sets. We train RBF SVM and RF (500 trees) with cross-validation as f0. RBF SVM achieves the
higher accuracy of 0.978 compared to RF 0.961.

To run the greedy algorithm, we first cross validate L1-regularized logistic regression with 20
C parameters in logspace of [1e-3,1e1]. For each C value, we obtain a classifier and we order the
absolute values of its components and threshold them at different levels to recover all 16 possible
supports (ranging from 1 feature to all 16 features). We save all such possible supports as we sweep
C value. Then for each of the supports we have saved, we train a L2-regularized logistic regression
only based on the support features with regularization set to 1 as f1. The gating g is then learned
using L2-regularized logistic regression based on the same feature support and pseudo labels of f1
- 1 if it is correctly classified and 0 otherwise. To get different cost-accuracy tradeoff, we sweep the
class weights between 0 and 1 so as to influence g to send different fractions of examples to the f0.

To run Adapt-Lin, we initialize g to be 0 and f1 to be the output of the L2-regularized logistic
regression based on all the features. We then perform the alternative minimization for 50 iterations
and sweep γ between [1e-4,1e0] for 20 points and Pfull in [0.1,0.9] for 9 points.

To run Adapt-Gbrt, we use 500 depth 4 trees for g and f1 each. We initialize g to be 0 and
f1 to be the GreedyMiser output of 500 trees. We then perform the alternative minimization for
30 iterations and sweep γ between [1e-1,1e2] for 10 points in logspace and Pfull in [0.1,0.9] for 9
points. In addition, we also sweep the learning rate for GBRT for 9 points between [0.1,1].

For fair comparison, we run GreedyMiser with 1000 depth 4 trees so that the model size
matches that of Adapt-Gbrt. The learning rate is swept between [1e-5,1] with 20 points and the
λ is swept between [0.1, 100] with 20 points.

Finally, we evaluate all the resulting systems from the parameter sweeps of all the algorithms
on validation data and choose the efficient frontier and use the corresponding settings to evaluate
and plot the test performance.

2

0.6 MiniBooNE Particle Identification and Forest Covertype Datasets
[4]:

The MiniBooNE data set is a binary classification task to distinguish electron neutrinos from muon
neutrinos. There are 45523/19510/65031 examples in training/validation/test sets. Each example
has 50 features, each with unit cost. The Forest data set contains cartographic variables to predict
7 forest cover types. There are 36603/15688/58101 examples in training/validation/test sets. Each
example has 54 features, each with unit cost.

We use the unpruned RF of BudgetPrune [6] as f0 (40 trees for both datasets.) The settings
for Adapt-Gbrt are the following. For MiniBooNE we use 100 depth 4 trees for g and f1 each.
We initialize g to be 0 and f1 to be the GreedyMiser output of 100 trees. We then perform the
alternative minimization for 50 iterations and sweep γ between [1e-1,1e2] for 20 points in logspace
and Pfull in [0.1,0.9] for 9 points. In addition, we also sweep the learning rate for GBRT for 9
points between [0.1,1]. For Forest we use 500 depth 4 trees for g and f1 each. We initialize g to be
0 and f1 to be the GreedyMiser output of 500 trees. We then perform the alternative minimization
for 50 iterations and sweep γ between [1e-1,1e2] for 20 points in logspace and Pfull in [0.1,0.9] for
9 points. In addition, we also sweep the learning rate for GBRT for 9 points between [0.1,1].

For fair comparison, we run GreedyMiser with 200 depth 4 trees so that the model size
matches that of Adapt-Gbrt for MiniBooNE. We run GreedyMiser with 1000 depth 4 trees so
that the model size matches that of Adapt-Gbrt for Forest.

Finally, we evaluate all the resulting systems from the parameter sweeps on validation data
and choose the efficient frontier and use the corresponding settings to evaluate and plot the test
performance.

0.7 Yahoo! Learning to Rank[2]:
This ranking dataset consists of 473134 web documents and 19944 queries. Each example is
associated with features of a query-document pair together with the relevance rank of the document
to the query. There are 519 such features in total; each is associated with an acquisition cost in the
set {1,5,20,50,100,150,200}, which represents the units of CPU time required to extract the feature
and is provided by a Yahoo! employee. The labels are binarized into relevant or not relevant.
The task is to learn a model that takes a new query and its associated documents and produce a
relevance ranking so that the relevant documents come on top, and to do this using as little feature
cost as possible. The performance metric is Average Precision @ 5 following [6].

We use the unpruned RF of BudgetPrune [6] as f0 (140 trees for both datasets.) The settings
for Adapt-Gbrt are the following. we use 100 depth 4 trees for g and f1 each. We initialize g
to be 0 and f1 to be the GreedyMiser output of 100 trees. We then perform the alternative
minimization for 20 iterations and sweep γ between [1e-1,1e3] for 30 points in logspace and Pfull in
[0.1,0.9] for 9 points. In addition, we also sweep the learning rate for GBRT for 9 points between
[0.1,1].

For fair comparison, we run GreedyMiser with 200 depth 4 trees so that the model size
matches that of Adapt-Gbrt for Yahoo.

Finally, we evaluate all the resulting systems from the parameter sweeps on validation data
and choose the efficient frontier and use the corresponding settings to evaluate and plot the test
performance.

0.8 CIFAR10 [5]:
CIFAR-10 data set consists of 32x32 colour images in 10 classes. 400 features for each image are
extracted using technique described in [3]. The data are binarized by combining the first 5 classes
into one class and the others into the second class. There are 19, 761/8, 468/10, 000 examples
in training/validation/test sets. BudgetPrune starts with a RF of 40 trees, which achieves an
accuracy of 69%. We use an RBF-SVM as f0 that achieves a test accuracy of 79.5%. The settings
for Adapt-Gbrt are the following. we use 200 depth 5 trees for g and f1 each. We initialize g
to be 0 and f1 to be the GreedyMiser output of 200 trees. We then perform the alternative
minimization for 50 iterations and sweep γ between [1e-4,10] for 15 points in logspace and Pfull in
[0.1,0.9] for 9 points. In addition, we also sweep the learning rate for GBRT for 10 points between
[0.01,1].

3

For fair comparison, we run GreedyMiser with 400 depth 5 trees so that the model size
matches that of Adapt-Gbrt.

Finally, we evaluate all the resulting systems from the parameter sweeps on validation data
and choose the efficient frontier and use the corresponding settings to evaluate and plot the test
performance.

References
[1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed

optimization and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn., 3(1):1–122, January 2011.

[2] O Chapelle, Y Chang, and T Liu, editors. Proceedings of the Yahoo! Learning to Rank Chal-
lenge, held at ICML 2010, Haifa, Israel, June 25, 2010, 2011.

[3] A. Coates and A. G. Ng. The importance of encoding versus training with sparse coding and
vector quantization. In Proceedings of the 28th International Conference on Machine Learning.
ACM, 2011.

[4] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[5] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis,
2009.

[6] Feng Nan, Joseph Wang, and Venkatesh Saligrama. Pruning random forests for prediction on
a budget. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29, pages 2334–2342. Curran Associates,
Inc., 2016.

4

	Adapt-Lstsq
	Experimental Details
	Synthetic-1 Experiment
	Synthetic-2 Experiment:
	Letters Dataset UCIrepository
	MiniBooNE Particle Identification and Forest Covertype Datasets UCIrepository:
	Yahoo! Learning to RankYahooChallenge2010:
	CIFAR10 CIFAR10:

