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A Supplementary Figures

B Omitted Proofs from Section 3

Theorem 2 (restatement) For any auction A in a single dimensional setting and for any bid dis-
tribution D, the distributional price of anarchy is bounded by DPOA(D) < (D)
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where

Proof. Our proof is a based on a data-dependent analog of the value and revenue covering framework
of [4]. First we show that even without having distributional knowledge, the threshold functions are
related to the equilibrium utility of a bidder and any target utility at any Bayes-Nash equilibrium.
Specifically, either the utility of a bidder at a Bayes-Nash is high compared to his value or the average
threshold 7; is high.

Lemma 8 (Value Covering). For any bidder i with value v;, for any allocation amount x € [0, 1]

and for any > 1,
1—e#

1
wi(v;) + ;Ti x> (I (19)

where u; (v;) = u;(0;(v;); v;).

Proof. The proof proceeds analogously to the proof of value covering in [4]. For simplicity of
notation we drop the subscript ¢, as we are focusing on a single agent and some threshold function
7(+). Observe that since a player is at equilibrium it must be that for any target expected allocation z
he does not want to deviate to a bid that corresponds to a price-per-unit ppu(b) = 7(z), which would
yield him expected allocation at least z:

w(w)> (o 7(2) = () >0 0)
z
Moreover, in any case 7(z) > 0, by definition. Thus if we define 7(z) = max(0, v — u(v)/2), then

we have 7(z) > 7(z) and hence T > T = fo 2)dz.

Evaluating the integral gives T = v — u(v) + u(v) log == u) Thys

1 1
u(v)+ =T = —|——< u(v) log (v))
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and by dividing over by v:
+ = T
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The right side of Equation (21) is convex in ﬂvﬂ, so we can minimize it by taking first-order
conditions of the quantity y + % (1 —y + ylogy) with respect to variable y, giving

1
0=14+—-logy = y=e*.
7

Leading to a minimum value of that quantity of I_Z_” . Thus the right side of Equation (21) is at
least this quantity, giving our desired result,

u(v) +iT S 1—e™#
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The Lemma follows by the fact that T > T and z € [0, 1], which allows us to multiply and divide the
fraction by x and then remove the x in front of the quantity u(v). O



Given the value covering lemma we now proceed to proving the Theorem. Let X*(v) be the welfare
optimal allocation rule for valuation profile v, i.e. the one that solves the optimization problem
maxzex Y ., Vi - ;. Applying the value covering inequality of Equation (19) with respect to the
optimal allocation quantity X (v) gives that for each bidder ¢ with value v;,
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v - X7 (v). (22)
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The quantity v; - X (v) is exactly agent i’s expected contribution to the welfare of the optimal auction.
Morcover, by the definition of p(D):
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Let UTIL denote the expected equilibrium total utility of the bidders in the auction. By Equations
(22) and (23) we obtain:
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Since WELFARE(0; F') = UTIL + REV, we have our desired result:
1 — ¢—#(D)
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or1(F).

C Onmitted Proofs from Section 5

We begin by showing convergence of Tito T; and T to T.

Lemma 9 (Bounding Estimated Average Thresholds). Suppose that the premises of Lemma 5 hold
and that the function pi(:vi_l (+)) is L-Lipschitz continuous. Then for each player i with probability

1—6:
1T, —T;| <O (maX{L,H} }“%W) (24)

Proof. Since we focus on a single player i, we drop index ¢ and denote 7(-),p(-),z(:) for

7i(+), pi(-), z;(+) and similarly for their estimated quantities. Recall that 7(2) = inf,)>. % and

7(2) = infz)>. %. Moreover, we denote with €, = sup |Z(b) — x(b)| and €, = sup [p(b) — p(b)|,
B beB beB

the uniform errors on the payment and allocation curve, which be the assumptions of the theorem are

. . = Hlog(1/6
upper bounded, with probability 1 — §, by O ( 45}—2>
Our goal is to bound the quantity:
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By individual rationality we have that p(b) < Hz(b). Thus we get that 0 < 7(z),7(z) < H and
therefore |7(z) — 7(z)| < H. Hence:
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It remains to bound quantity A. We consider any z € [2¢,,, 1]. By the definition of 7 and 7, we obtain
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We now upper bound separately the two terms C and D.

Bounding C. For term C' we have:
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Since z > 2¢,, we have that for any b, with Z(b) > z, it must also be that: x(b) > &(b) — €, >

z — €; > 0, which implies that % < H (by individual rationality). Which leads to the bound:

1 H
C< =+ —¢ (25)
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Bounding D. For quantity D, we proceed as follows. Let Z = {x(b) : z(b) > z} and Z = {x(D) :
Z(b) > z} (note that in the second set, we still use 2:(b) to define the possible allocations, and only
the set of bids is defined based on the estimated allocation function). Then:
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By the fact that the function p(z~*(¢)) is L-Lipschitz, we can bound the derivative of the function
Q) = pz_1(#)) by:

| @)= [ O 2O g [ 2 2O
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Observe that p(x~1(t)) is the expected payment required to get an expected allocation of t. By
individual rationality, for any ¢ > 0, the latter is at most H - t. Thus:

< 2max{L,H}

Q) < —— (26)

Observe that forany t € ZU Z, t > z — ¢, > £ > 0. Hence, the function Q(t) is w—
Lipschitz in Z U Z. Moreover, observe that for any tez , there exists t € Z: |t — f| < €,. Hence,
the two infima in expression D can defer by at most:
4dmax{L,H
< dmax{L, H}
z
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Concluding. Thus we can bound quantity A by:
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Combining all the above, we conclude that:

. 1
|T; —T;| < 2He, + log <;> (ep + 5max{L, H}e,) (28)
Since with probability 1 — 4, both €, and ¢, are of O ( %W) , we get that with the same
probability:
. ~ Hlog(1/d
T-T <0 (max{L,H} %) (29)

since the quantity log(1/¢; ), can only introduce log(7") factors in the RHS of Equation (28). O

Lemma 10 (Bounding Estimated Optimal Threshold Quantity). Let T = max,ecx Z?Zl Tl - T
Then with probability 1 — §:

. ~ Hl

T-T| <0 (nmaX{L,H} M) (30)

Proof. By Lemma 9 and a union bound across players, we have that with probability 1 — §:

. ~ HI ]
sup [T — T;| < O | max{L, H} Hlog(n/) G1)
Moreover, for any allocation x € X
. ~ ~ Hl 0
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Thus we can bound the error in T as:
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The latter concludes the proof of the theorem. O

We are now ready to show our main estimation theorem.

Theorem 7 (Restatement). Under Assumption 6 and the premises of Lemma 5, with probability

1-6:
Hlog(n/s) )
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Proof. First note that REV = % 23:1 b*”. Thus, using standard Hoeffding’s inequality we obtain
that

21

P (‘R/E\V — REV‘ > 7') < Q2e (nI)Z,

Thus with probability at least 1 — §/2

_— 1
’REV—REV‘ <nH M.
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Combining this result with the result of Lemma 10, we find that with probability at least 1 — §
~ ~ Hl 1)
i—pl <O (nmaX{L,H} %)
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Letp=1(1—e7F) ', Since the function f(z) = z/(1 — e~*) is Lipschitz we can conclude that

Hlog(n /5))

p—pl<O (nmax{L,H} -

with probability at least 1 — § O



