6 Appendix

6.1 Prime optimization problem

In the following, we will derive a constrained optimization problem whose solution minimizes the Bethe free energy (Eq. (13)) under moment matching constraint and additional regularization constraint. The Bethe free energy is convex over \hat{p}_t and concave over q_t . Hence it could have multiple minima in the domain of \hat{p}_t and q_t . To address this issue, we first introduce the Legendre-Fenchel dual (also called convex conjugate) of $-\int dx_t q_t(x_t) \log q_t(x_t)$ and reformulate the objective function.

We start from minimizing the Bethe free energy F_{Bethe} subject to the expectation propagation constraints.

minimize over $\hat{p}_t(x_{t-1,t}), q_t(x_t)$:

$$F_{\text{Bethe}} = \sum_{t} \int dx_{t-1,t} \hat{p}_t(x_{t-1,t}) \log \frac{\hat{p}_t(x_{t-1,t})}{P(x_t, y_t | x_{t-1})} - \sum_{t} \int dx_t q_t(x_t) \log q_t(x_t)$$
(10)
subject to :
$$\langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})} = \langle f(x_t) \rangle_{q_t(x_t)} = \langle f(x_t) \rangle_{\hat{p}_{t+1}(x_{t,t+1})},$$
$$\int dx_t q_t(x) = 1 = \int dx_{t-1,t} \hat{p}_t(x_{t-1,t}).$$

Formally, the convex conjugate of a function f(x) is defined as $f^*(y) = \max_x \{y^T x - f(x)\}$, where the domain of y is restricted so that the maximum value is finite. This is also known as the Legendre-Fenchel transformation. For each valid distribution $q_t(x_t)$ in the exponential family, the entropy function $-\int dx_t q_t(x_t) \log q_t(x_t)$ can be interpreted as the conjugate function of the log partition:

$$-\int dx_t q_t(x_t) \log q_t(x_t) = \min_{\gamma_t} \left\{ -\gamma_t^\top \cdot \langle f(x_t) \rangle_{q_t} + \log \int dx_t \exp(\gamma_t^\top \cdot f(x_t)) \right\}$$
(11)

The form can be also verified by checking the derivatives over γ_t . We in essence exploit the Legendre-Fenchel duality between the log partition and the entropy. We thereafter arrive at

minimize over \hat{p}_t, q_t, γ_t for all t:

$$F_{\text{Bethe'}} = \sum_{t} \int dx_{t-1,t} \hat{p}_t(x_{t-1,t}) \log \frac{\hat{p}_t(x_{t-1,t})}{P(x_t, y_t | x_{t-1})} - \sum_{t} \gamma_t^\top \cdot \langle f(x_t) \rangle_{q_t} + \sum_{t} \log \int dx_t \exp(\gamma_t^\top \cdot f(x_t)) q_t + \sum_{t} \log \int dx_t \exp(\gamma_t^\top \cdot f(x_t)) q_t dx_t \exp(\gamma_t^\top \cdot f(x_t)) e_t \exp(\gamma_t^\top \cdot f(x_$$

subject to :

$$\langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})} = \langle f(x_t) \rangle_{q_t(x_t)} = \langle f(x_t) \rangle_{\hat{p}_{t+1}(x_{t,t+1})}$$

$$\int dx_t q_t(x) = 1 = \int dx_{t-1,t} \hat{p}_t(x_{t-1,t}).$$

To get rid of the dependence over $q(x_t)$, we replace $\langle f(x_t) \rangle_{q(x_t)}$ in the target with $\langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})}$ by utilizing the constraint $\langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})} = \langle f(x_t) \rangle_{q_t(x_t)}$. Instead of searching γ_t over the overcomplete whole space, we further add a regularization constraint to bound the prime variable γ_t and will later see how this constraint helps us to build a concave dual function.

minimize over $\hat{p}_t(x_{t-1,t}), \gamma_t$:

$$F_{\text{Primal}} = \sum_{t} \int dx_{t-1,t} \hat{p}_t(x_{t-1,t}) \log \frac{\hat{p}_t(x_{t-1,t})}{P(x_t, y_t | x_{t-1})} - \sum_{t} \gamma_t^\top \cdot \langle f(x_t) \rangle_{\hat{p}_t} + \sum_{t} \log \int dx_t \exp(\gamma_t^\top \cdot f(x_t))$$
(13)

subject to :

$$\langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})} = \langle f(x_t) \rangle_{\hat{p}_{t+1}(x_{t,t+1})} \gamma_t^\top \gamma_t \le \eta_t$$

$$\int dx_{t-1,t} \hat{p}_t(x_{t-1,t}) = 1.$$
(14)

6.2 Solving the primal problem with Lagrange duality

We solve this problem with Lagrange duality theorem. First, we define the Lagrangian function \mathcal{L} by introducing the Lagrange multipliers α_t , λ_t and ξ_t to incorporate those constraints:

$$\mathcal{L} = F_{\text{Primal}} + \sum_{t} \alpha_{t}^{\top} \left(\langle f(x_{t}) \rangle_{\hat{p}_{t}(x_{t-1,t})} - \langle f(x_{t}) \rangle_{\hat{p}_{t+1}(x_{t,t+1})} \right) + \sum_{t} \frac{\lambda_{t}}{2} \left(\gamma_{t}^{\top} \gamma_{t} - \eta_{t} \right) + \sum_{t} \xi_{t} \left(\int dx_{t-1,t} \hat{p}_{t}(x_{t-1,t}) - 1 \right)$$
(15)

where the inequality multiplier $\lambda_t \geq 0$. The Lagrange duality theorem implies that $F_{\text{Dual}}(\alpha_t, \lambda_t, \xi_t) = \inf_{\hat{p}_t(x_{t-1,t}), \gamma_t} \mathcal{L}(\hat{p}_t(x_{t-1,t}), \gamma_t, \alpha_t, \lambda_t, \xi_t)$. To find the infimum of Lagrangian given dual variables, we need first find extreme point of Lagrangian. Set the derivative of \mathcal{L} over $\hat{p}_t(x_{t-1,t}), \gamma_t$ to zero, we get

$$\frac{\partial \mathcal{L}}{\partial \hat{p}_t(x_{t-1,t})} = \log \frac{\hat{p}_t(x_{t-1,t})}{P(x_t, y_t | x_{t-1})} + 1 + \gamma_t^\top \cdot f(x_t) - \alpha_{t-1}^\top \cdot f(x_{t-1}) + \alpha_t^\top \cdot f(x_t) + \xi_t \stackrel{\text{set}}{=} 0$$

$$\Rightarrow \hat{p}_t(x_{t-1,t}) = \frac{1}{Z_{t-1,t}} \exp(\alpha_{t-1}^\top \cdot f(x_{t-1})) P(x_t, y_t | x_{t-1}) \exp((\gamma_t^\top - \alpha_t^\top) \cdot f(x_t))$$
(16)

where
$$Z_{t-1,t} = \exp(\xi_t + 1) = \int dx_{t-1,t} \exp(\alpha_{t-1}^\top \cdot f(x_{t-1})) P(x_t, y_t | x_{t-1}) \exp((\gamma_t^\top - \alpha_t^\top) \cdot f(x_t))$$

 $\frac{\partial \mathcal{L}}{\partial \gamma_t} = -\langle f(x_t) \rangle_{\hat{p}_t} + \langle f(x_t) \rangle_{\gamma_t} + \lambda_t \gamma_t = 0$
(17)
where $\langle f(x_t) \rangle_{\gamma_t} = \frac{\int dx_t f(x_t) \exp(\gamma_t^\top f(x_t))}{\int dx_t \exp(\gamma_t^\top f(x_t))}$

Our notation with γ_t as subscript means the statistics over the exponential family distribution parameterized by γ_t . Substituting Eq. (16) into our Lagrangian function (Eq. (15)), we get the following dual form, which is concave over α_t , λ_t for all t. This is an concave maximization problem whose solution is the global maximum. maximize over α_t, λ_t for all t:

$$F_{\text{Dual}} = -\sum_{t} \log Z_{t-1,t} + \sum_{t} \log \int dx_t \exp(\gamma_t^\top f(x_t)) + \sum_{t} \frac{\lambda_t}{2} \left(\gamma_t^\top \gamma_t - \eta_t\right)$$
(18)

subject to :
$$\lambda_t \ge 0$$

where
$$Z_{t-1,t} = \int dx_{t-1,t} \exp(\alpha_{t-1}^{\top} \cdot f(x_{t-1})) P(x_t, y_t | x_{t-1}) \exp((\gamma_t^{\top} - \alpha_t^{\top}) \cdot f(x_t))$$
 (19)

$$-\left\langle f(x_t)\right\rangle_{\hat{p}_t} + \left\langle f(x_t)\right\rangle_{\gamma_t} + \lambda_t \gamma_t = 0 \tag{20}$$

$$\hat{p}_t(x_{t-1,t}) = \frac{1}{Z_{t-1,t}} \exp(\alpha_{t-1}^\top \cdot f(x_{t-1})) P(x_t, y_t | x_{t-1}) \exp((\gamma_t^\top - \alpha_t^\top) \cdot f(x_t))$$
(21)

In the dual problem, we have dropped the dual variable ξ_t since it takes value to normalize $\hat{p}_t(x_{t-1,t})$ as a valid primal probability. For any dual variable α_t , λ_t , we have mapped primal variables $\hat{p}_t(x_{t-1,t})$ and γ_t as implicit functions defined by the extreme point conditions Eq. (16),(17). We have the following theoretic guarantee.

Proposition 1: The Lagrangian function has positive definite Hessian matrix when $\operatorname{cov}_{\gamma_t}(f(x_t), f(x_t)) + \lambda_t I - \langle f(x_t) \cdot f(x_t)^\top \rangle_{\hat{p}_t(x_{t-1,t})} \succ 0.$

Proof: The hessian matrix is defined as a square matrix of second-order partial derivatives over variables. Since the variables are all indexed by time t and there is no correlation term between two variables indexed with t and t'. It's suffice to check the positive definiteness of Hessian over one time slice, i.e. over $\hat{p}_t(x_{t-1,t}), \gamma_t$. We can finally claim overall positive definiteness by noticing that a sum of positive semi-definite matrix with non-intersect column vectors z to make $z^T M z = 0$ will be a positive definite matrix.

With the form of Lagrangian in Eq. (15), the hessian matrix over $\hat{p}_t(x_{t-1,t}), \gamma_t$ becomes

$$\mathbf{H} = \begin{bmatrix} \frac{1}{\hat{p}_t(x_{t-1,t})} & -f(x_t) \\ -f(x_t)^\top & \operatorname{cov}_{\gamma_t}(f(x_t), f(x_t)) + \lambda_t \end{bmatrix}$$

Using Schur complements, we have the equivalence condition of above hessian matrix to be positive definite as:

$$\mathbf{H} \succ 0 \iff \operatorname{cov}_{\gamma_t} \left(f(x_t), f(x_t) \right) + \lambda_t I - \left\langle f(x_t) \cdot f(x_t)^\top \right\rangle_{\hat{p}_t(x_{t-1,t})} \succ 0$$

Thus the proof is done. \Box

The Proposition 1 ensures the dual function as infimum of Lagrangian function given dual variable. Since the dual function is the point wise infimum of a family of affine functions of $\alpha_t, \lambda_t, \xi_t$, it is concave. We name $\operatorname{cov}_{\gamma_t}(f(x_t), f(x_t)) + \lambda_t I - \langle f(x_t) \cdot f(x_t)^\top \rangle_{\hat{p}_t(x_{t-1,t})} \succ 0$ as dual feasible constraint. Instead of a whole space of dual variables α_t, λ_t , now we only consider constrained domain by dual feasible constraint.

Proposition 2: The implicit function of $\hat{p}_t(x_{t-1,t})$ and γ_t defined by Eq. (16), (17) has unique solution under dual feasible constraint.

Proof: The extreme point equations define implicit function of $\hat{p}_t(x_{t-1,t})$ and γ_t . Consider $-\langle f(x_t) \rangle_{\hat{p}_t} + \langle f(x_t) \rangle_{\gamma_t} + \lambda_t \gamma_t = 0$ and plug in Eq. (16), we have γ_t as root of function $F(\gamma_t) = -\langle f(x_t) \rangle_{\hat{p}_t} + \langle f(x_t) \rangle_{\gamma_t} + \lambda_t \gamma_t$. Check the derivative, we have $\frac{\partial F(\gamma_t)}{\partial \gamma_t} = -\operatorname{Var}_{\hat{p}_t}(f(x_t)) + \operatorname{cov}_{\gamma_t}(f(x_t), f(x_t)) + \lambda_t I$. The dual feasible constraint is $\operatorname{cov}_{\gamma_t}(f(x_t), f(x_t)) + \lambda_t I - \langle f(x_t) \cdot f(x_t)^\top \rangle_{\hat{p}_t(x_{t-1,t})} \succ 0$. Therefore we have $\operatorname{cov}_{\gamma_t}(f(x_t), f(x_t)) + \lambda_t I \succ \langle f(x_t) \cdot f(x_t)^\top \rangle_{\hat{p}_t(x_{t-1,t})} \succ \operatorname{Var}_{\hat{p}_t}(f(x_t))$ and $\frac{\partial F(\gamma_t)}{\partial \gamma_t} \succ 0$.

For monotonic functional $F(\gamma_t)$, it has at most one root. Since $F(\gamma_t)$ could achieve negative/positive infinity when γ_t takes negative/positive infinity, we have the root of $F(\gamma_t) = 0$ has unique solution. \Box The Lagrange dual problem is a concave maximization problem with bounded domain. Hence it has a unique global optima. A gradient ascent algorithm or a converging fixed point algorithm should converge to the solution. The partial derivatives of the dual function over the dual variables are the following.

$$\begin{split} \frac{\partial F_{\text{Dual}}}{\partial \alpha_t} &= -\langle f(x_t) \rangle_{\hat{p}_{t+1}(x_{t,t+1})} + \langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})} + \frac{\partial \gamma_t}{\partial \alpha_t} \cdot \left(-\langle f(x_t) \rangle_{\hat{p}_t} + \langle f(x_t) \rangle_{\gamma_t} + \lambda_t \gamma_t \right) \\ &= -\langle f(x_t) \rangle_{\hat{p}_{t+1}(x_{t,t+1})} + \langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})} \\ \frac{\partial F_{\text{Dual}}}{\partial \lambda_t} &= \frac{1}{2} \left(\gamma_t^\top \gamma_t - \eta_t \right) + \frac{\partial \gamma_t}{\partial \lambda_t} \cdot \left(-\langle f(x_t) \rangle_{\hat{p}_t} + \langle f(x_t) \rangle_{\gamma_t} + \lambda_t \gamma_t \right) \\ &= \frac{1}{2} \left(\gamma_t^\top \gamma_t - \eta_t \right) \end{split}$$

where $\hat{p}_t(x_{t-1,t})$ and γ_t are implicit functions defined by the extreme point conditions Eq. (16),(17). Hence we can get a fixed point iteration through the first derivatives over α_t to zero. Empirically, the fixed point iteration converges even without the dual feasible constraint ($\lambda_t = 0$); Since the dual feasible constraint bound the λ_t , we should not set the derivative over λ_t to zero.

$$\frac{\partial F_{\text{Dual}}}{\partial \alpha_t} \stackrel{\text{set}}{=} 0 \Rightarrow \text{forward:} \alpha_t^{(\text{new})} = \alpha_t^{(\text{old})} + \gamma \left(\langle f(x_t) \rangle_{\hat{p}_t(x_{t-1,t})} \right) - \gamma_t^{(\text{old})}$$
$$\text{backward:} \gamma_t^{(\text{new})} = \gamma \left(\langle f(x_t) \rangle_{\hat{p}_{t+1}(x_{t,t+1})} \right)$$

6.3 Inference with SKM

In the SKM, we have the event based kernel as Eq. (3) and the form of $\hat{p}_t(x_{t-1,t})$ as Eq. 16. We write $\gamma_t - \alpha_t$ as β_t and make mean field assumption that $\alpha_{t-1}^\top \cdot f(x_{t-1}) = \sum_m \alpha_{t-1}^{(m)T} \cdot f(x_{t-1}^{(m)})$, $\beta_t^\top \cdot f(x_t) = \sum_m \beta_t^{(m)T} \cdot f(x_t^{(m)})$, where the parameter $\alpha_{t-1}^{(m)}$, $\beta_t^{(m)}$, the statistics $f(x_{t-1}^{(m)})$, $f(x_t^{(m)})$ only involve one specific species m and there is no correlation terms. Substitute the $P(x_t, v_t | x_{t-1})$ explicitly and , i.e. , we have

$$\hat{p}_{t}(x_{t-1,t}, v_{t}) = \frac{1}{Z_{t-1,t}} \prod_{m} \alpha_{t-1}^{(m)}(x_{t-1}^{(m)}) \prod_{m} \beta_{t}^{(m)}(x_{t}^{(m)}) \cdot P(y_{t}|x_{t}) \cdot I(x_{t} \in (x_{\min}, x_{\max}))$$

$$\cdot \begin{cases} \tau \cdot c_{v} \prod_{m=1}^{M} g_{v}^{(m)}(x_{t-1}^{(m)}) \cdot \prod_{m=1}^{M} I(x_{t}^{(m)} - x_{t-1}^{(m)} = \Delta_{v}^{(m)}) & \text{if } v_{t} = v \\ (1 - \tau \sum_{v} c_{v} \prod_{m=1}^{M} g_{v}^{(m)}(x_{t-1}^{(m)})) \cdot \prod_{m=1}^{M} I(x_{t}^{(m)} - x_{t-1}^{(m)} = 0) & \text{if } v_{t} = \emptyset \end{cases}$$
(22)

To simplify the notation, we abbreviate $\exp(\alpha_{t-1}^{(m)T} \cdot f(x_{t-1}^{(m)}))$ as $\alpha_{t-1}^{(m)}(x_{t-1}^{(m)})$ and $\exp(\beta_t^{(m)T} \cdot f(x_t^{(m)}))$ as $\beta_t^{(m)}(x_t^{(m)})$. We can marginalize the joint solution Eq. 22 over $x_{t-1}^{(m')}, x_t^{(m')}$ for all the other species $m' \neq m$ and get the marginal distribution for each particular species m:

$$\begin{split} For \ v_t &= v, \\ \hat{p}_t^{(m)}(x_{t-1}^{(m)}, x_t^{(m)}, v_t) &= \frac{1}{Z_{t-1,t}} \alpha_{t-1}^{(m)}(x_{t-1}^{(m)}) P(y_t^{(m)} | x_t^{(m)}) \beta_t^{(m)}(x_t^{(m)}) \cdot I\left(x_t^{(m)} \in (x_{\min}^{(m)}, x_{\max}^{(m)})\right) \\ &\cdot \tau c_v g_v^{(m)}(x_{t-1}^{(m)}) I(x_t^{(m)} - x_{t-1}^{(m)} = \Delta_v^{(m)}) \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = \Delta_v^{(m')}} f_{x_t^{(m')} | x_{t-1}^{(m')}) \beta_t^{(m')}(x_t^{(m')}) g_v^{(m')}(x_{t-1}^{(m')}) I\left(x_t^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ &For \ v_t &= \emptyset, \\ \hat{p}_t^{(m)}(x_{t-1}^{(m)}, x_t^{(m)}, v_t) &= \frac{1}{Z_{t-1,t}} \alpha_{t-1}^{(m)}(x_{t-1}^{(m)}) P(y_t^{(m)} | x_t^{(m)}) \beta_t^{(m)}(x_t^{(m)}) \cdot I\left(x_t^{(m)} \in (x_{\min}^{(m)}, x_{\max}^{(m)})\right) \\ &\cdot I(x_t^{(m)} - x_{t-1}^{(m)} = 0) \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \\ &- \frac{1}{Z_{t-1,t}} \alpha_{t-1}^{(m)}(x_{t-1}^{(m)}) P(y_t^{(m)} | x_t^{(m)}) \beta_t^{(m')}(x_t^{(m')}) I\left(x_t^{(m')} \in (x_{\min}^{(m)}, x_{\max}^{(m)})\right) \\ &\cdot \tau c_v g_v^{(m)}(x_{t-1}^{(m)}) I(x_t^{(m)} - x_{t-1}^{(m)} = 0) \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \\ &\cdot \prod_{m' \neq m} \int_{x_{t-1,t}^{(m')} (x_{t-1}^{(m')}) P(y_t^{(m')} | x_{t}^{(m')}) \beta_t^{(m')}(x_t^{(m')}) g_v^{(m')}(x_{t-1}^{(m')}) I\left(x_t^{(m')} \in (x_{\min}^{(m)}, x_{\max}^{(m)})\right) \\ &\cdot \pi c_v g_v^{(m)}(x_{t-1}^{(m)}) I(x_t^{(m)} - x_{t-1}^{(m)} = 0) \\ &\cdot \prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0 \end{aligned}$$

Extract the term $\prod_{m' \neq m} \int_{x_t^{(m')} - x_{t-1}^{(m')} = 0} dx_{t-1,t}^{(m')} \alpha_{t-1}^{(m')}(x_{t-1}^{(m')}) P(y_t^{(m')} | x_t^{(m')}) \beta_t^{(m')}(x_t^{(m')}) I\left(x_t^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right), \text{ we arrive at the term } x_t^{(m')} - x_{t-1}^{(m')} = 0$

$$\begin{split} \hat{p}_{t}^{(m)}(x_{t-1}^{(m)}, x_{t}^{(m)}, v_{t}) &= \frac{1}{Z_{t}^{(m)}} \cdot \alpha_{t-1}^{(m)}(x_{t-1}^{(m)}) P(y_{t}^{(m)}|x_{t}^{(m)}) \beta_{t}^{(m)}(x_{t}^{(m)}) \cdot P(x_{t}^{(m)}, v_{t}|x_{t-1}^{(m)}) \\ where P(x_{t}^{(m)}, v_{t}|x_{t-1}^{(m)}) &= I\left(x_{t}^{(m)} \in (x_{\min}^{(m)}, x_{\max}^{(m)})\right) \cdot \\ \begin{cases} c_{v} \tau g_{v}^{(m)}(x_{t-1}^{(m)}) &\prod_{m' \neq m} \tilde{g}_{v}^{(m')} \cdot I(x_{t}^{(m)} - x_{t-1}^{(m)} = \Delta_{v}^{(m)}) & v_{t}^{(m)} = v \\ \left(1 - \sum_{v} c_{v} \tau g_{v}^{(m)}(x_{t-1}^{(m)}) &\prod_{m' \neq m} \tilde{g}_{v}^{(m')}\right) I(x_{t}^{(m)} - x_{t-1}^{(m)} = 0) & v_{t}^{(m)} = \emptyset \\ \\ \tilde{g}_{v}^{(m')} &= \frac{\int_{x_{t}^{(m')} - x_{t-1}^{(m')} = \Delta_{v}^{(m')}}{\int_{x_{t}^{(m')} - x_{t-1}^{(m)} = \Delta_{v}^{(m')}} P(y_{t}^{(m')}|x_{t}^{(m')})g_{v}^{(m')}(x_{t-1}^{(m')}) I\left(x_{t}^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ \frac{\tilde{g}_{v}^{(m')} &= \frac{\int_{x_{t}^{(m')} - x_{t-1}^{(m')} = \Delta_{v}^{(m')}}{\int_{x_{t}^{(m')} - x_{t-1}^{(m')} = 0} P(y_{t}^{(m')}|x_{t}^{(m')})g_{v}^{(m')}(x_{t}^{(m')}) I\left(x_{t}^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ \hat{g}_{v}^{(m')} &= \frac{\int_{x_{t}^{(m')} - x_{t-1}^{(m')} = 0}{\int_{x_{t}^{(m')} - x_{t-1}^{(m')} = 0} P(y_{t}^{(m')}|x_{t}^{(m')})g_{v}^{(m')}(x_{t}^{(m')}) I\left(x_{t}^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ \hat{g}_{v}^{(m')} &= \frac{\int_{x_{t-1}^{(m')} - x_{t-1}^{(m')} = 0}{\int_{x_{t}^{(m')} - x_{t-1}^{(m')} = 0} Z_{t} \\ \frac{P(y_{t}^{(m')} - x_{t-1}^{(m')}) P(y_{t}^{(m')}|x_{t}^{(m')})g_{t}^{(m')}(x_{t}^{(m')}) I\left(x_{t}^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ \hat{g}_{x_{t}^{(m')} - x_{t-1}^{(m')} = 0} \\ \mathcal{I}_{v}^{(m)} &= \frac{P(y_{t}^{(m')} - x_{t-1}^{(m')}) P(y_{t}^{(m')}|x_{t}^{(m')}) g_{t}^{(m')}(x_{t}^{(m')}) I\left(x_{t}^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ \hat{g}_{x_{t}^{(m')} - x_{t-1}^{(m')} = 0} \\ = \int_{x_{t}^{(m')} - x_{t-1}^{(m')} = 0} P(y_{t}^{(m')}|x_{t}^{(m')}) g_{t}^{(m')}(x_{t}^{(m')}) I\left(x_{t}^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ \hat{g}_{v}^{(m')} &= x_{t-1}^{(m')} p(y_{t}^{(m')}|x_{t}^{(m')}) g_{t}^{(m')}(x_{t}^{(m')}) I\left(x_{t}^{(m')} \in (x_{\min}^{(m')}, x_{\max}^{(m')})\right) \\ \hat{g}_{v}^{(m')} &= x_{t-1}^{(m')} p(y_{t}^{(m')}|x_{t}^{(m')$$

, where $Z_t^{(m)}$, Z_t are respectively the normalization constant of $\xi_t^{(m)}(x_{t-1}^{(m)}, x_t^{(m)}, v_t)$ and $\xi_t(x_{t-1}, x_t, v_t)$. In Eq. 23, $\hat{p}_t^{(m)}(x_{t-1}^{(m)}, x_t^{(m)}, v_t)$ takes the same form as the joint solution Eq. 22, except a marginalized transition kernel $P(x_t^{(m)}, v_t | x_{t-1}^{(m)})$ which sums over all the other species $m' \neq m$. Instead of coping with exploding joint state space, we can now cope with each marginalized Markov chain with kernel $P(x_t^{(m)}, v_t | x_{t-1}^{(m)})$. Moreover, $\tilde{g}_v^{(m')}$, $\hat{g}_v^{(m')}$ can be interpreted as expectation of g factor at species m'. This suggests that each species evolves their states marginally according to the average effects of the others.

To summarize, we give the general algorithms.

Algorithm 2 Fixed Point Algorithm

Input: The discrete time SKM model (Eq. 1, 2, 3); the observations $y_t^{(m)}$ for all t, m; the observation model $P(y_t^{(m)}|x_t^{(m)})$; any initialization of $\alpha_t^{(m)}, \beta_t^{(m)}, \lambda_t^{(m)} > 0$ 1: Define function: ForwardTransition($\alpha_{t-1}^{(m)}, \beta_t^{(m)}$) $\operatorname{Find} \xi_t^{(m)}(x_{t-1,t}^{(m)}) \operatorname{from} \operatorname{Eq. 23}; \operatorname{Find} \gamma_t^{(m)} \operatorname{from} \left\langle f(x_t^{(m)}) \right\rangle_{\gamma_t^{(m)}(x_t^{(m)})} = \left\langle f(x_t^{(m)}) \right\rangle_{\xi_t^{(m)}(x_{t-1,t}^{(m)})};$ Update $\alpha_t^{(m)} \leftarrow \gamma_t^{(m)} - \beta_t^{(m)}$. Output $\alpha_t^{(m)}, \gamma_t^{(m)}$ 2: Define function: **BackwardTransition**($\alpha_{t-1}^{(m)}, \beta_t^{(m)}$) Find $\xi_t^{(m)}(x_{t-1,t}^{(m)})$ from Eq. 23; Find $\gamma_{t-1}^{(m)}$ from $\left\langle f(x_{t-1}^{(m)}) \right\rangle_{\gamma_{t-1}^{(m)}(x_{t-1}^{(m)})} = \left\langle f(x_{t-1}^{(m)}) \right\rangle_{\xi_t^{(m)}(x_{t-1}^{(m)})};$ Update $\beta_{t-1}^{(m)} \leftarrow \gamma_{t-1}^{(m)} - \alpha_{t-1}^{(m)}$. Output $\beta_{t-1}^{(m)}, \gamma_{t-1}^{(m)}$ 3: repeat for t=2 to T do $\alpha_t^{(m)}, \gamma_t^{(m)} \leftarrow \text{ForwardTransition}(\alpha_{t-1}^{(m)}, \beta_t^{(m)})$ end for 4: 5: 6: for t=T-1 to 1 do $\beta_t^{(m)}, \gamma_t^{(m)} \leftarrow \text{BackwardTransition}(\alpha_t^{(m)}, \beta_{t+1}^{(m)})$ end for 7: 8: 9: 10: **until** Convergence of $\gamma_t^{(m)}$ 11: Output $\gamma_t^{(m)}$

Algorithm 3 Gradient Ascent Algorithm

Input: The discrete time SKM model (Eq. 1, 2, 3); the observations $y_t^{(m)}$ for all t, m; the observation model $P(y_t^{(m)}|x_t^{(m)})$; any initialization of $\alpha_t^{(m)}, \beta_t^{(m)}, \gamma_t^{(m)} = \alpha_t^{(m)} + \beta_t^{(m)}$; Function ForwardTransition, BackwardTransition in algorithm 2 1: repeat 2: for t=2 to T-1 do 3: repeat Update $\hat{p}_t(x_{t-1,t}) = \frac{1}{Z_{t-1,t}} \exp(\alpha_{t-1}^\top \cdot f(x_{t-1})) P(x_t, y_t | x_{t-1}) \exp((\gamma_t^\top - \alpha_t^\top) \cdot f(x_t))$ and $\langle f(x_t) \rangle_{\hat{p}_t}$ according to 7,8,9 under dual feasible constraint 4: until Convergence or enough number of iterations 5: end for 6: 7: for t=T-1 to 2 do 8: Do the same as line 4 to 6 9: end for 10: until Convergence 11: Output $\hat{p}_t(x_{t-1,t}) = \frac{1}{Z_{t-1,t}} \exp(\alpha_{t-1}^\top \cdot f(x_{t-1})) P(x_t, y_t | x_{t-1}) \exp((\gamma_t^\top - \alpha_t^\top) \cdot f(x_t))$ and $\langle f(x_t) \rangle_{\hat{p}_t}$