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1 Notation introduction

Table 1: Commonly used notations

Notation Description

G = (V,E) Input directed network (or graph)
A ∈ {0, 1}N×N Adjacency matrix of network G

V Set of nodes or vertices
E = {(i, j) : aij = 1} Set of links or edges

N = |V | Number of nodes in network G
M = |E| Number of links in network G

Pi Set of direct predecessors of node i
Si Set of direct successors of node i

mi = |Pi| In-degree of node i
ni = |Si| Out-degree of node i

zi ∈ [0,∞)D Latent D-community distribution vector of node i
W ∈ [0,∞)D×D Shared matrix of community interactions

πi ≥ 0 Global ranking score of node i
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2 Proof for the closed-form solution of binary classification

The objective function of our binary classification is shown below:

argmax
z,W
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]
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[
log
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)]
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]
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=
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∑
i∈V

∑
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ps(i)pt(k) log
(
1− σ(z>i Wzk)

)
=
∑
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∑
j∈Si

ni
M

1

ni
log σ(z>i Wzj) + α

∑
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∑
k∈V

ni
M

mk

M
log
(
1− σ(z>i Wzk)

)
.

Given source node i, one of linked target node j ∈ Si enjoys a conditional distribution proportional
to 1

ni
. Since Si ⊆ V implies k including j, for specific positive example (i, j), we have:

argmaxLij =
1

M
log σ(z>i Wzj) + α

ni
M

mj

M
log
(
1− σ(z>i Wzj)

)
.

Now let yij = z>i Wzj . We first derive the closed-form solution of zero first-order derivative over
σ(yij):

∂Lij
∂σ(yij)

=
1

M

1

σ(yij)
− α ni

M

mj

M

1

1− σ(yij)
= 0

=⇒ σ(yij) =
1
M

1
M + αni

M
mj

M

=
M

M + αnimj
.

Next We obtain yij after calculations:

1

1 + e−yij
=

M

M + αnimj

=⇒ yij = log
M

αnimj

= log
1
M

αni

M
mj

M

= log
ps,t(i, j)

ps(i)pt(j)
− logα.

3 Proof for matrix tri-factorization supporting the second-order proximity

The second-order proximity implies high similarity between two representation vectors zi, zj if
nodes i, j have similar sets of direct predecessors or direct successors.

Consider the non-missing entries of the i-th and j-th column aPMI
i ,aPMI

j in our derived PMI matrix
APMI. Since all the non-missing entries are in link set E, the two columns represent the sets of
direct predecessors of node i and j where the links are weighted by PMI. Based on our matrix
tri-factorization Z>WZ ≈ APMI, we have:

aPMI
i ≈ Z>Wzi,

aPMI
j ≈ Z>Wzj

where zi is the i-th column of representation matrix Z. As the predecessor sets are similar aPMI
i ≈

aPMI
j , then their corresponding representation vector must be similar zi ≈ zj due to the same weight

matrix Z>W . Similarly, when modeling the matrix tri-factorization for the rows in APMI, we also
obtain zi ≈ zj if nodes i, j have similar successor sets.
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4 Proof for the expectation of community interactions

Let W ∈ [0,∞)D×D be the community interaction matrix where each entrywcd denotes the expected
number of interactions from community c to d. c = d implies the number of internal interactions
within a community. We assume that the existence of link (i, j) is determined by the expected value
of W with community distributions of i and j:

E(i,j) [W ] =

D∑
c=1

D∑
d=1

Pr(i ∈ Cc, j ∈ Cd)wcd

where Cc is the set of nodes in community c. Let zi be an unnormalized distribution vector where
each dimension 0 ≤ zic ∝ Pr(i ∈ Cc). Under the independence assumption between Pr(i ∈ Cc)
and Pr(j ∈ Cd), we have:

D∑
c=1

D∑
d=1

Pr(i ∈ Cc, j ∈ Cd)wcd =
D∑
c=1

D∑
d=1

Pr(i ∈ Cc) Pr(j ∈ Cd)wcd

∝
D∑
c=1

D∑
d=1

ziczjdwcd

= z>i Wzj .

5 Proof for community interactions following Poisson distribution

Based on the proof in the previous section, for specific link (i, j), the expected number of interactions
from community c to d is

Pr(i ∈ Cc) Pr(j ∈ Cd)wcd ∝ ziczjdwcd.

Here we model discrete random variable X(i,j)
cd as the number of interactions from community c to d

for link (i, j), following Poisson distribution X(i,j)
cd ∼ P(µ = ziczjdwcd). Using the properties of

Poisson distribution, the overall number of interactions among community pairs is

X(i,j) =

D∑
c=1

D∑
d=1

X
(i,j)
cd ∼ P

(
µ =

D∑
c=1

D∑
d=1

ziczjdwcd = z>i Wzj

)
.

Assume that node i and j belong to at least one community. Link (i, j) exists due to at least one
interaction between the communities that i and j belong to, which is

P(X(i,j) > 0) = 1− P(X(i,j) = 0) = 1− exp(−z>i Wzj).
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6 Proof for PageRank upper-bound objective function

Let Pj be the set of direct predecessors of node j, and ni be the out-degree of node i. Then we have:

argmin
π

∑
j∈V

∑
i∈Pj

πi
ni
− πj

2

=
∑
j∈V


∑
i∈Pj

πi
ni

2

− 2πj
∑
i∈Pj

πi
ni

+ π2
j



≤
∑
j∈V


∑
i∈Pj

12

∑
i∈Pj

(
πi
ni

)2


︸ ︷︷ ︸
Cauchy–Schwarz inequality

−2πj
∑
i∈Pj

πi
ni

+ π2
j


=
∑
j∈V

∑
i∈Pj

(
mj

(
πi
ni

)2

− 2πj
πi
ni

+
1

mj
π2
j

)

=
∑

(i,j)∈E︸ ︷︷ ︸
=j∈V,i∈Pj

mj

((
πi
ni

)2

− 2
πjπi
mjni

+

(
πj
mj

)2
)

=
∑

(i,j)∈E

mj

(
πi
ni
− πj
mj

)2

.

Since
(∑

i∈Pj
12
)(∑

i∈Pj

(
πi

ni

)2)
≥ 0, we constrain πi ≥ 0 for all node i to make the upper

bound tighter.

7 Proof for PageRank sufficient condition

For each node j ∈ V , let Pj be the set of direct predecessors of node j. We denote node i ∈ Pj .
Then for each node j, we show a sufficient condition:

πi
ni

=
πj
mj
∀ i ∈ Pj , j ∈ V︸ ︷︷ ︸

=(i,j)∈E

where mj = |Pj |, ni is respectively the in-degree of node j and the out-degree of node i. Now we
calculate the sum of the left-hand-side for all the direct predecessors i of each node j:∑

i∈Pj

πi
ni

=
∑
i∈Pj

πj
mj

=
1

mj

∑
i∈Pj

πj

=
1

mj
mjπj

= πj ∀ j ∈ V.

The equation is just the PageRank assumption:
∑
i∈Pj

πi

ni
= πj ∀ j ∈ V (here we omit the damping

factor).
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