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Abstract

Storing data in synthetic DNA offers the possibility of improving information
density and durability by several orders of magnitude compared to current storage
technologies. However, DNA data storage requires a computationally intensive
process to retrieve the data. In particular, a crucial step in the data retrieval pipeline
involves clustering billions of strings with respect to edit distance. Datasets in
this domain have many notable properties, such as containing a very large number
of small clusters that are well-separated in the edit distance metric space. In this
regime, existing algorithms are unsuitable because of either their long running time
or low accuracy. To address this issue, we present a novel distributed algorithm
for approximately computing the underlying clusters. Our algorithm converges
efficiently on any dataset that satisfies certain separability properties, such as
those coming from DNA data storage systems. We also prove that, under these
assumptions, our algorithm is robust to outliers and high levels of noise. We
provide empirical justification of the accuracy, scalability, and convergence of our
algorithm on real and synthetic data. Compared to the state-of-the-art algorithm for
clustering DNA sequences, our algorithm simultaneously achieves higher accuracy
and a 1000x speedup on three real datasets.

1 Introduction

Existing storage technologies cannot keep up with the modern data explosion. Thus, researchers have
turned to fundamentally different physical media for alternatives. Synthetic DNA has emerged as a
promising option, with theoretical information density of multiple orders of magnitude more than
magnetic tapes [12, 24, 26, 52]. However, significant biochemical and computational improvements
are necessary to scale DNA storage systems to read/write exabytes of data within hours or even days.

Figure 1: DNA
storage datasets
have many small
clusters that are
well-separated
in edit distance.

Encoding a file in DNA requires several preprocessing steps, such as randomizing it
using a pseudo-random sequence, partitioning it into hundred-character substrings,
adding address and error correction information to these substrings, and finally
encoding everything to the {A,C,G,T} alphabet. The resulting collection of short
strings is synthesized into DNA and stored until needed.

To retrieve the data, the DNA is accessed using next-generation sequencing, which
results in several noisy copies, called reads, of each originally synthesized short
string, called a reference. With current technologies, these references and reads
contain hundreds of characters, and in the near future, they will likely contain
thousands [52]. After sequencing, the goal is to recover the unknown references
from the observed reads. The first step, which is the focus of this paper, is to cluster
the reads into groups, each of which is the set of noisy copies of a single reference.

The output of clustering is fed into a consensus-finding algorithm, which predicts
the most likely reference to have produced each cluster of reads. As Figure 1 shows,
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datasets typically contain only a handful of reads for each reference, and each of these reads differs
from the reference by insertions, deletions, and/or substitutions. The challenge of clustering is to
achieve high precision and recall of many small underlying clusters, in the presence of such errors.

Datasets arising from DNA storage have two striking properties. First, the number of clusters grows
linearly with the input size. Each cluster typically consists of five to fifteen noisy copies of the same
reference. Second, the clusters are separated in edit distance, by design (via randomization). We
investigate approximate clustering algorithms for large collections of reads with these properties.

Suitable algorithms must satisfy several criteria. First, they must be distributed, to handle the billions
of reads coming from modern sequencing machines. Second, their running time must scale favorably
with the number of clusters. In DNA storage datasets, the size of the clusters is fixed and determined
by the number of reads needed to recover the data. Thus, the number of clusters k grows linearly with
the input size n (i.e., k = Ω(n)). Any methods requiring Ω(k · n) = Ω(n2) time or communication
would be too slow for billion-scale datasets. Finally, algorithms must be robust to noise and outliers,
and they must find clusters with relatively large diameters (e.g., linear in the dimensionality).

These criteria rule out many clustering methods. Algorithms for k-medians and related objectives
are unsuitable because they have running time or communication scaling with k · n [19, 29, 33, 42].
Graph clustering methods, such as correlation clustering [4, 9, 18, 47], require a similarity graph.1
Constructing this graph is costly, and it is essentially equivalent to our clustering problem, since in
DNA storage datasets, the similarity graph has connected components that are precisely the clusters
of noisy reads. Linkage-based methods are inherently sequential, and iteratively merging the closest
pair of clusters takes quadratic time. Agglomerative methods that are robust to outliers do not extend
to versions that are distributed and efficient in terms of time, space, and communication [2, 8].

Turning to approximation algorithms, tools such as metric embeddings [43] and locality sensitive
hashing (LSH) [31] trade a small loss in accuracy for a large reduction in running time. However, such
tools are not well understood for edit distance [16, 17, 30, 38, 46], even though many methods have
been proposed [15, 27, 39, 48, 54]. In particular, no published system has demonstrated the potential
to handle billions of reads, and no efficient algorithms have experimental or theoretical results
supporting that they would achieve high enough accuracy on DNA storage datasets. This is in stark
contrast to set similarity and Hamming distance, which have many positive results [13, 36, 40, 49, 55].

Given the challenges associated with existing solutions, we ask two questions: (1) Can we design a
distributed algorithm that converges in sub-quadratic time for DNA storage datasets? (2) Is it possible
to adapt techniques from metric embeddings and LSH to cluster billions of strings in under an hour?

Our Contributions We present a distributed algorithm that clusters billions of reads arising from
DNA storage systems. Our agglomerative algorithm utilizes a series of filters to avoid unnecessary
distance computations. At a high level, our algorithm iteratively merges clusters based on random
representatives. Using a hashing scheme for edit distance, we only compare a small subset of
representatives. We also use a light-weight check based on a binary embedding to further filter pairs.
If a pair of representatives passes these two tests, edit distance determines whether the clusters are
merged. Theoretically and experimentally, our algorithm satisfies four desirable properties.

Scalability: Our algorithm scales well in time and space, in shared-memory and shared-nothing
environments. For n input reads, each of P processors needs to hold only O(n/P ) reads in memory.

Accuracy: We measure accuracy as the fraction of clusters with a majority of found members and no
false positives. Theoretically, we show that the separation of the underlying clusters implies our algo-
rithm converges quickly to a correct clustering. Experimentally, a small number of communication
rounds achieve 98% accuracy on multiple real datasets, which suffices to retrieve the stored data.

Robustness: For separated clusters, our algorithm is optimally robust to adversarial outliers.

Performance: Our algorithm outperforms the state-of-the-art clustering method for sequencing data,
Starcode [57], achieving higher accuracy with a 1000x speedup. Our algorithm quickly recovers
clusters with large diameter (e.g., 25), whereas known string similarity search methods perform
poorly with distance threshold larger than four [35, 53]. Our algorithm is simple to implement in any
distributed framework, and it clusters 5B reads with 99% accuracy in 46 minutes on 24 processors.

1The similarity graph connects all pairs of elements with distance below a given threshold.
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1.1 Outline

The rest of the paper is organized as follows. We begin, in Section 2, by defining the problem
statement, including clustering accuracy and our data model. Then, in Section 3, we describe
our algorithm, hash function, and binary signatures. In Section 4, we provide an overview of the
theoretical analysis, with most details in the appendix. In Section 5, we empirically evaluate our
algorithm. We discuss related work in Section 6 and conclude in Section 7.

2 DNA Data Storage Model and Problem Statement

For an alphabet Σ, the edit distance between two strings x, y ∈ Σ∗ is denoted dE(x, y) and equals the
minimum number of insertions, deletions, or substitutions needed to transform x to y. It is well known
that dE defines a metric. We fix Σ = {A,C,G,T}, representing the four DNA nucleotides. We define
the distance between two nonempty sets C1, C2 ⊆ Σ∗ as dE(C1, C2) = minx∈C1,y∈C2

dE(x, y). A
clustering C of a finite set S ⊆ Σ∗ is any partition of S into nonempty subsets.

We work with the following definition of accuracy, motivated by DNA storage data retrieval.

Definition 2.1 (Accuracy). Let C, C̃ be clusterings. For 1/2 < γ 6 1 the accuracy of C̃ with
respect to C is

Aγ(C, C̃) = max
π

1

|C|

|C|∑
i=1

1{C̃π(i) ⊆ Ci and |C̃π(i) ∩ Ci| > γ|Ci|},

where the max is over all injective maps π : {1, 2, . . . , |C̃|} → {1, 2, . . . ,max(|C|, |C̃|)}.

We think of C as the underlying clustering and C̃ as the output of an algorithm. The accuracy
Aγ(C, C̃) measures the number of clusters in C̃ that overlap with some cluster in C in at least a
γ-fraction of elements while containing no false positives.2 This is a stricter notion than the standard
classification error [8, 44]. Notice that our accuracy definition does not require that the clusterings be
of the same set. We will use this to compare clusterings of S and S ∪ O for a set of outliers O ⊆ Σ∗.

For DNA storage datasets, the underlying clusters have a natural interpretation. During data retrieval,
several molecular copies of each original DNA strand (reference) are sent to a DNA sequencer.
The output of sequencing is a small number of noisy reads of each reference. Thus, the reads
that correspond to the same reference form a cluster. This interpretation justifies the need for high
accuracy: each underlying cluster represents one stored unit of information.

Data Model To aid in the design and analysis of clustering algorithms for DNA data storage, we
introduce the following natural generative model. First, pick many random centers (representing
original references), then perturb each center by insertions, deletions, and substitutions to acquire the
elements of the cluster (representing the noisy reads). We model the original references as random
strings because during the encoding process, the original file has been randomized using a fixed
pseudo-random sequence [45]. We make this model precise, starting with the perturbation.
Definition 2.2 (p-noisy copy). For p ∈ [0, 1] and z ∈ Σ∗, define a p-noisy copy of z by the following
process. For each character in z, independently, do one of the following four operations: (i) keep the
character unchanged with probability (1− p), (ii) delete it with probability p/3, (iii) with probability
p/3, replace it with a character chosen uniformly at random from Σ, or (iv) with probability p/3,
keep the character and insert an additional one after it, chosen uniformly at random from Σ.

We remark that our model and analysis can be generalized to incorporate separate deletion, insertion,
and substitution probabilities p = pD + pI + pS , but we use balanced probabilities p/3 to simplify
the exposition. Now, we define a noisy cluster. For simplicity, we assume uniform cluster sizes.
Definition 2.3 (Noisy cluster of size s). We define the distribution Ds,p,m with cluster size s, noise
rate p ∈ [0, 1], and dimension m. Sample a cluster C ∼ Ds,p,m as follows: pick a center z ∈ Σm

uniformly at random; then, each of the s elements of C will be an independent p-noisy copy of z.

With our definition of accuracy and our data model in hand, we define the main clustering problem.

2The requirement γ ∈ (1/2, 1] implies Aγ(C, C̃) ∈ [0, 1].
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Problem Statement Fix p,m, s, n. Let C = {C1, . . . , Ck} be a set of k = n/s independent
clusters Ci ∼ Ds,p,m. Given an accuracy parameter γ ∈ (1/2, 1] and an error tolerance ε ∈ [0, 1], on
input set S = ∪ki=1Ci, the goal is to quickly find a clustering C̃ of S with Aγ(C, C̃) > 1− ε.

3 Approximately Clustering DNA Storage Datasets

Our distributed clustering method iteratively merges clusters with similar representatives, alternating
between local clustering and global reshuffling. At the core of our algorithm is a hash family that
determines (i) which pairs of representatives to compare, and (ii) how to repartition the data among
the processors. On top of this simple framework, we use a cheap pre-check, based on the Hamming
distance between binary signatures, to avoid many edit distance comparisons. Our algorithm achieves
high accuracy by leveraging the fact that DNA storage datasets contain clusters that are well-separated
in edit distance. In this section, we will define separated clusterings, explain the hash function and
the binary signature, and describe the overall algorithm.

3.1 Separated Clusters

The most important consequence of our data model Ds,p,m is that the clusters will be well-separated
in the edit distance metric space. Moreover, this reflects the actual separation of clusters in real
datasets. To make this precise, we introduce the following definition.

Definition 3.1. A clustering {C1, . . . , Ck} is (r1, r2)-separated if Ci has diameter3 at most r1 for
every i ∈ {1, 2, . . . , k}, while any two different clusters Ci and Cj satisfy dE(Ci, Cj) > r2.

DNA storage datasets will be separated with r2 � r1. Thus, recovering the clusters corresponds to
finding pairs of strings with distance at most r1. Whenever r2 > 2 · r1, our algorithm will be robust to
outliers. In Section 4, we provide more details about separability under our DNA storage data model.
We remark that our clustering separability definition differs slightly from known notions [2, 3, 8] in
that we explicitly bound both the diameter of clusters and distance between clusters.

3.2 Hashing for Edit Distance

Algorithms for string similarity search revolve around the simple fact that when two strings x, y ∈ Σm

have edit distance at most r, then they share a substring of length at least m/(r + 1). However,
insertions and deletions imply that the matching substrings may appear in different locations. Exact
algorithms build inverted indices to find matching substrings, and many optimizations have been
proposed to exactly find all close pairs [34, 51, 57]. Since we need only an approximate solution,
we design a hash family based on finding matching substrings quickly, without being exhaustive.
Informally, for parameters w, `, our hash picks a random “anchor” a of length w, and the hash value
for x is the substring of length w + ` starting at the first occurrence of a in x.

We formally define the family of hash functionsHw,` = {hπ,` : Σ∗ → Σw+`} parametrized by w, `,
where π is a permutation of Σw. For x = x1x2 · · ·xm, the value of hπ,`(x) is defined as follows.
Find the earliest, with respect to π, occurring w-gram a in x, and let i be the index of the first
occurrence of a in x. Then, hπ,`(x) = xi · · ·xm′ where m′ = min(m, i+ w + `). To sample hπ,`
fromHw,`, simply pick a uniformly random permutation π : Σw → Σw.

Note thatHw,` resembles MinHash [13, 14] with the natural mapping from strings to sets of substrings
of length w + `. Our hash family has the benefit of finding long substrings (such as w + ` = 16),
while only having the overhead of finding anchors of length w. This reduces computation time, while
still leading to effective hashes. We now describe the signatures.

3.3 Binary Signature Distance

The q-gram distance is an approximation for edit distance [50]. By now, it is a standard tool in
bioinformatics and string similarity search [27, 28, 48, 54]. A q-gram is simply a substring of length q,
and the q-gram distance measures the number of different q-grams between two strings. For a string

3A cluster C has diameter at most r if dE(x, y) 6 r for all pairs x, y ∈ C.
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Algorithm 1 Clustering DNA Strands

1: function CLUSTER(S, r, q, w, `, θlow, θhigh, comm_steps, local_steps)
2: C̃ = S.
3: For i = 1, 2, . . . , comm_steps:
4: Sample hπ,` ∼ Hw,` and hash-partition clusters, applying hπ,` to representatives.
5: For j = 1, 2, . . . , local_steps:
6: Sample hπ,` ∼ Hw,`.
7: For C ∈ C̃, sample a representative xC ∼ C, and then compute the hash hπ,`(xC).
8: For each pair x, y with hπ,`(x) = hπ,`(y):
9: If (dH(σ(x), σ(y)) 6 θlow) or (dH(σ(x), σ(y)) 6 θhigh and dE(x, y) 6 r):

10: Update C̃ = (C̃ \ {Cx, Cy}) ∪ {Cx ∪ Cy}.
11: return C̃.
12: end function

x ∈ Σm, let the binary signature σq(x) ∈ {0, 1}4q

be the indicator vector for the set q-grams in x.
Then, the q-gram distance between x and y equals the Hamming distance dH(σq(x), σq(y)).

The utility of the q-gram distance is that the Hamming distance dH(σq(x), σq(y)) approximates
the edit distance dE(x, y), yet it is much faster to check dH(σq(x), σq(y)) 6 θ than to verify
dE(x, y) 6 r. The only drawback of the q-gram distance is that it may not faithfully preserve
the separation of clusters, in the worst case. This implies that the q-gram distance by itself is not
sufficient for clustering. Therefore, we use binary signatures as a coarse filtering step, but reserve edit
distance for ambiguous merging decisions. We provide theoretical bounds on the q-gram distance in
Section 4.1 and Appendix B. We now explain our algorithm.

3.4 Algorithm Description

We describe our distributed, agglomerative clustering algorithm (displayed in Algorithm 1). The
algorithm ingests the input set S ⊂ Σ∗ in parallel, so each core begins with roughly the same
number of reads. Signatures σq(x) are pre-computed and stored for each x ∈ S. The clustering C̃
is initialized as singletons. It will be convenient to use the notation xC for an element x ∈ C, and
the notation Cx for the cluster that x belongs to. We abuse notation and use C̃ to denote the current
global clustering. The algorithm alternates between global communication and local computation.

Communication One representative xC is sampled uniformly from each cluster Cx in the current
clustering C̃, in parallel. Then, using shared randomness among all cores, a hash function hπ,` is
sampled from Hw,`. Using this same hash function for each core, a hash value is computed for
each representative xC for cluster C in the current clustering C̃. The communication round ends
by redistributing the clusters randomly using these hash values. In particular, the value hπ,`(xc)
determines which core receives C. The current clustering C̃ is thus repartitioned among cores.

Local Computation The local computation proceeds independently on each core. One local round
revolves around one hash function hπ,` ∼ Hw,`. Let C̃j be the set of clusters that have been
distributed to the jth core. During each local clustering step, one uniform representative xC is
sampled for each cluster C ∈ C̃j . The representatives are bucketed based on hπ,`(xc). Now, the
local clustering requires three parameters, r, θlow, θhigh, set ahead of time, and known to all the cores.
For each pair y, z in a bucket, first the algorithm checks whether dH(σq(y), σq(z)) 6 θlow. If so, the
clusters Cy and Cz are merged. Otherwise, the algorithm checks if both dH(σq(y), σq(z)) 6 θhigh
and dE(x, y) 6 r, and merges the clusters Cy and Cz if these two conditions hold. Immediately after
a merge, C̃j is updated, and Cx corresponds to the present cluster containing x. Note that distributing
the clusters among cores during communication implies that no coordination is needed after merges.
The local clustering repeats for local_steps rounds before moving to the next communication round.

Termination After the local computation finishes, after the last of comm_steps communication
rounds, the algorithm outputs the current clustering C̃ =

⋃
j C̃j and terminates.
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4 Theoretical Algorithm Analysis

4.1 Cluster Separation and Binary Signatures

When storing data in DNA, the encoding process leads to clusters with nearly-random centers. Recall
that we need the clusters to be far apart for our algorithm to perform well. Fortunately, random cluster
centers will have edit distance Ω(m) with high-probability. Indeed, two independent random strings
have expected edit distance cind ·m, for a constant cind > 0. Surprisingly, the exact value of cind
remains unknown. Simulations suggest that cind ≈ 0.51, and it is known that cind > 0.338 [25].

When recovering the data, DNA storage systems receive clusters that consist of p-noisy copies of
the centers. In particular, two reads inside of a cluster will have edit distance O(pm), since they are
p-noisy copies of the same center. Therefore, any two reads in different clusters will be far apart in
edit distance whenever p� cind is a small enough constant. We formalize these bounds and provide
more details, such as high-probability results, in Appendix A.

Another feature of our algorithm is the use of binary signatures. To avoid incorrectly merging distinct
clusters, we need the clusters to be separated according to q-gram distance. We show that random
cluster centers will have q-gram distance Ω(m) when q = 2 log4m. Additionally, for any two reads
x, y, we show that dH(σq(x), σq(y)) 6 2q ·dE(x, y), implying that if x and y are in the same cluster,
then their q-gram distance will be at most O(qpm). Therefore, whenever p � 1/q ≈ 1/ logm,
signatures will already separate clusters. For larger p, we use the pair of thresholds θlow < θhigh to
mitigate false merges. We provide more details in Appendix B.

In Section 5, we mention an optimization for the binary signatures, based on blocking, which
empirically improves the approximation quality, while reducing memory and computational overhead.

4.2 Convergence and Hash Analysis

The running time of our algorithm depends primarily on the number of iterations and the total number
of comparisons performed. The two types of comparisons are edit distance computations, which take
time O(rm) to check distance at most r, and q-gram distance computations, which take time linear
in the signature length. To avoid unnecessary comparisons, we partition cluster representatives using
our hash function and only compare reads with the same hash value. Therefore, we bound the total
number of comparisons by bounding the total number of hash collisions. In particular, we prove the
following convergence theorem (details appear in Appendix C).

Theorem 4.1 (Informal). For sufficiently large n and m and small p, there exist parameters for
our algorithm such that it outputs a clustering with accuracy (1 − ε) and the expected number of
comparisons is

O

(
max

{
n1+O(p),

n2

mΩ(1/p)

}
·
(

1 +
log(s/ε)

s

))
.

Note that n1+O(p) > n2/mΩ(1/p) in the expression above whenever the reads are long enough, that
is, when m > ncp (where c is some small constant). Thus, for a large range of n,m, p, and ε, our
algorithm converges in time proportional to n1+O(p), which is sub-quadratic in n, the number of
input reads. Since we expect the number of clusters k to be k = Ω(n), our algorithm outperforms
any methods that require time Ω(kn) = Ω(n2) in this regime.

The running time analysis of our algorithm revolves around estimating both the collision probability
of our hash function and the overall convergence time to identify the underlying clusters. The main
overhead comes from unnecessarily comparing reads that belong to different clusters. Indeed, for pairs
of reads inside the same cluster, the total number of comparisons is O(n), since after a comparison,
the reads will merge into the same cluster. For reads in different clusters, we show that they collide
with probability that is exponentially small in the hash length (since they are nearly-random strings).
For the convergence analysis, we prove that reads in the same cluster will collide with significant
probability, implying that after roughly

O

(
max

{
nO(p),

n

mΩ(1/p)

}
·
(

1 +
log(s/ε)

s

))
iterations, the found clustering will be (1− ε) accurate.
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In Section 5, we experimentally validate our algorithm’s running time, convergence, and correctness
properties on real and synthetic data.

4.3 Outlier Robustness

Our final theoretical result involves bounding the number of incorrect merges caused by potential
outliers in the dataset. In real datasets, we expect some number of highly-noisy reads, due to
experimental error. Fortunately, such outliers lead to only a minor loss in accuracy for our algorithm,
when the clusters are separated. We prove the following theorem in Appendix D.

Theorem 4.2. Let C = {C1, . . . , Ck} be an (r, 2r)-separated clustering of S. Let O be any set of
size ε′k. Fixing the randomness and parameters in the algorithm with distance threshold r, let C̃ be
the output on S and C̃′ be the output on S ∪ O. Then, Aγ(C, C̃′) > Aγ(C, C̃)− ε′.

Notice that this is optimal since ε′k outliers can clearly modify ε′k clusters. For DNA storage data
recovery, if we desire 1− ε accuracy overall, and we expect at most ε′k outliers, then we simply need
to aim for a clustering with accuracy at least 1− ε+ ε′.

5 Experiments

We experimentally evaluate our algorithm on real and synthetic data, measuring accuracy and wall
clock time. Table 1 describes our datasets. We evaluate accuracy on the real data by comparing
the found clusterings to a gold standard clustering. We construct the gold standard by using the
original reference strands, and we group the reads by their most likely reference using an established
alignment tool (see Appendix E for full details). The synthetically generated data resembles real data
distributions and properties [45]. We implement our algorithm in C++ using MPI. We run tests on
Microsoft Azure virtual machines (size H16mr: 16 cores, 224 GB RAM, RDMA network).

Table 1: Datasets. Real data from Organick et. al. [45]. Synthetic data from Defn. 2.3. Appendix E has details.

Dataset # Reads Avg. Length Description

3.1M real 3,103,511 150 Movie file stored in DNA
13.2M real 13,256,431 150 Music file stored in DNA
58M real 58,292,299 150 Collection of files (40MB stored in DNA; includes above)
12M real 11,973,538 110 Text file stored in DNA
5.3B synthetic 5,368,709,120 110 Noise p = 4%; cluster size s = 10.

5.1 Implementation and Parameter Details

For the edit distance threshold, we desire r to be just larger than the cluster diameter. With p noise,
we expect the diameter to be at most 4pm with high probability. We conservatively estimate p ≈ 4%
for real data, and thus we set r = 25, since 4pm = 24 for p = 0.04 and m = 150.

For the binary signatures, we observe that choosing larger q separates clusters better, but it also
increases overhead, since σq(x) ∈ {0, 1}4q

is very high-dimensional. To remedy this, we used a
blocking approach. We partitioned x into blocks of 22 characters and computed σ3 of each block,
concatenating these 64-bit strings for the final signature. On synthetic data, we found that setting
θlow = 40 and θhigh = 60 leads to very reduced running time while sacrificing negligible accuracy.

For the hashing, we set w, ` to encourage collisions of close pairs and discourage collisions of far
pairs. Following Theorem C.1, we set w = dlog4(m)e = 4 and ` = 12, so that w+ ` = 16 = log4 n
with n = 232. Since our clusters are very small, we find that we can further filter far pairs by
concatenating two independent hashes to define a bucket based on this 64-bit value. Moreover, since
we expect very few reads to have the same hash, instead of comparing all pairs in a hash bucket, we
sort the reads based on hash value and only compare adjacent elements. For communication, we use
only the first 20 bits of the hash value, and we uniformly distribute clusters based on this.

Finally, we conservatively set the number of iterations to 780 total (26 communication rounds, each
with 30 local iterations) because this led to 99.9% accuracy on synthetic data (even with γ = 1.0).
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(a) Time Comparison (log scale) (b) Accuracy Comparison

Figure 2: Comparison to Starcode. Figure 2a plots running times on three real datasets of our algorithm versus
four Starcode executions using four distance thresholds d ∈ {2, 4, 6, 8}. For the first dataset, with 3.1M real
reads, Figure 2b plots Aγ for varying γ ∈ {0.6, 0.7, 0.8, 0.9, 1.0} of our algorithm versus Starcode. We stopped
Starcode if it did not finish within 28 hours. We ran tests on one processor, 16 threads.

(a) Distributed Convergence (b) Binary Signature Improvement (c) Strong Scaling

Figure 3: Empirical results for our algorithm. Figure 3a plots accuracy A0.9 of intermediate clusterings (5.3B
synthetic reads, 24 processors). Figure 3b shows single-threaded running times for four variants of our algorithm,
depending on whether it uses signatures for merging and/or filtering (3.1M real reads; single thread). Figure 3c
plots times as the number of processors varies from 1 to 8, with 16 cores per processor (58M real reads).

Starcode Parameters Starcode [57] takes a distance threshold d ∈ {1, 2, . . . , 8} as an input
parameter and finds all clusters with radius not exceeding this threshold. We run Starcode for various
settings of d, with the intention of understanding how Starcode’s accuracy and running time change
with this parameter. We use Starcode’s sphere clustering “-s” option, since this has performed most
accurately on sample data, and we use the “-t” parameter to run Starcode with 16 threads.

5.2 Discussion

Figure 2 shows that our algorithm outperforms Starcode, the state-of-the-art clustering algorithm for
DNA sequences [57], in both accuracy and time. As explained above, we have set our algorithm’s
parameters based on theoretical estimates. On the other hand, we vary Starcode’s distance threshold
parameter d ∈ {2, 4, 6, 8}. We demonstrate in Figures 2a and 2b that increasing this distance
parameter significantly improves accuracy on real data, but also it also greatly increases Starcode’s
running time. Both algorithms achieve high accuracy for γ = 0.6, and the gap between the algorithms
widens as γ increases. In Figure 2a, we show that our algorithm achieves more than a 1000x speedup
over the most accurate setting of Starcode on three real datasets of varying sizes and read lengths.
For d ∈ {2, 4, 6}, our algorithm has a smaller speedup and a larger improvement in accuracy.

Figure 3a shows how our algorithm’s clustering accuracy increases with the number of communication
rounds, where we evaluate Aγ with γ = 0.9. Clearly, using 26 rounds is quite conservative.
Nonetheless, our algorithm took only 46 minutes wall clock time to cluster 5.3B synthetic reads on 24
processors (384 cores). We remark that distributed MapReduce-based algorithms for string similarity
joins have been reported to need tens of minutes for only tens of millions of reads [21, 51].
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Figure 3b demonstrates the effect of binary signatures on runtime. Recall that our algorithm uses
signatures in two places: merging clusters when dH(σ(x), σ(y)) 6 θlow, and filtering pairs when
dH(σ(x), σ(y)) > θhigh. This leads to four natural variants: (i) omitting signatures, (ii) using them
for merging, (iii) using them for filtering, or (iv) both. The biggest improvement (20x speedup) comes
from using signatures for filtering (comparing (i) vs. (iii)). This occurs because the cheap Hamming
distance filter avoids a large number of expensive edit distance computations. Using signatures for
merging provides a modest 30% improvement (comparing (iii) vs. (iv)); this gain does not appear
between (i) and (ii) because of time it takes to compute the signatures. Overall, the effectiveness of
signatures justifies their incorporation into an algorithm that already filters based on hashing.

Figure 3c evaluates the scalability of our algorithm on 58M real reads as the number of processors
varies from 1 to 8. At first, more processors lead to almost optimal speedups. Then, the communi-
cation overhead outweighs the parallelization gain. Achieving perfect scalability requires greater
understanding and control of the underlying hardware and is left as future work.

6 Related Work

Recent work identifies the difficulty of clustering datasets containing large numbers of small clusters.
Betancourt et. al. [11] calls this “microclustering” and proposes a Bayesian non-parametric model for
entity resolution datasets. Kobren et. al. [37] calls this “extreme clustering” and studies hierarchical
clustering methods. DNA data storage provides a new domain for micro/extreme clustering, with
interesting datasets and important consequences [12, 24, 26, 45, 52].

Large-scale, extreme datasets – with billions of elements and hundreds of millions of clusters – are
an obstacle for many clustering techniques [19, 29, 33, 42]. We demonstrate that DNA datasets are
well-separated, which implies that our algorithm converges quickly to a highly-accurate solution. It
would be interesting to determine the minimum requirements for robustness in extreme clustering.

One challenge of clustering for DNA storage comes from the fact that reads are strings with edit errors
and a four-character alphabet. Edit distance is regarded as a difficult metric, with known lower bounds
in various models [1, 5, 7]. Similarity search algorithms based on MinHash [13, 14] originally aimed
to find duplicate webpages or search results, which have much larger natural language alphabets.
However, known MinHash optimizations [40, 41] may improve our clustering algorithm.

Chakraborty, Goldenberg, and Koucký explore the question of preserving small edit distances with
a binary embedding [16]. This embedding was adapted by Zhang and Zhang [56] for approximate
string similarity joins. We leave a thorough comparison to these papers as future work, along with
obtaining better theoretical bounds for hashing or embeddings [17, 46] under our data distribution.

7 Conclusion

We highlighted a clustering task motivated by DNA data storage. We proposed a new distributed
algorithm and hashing scheme for edit distance. Experimentally and theoretically, we demonstrated
our algorithm’s effectiveness in terms of accuracy, performance, scalability, and robustness.

We plan to release one of our real datasets. We hope our dataset and data model will lead to further
research on clustering and similarity search for computational biology or other domains with strings.

For future work, our techniques may also apply to other metrics and to other applications with large
numbers of small, well-separated clusters, such as entity resolution or deduplication [20, 23, 32].
Finally, our work motivates a variety of new theoretical questions, such as studying the distortion of
embeddings for random strings under our generative model (we elaborate on this in Appendix B).
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A Clusters are Well-Separated in Edit Distance

Let Um be the uniform distribution over Σm. Recall that in our data model the cluster centers
c1, . . . , ck are independently sampled from Um. Therefore, in this section, we analyze the edit
distance between random strings. We also bound the cluster radius when clusters consist of p-noisy
copies of the cluster centers (Definition 2.2). We will prove that a clustering C = {C1, . . . , Ck} is
well-separated when each Ci is sampled fromDs,p,m for i ∈ [k] where we define [k] = {1, 2, . . . , k}.
The separation will hold even if the error rate is constant (that is, when p is a small constant).

We need the following concentration bound for our analyses.
Lemma A.1 ([22]). Let f be a function of m random variables Z1, . . . , Zm such that
f(Z1, . . . , Zm) 6 b for some b. For i ∈ [m] let ξi satisfy

|E[f | Z1, . . . , Zi−1, Zi = ai]− E[f | Z1, . . . , Zi−1, Zi = a′i]| 6 ξi.

Then for any η > 0, we have that

Pr [|f − E[f ]| > η] 6 exp

(
− 2η2∑m

i=1 ξ
2
i

)
A.1 Edit Distance of Random Strings

There exists a constant cind = cind (|Σ|) > 0 such that for x, y ∼ Um,

lim
m→∞

dE(x, y)

m
= cind

almost surely (this follows from Kingman’s ergodic theorem). Determining the precise value of cind

is a challenging open problem, related to calculating the size of a ball under edit distance [10, 25].
When |Σ| = 4, simulations suggest cind ≈ 0.51, and it is known [25] that cind > 0.338. In what
follows, we will use that cind is the largest constant satisfying

E
x,y∼Um

[
dE(x, y)

]
> cind ·m,

for Σ = {A,C,G,T}.
Lemma A.2. For any λ > 0 we have

Pr
x,y∼Um

[∣∣∣∣dE(x, y)− E
x,y∼Um

[
dE(x, y)

]∣∣∣∣ 6 λ

√
m

2

]
> 1− e−λ

2

.

Proof. Let X = X1X2 · · ·Xm and Y = Y1Y2 · · ·Ym be random strings drawn from Um, and let Zi
be the pair (Xi, Yi). Define f(Z1, . . . , Zm) = dE(X,Y ). It is easy to see that

|E[f | Z1, . . . , Zi−1, Zi = (xi, yi)]− E[f | Z1, . . . , Zi−1, Zi = (x′i, y
′
i)]| 6 1,

where xi, yi, x′i, y
′
i are any four characters in Σ. Thus, the statement follows from Lemma A.1.

The above lemma implies that random strings will have edit distance that is linear in m with high
probability, since their expected distance is at least cind ·m and at most m.

A.2 Cluster Analysis for Edit Distance

We first analyze a cluster’s radius by bounding the edit distance of p-noisy copies.
Lemma A.3. Let x be a p-noisy copy of c ∈ Σm. Then, for any λ > 0 we have

Pr
[
dE(x, c) 6 pm+ λ

√
3m

]
> 1− e−λ

2

.

Proof. Recall that x was generated from c by going from left to right in c, and at each character,
introducing an edit (substitution, insertion, or deletion) with probability p, independently of the other
edits. Notice that the number of edits from c to x is binomially distributed, with parameters m and p.
Therefore, E

[
dE(x, c)

]
= pm, and a standard Chernoff bound proves the lemma.
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We tie together the above lemmas to prove that clusters are separated with high probability under edit
distance when m is large enough. In what follows, we think of p as a small constant p � cind, to
ensure separation. For high probability bounds, the number of input reads n just needs to satisfy

n < eδ
′c2indm

for a small enough constant δ′ > 0.
Lemma A.4. Consider a clustering C = {C1, . . . , Ck}, where each Ci ∼ Ds,p,m, and let n = sk.
Then C is (r1, r2)-separated for

r1 = 2pm+ 3
√
m lnn

r2 = cind ·m− 4pm− 12
√
m lnn,

with probability at least 1− 1/n2.

Proof. Let E1 be the event that for all i ∈ [k] and for all x ∈ Ci, we have

dE(x, ci) 6
r1

2
,

where ci is the center of Ci. We claim that E1 holds with probability at least 1− 1
2n2 . This follows

from setting λ = 2
√

lnn in Lemma A.3 and a union bound over the sk = n pairs (x, ci) relevant to
the event E1. Notice that when E1 holds, we have that dE(x, x′) 6 r1 for any pair x, x′ ∈ Ci.
Now, recall that

E
[
dE(ci, cj)

]
> cind ·m,

and let E2 be the event that for all pairs of cluster centers ci and cj for i 6= j we have
dE(ci, cj) > r2 + 2r1.

When E1 ∩ E2 holds, we have that for any two points x ∈ Ci and y ∈ Cj with i 6= j,
dE(x, y) > dE(ci, cj)− dE(x, ci)− dE(y, cj) > r2 + 2r1 − 2r1 = r2,

where the first inequality follows from the triangle inequality. By setting λ = 2
√

lnn in Lemma A.2
and a union bound over

(
k
2

)
6 n2 pairs of cluster centers, we have that E2 holds with probability at

least 1− 1
2n2 .

We conclude that E1 ∩ E2 holds with probability at least 1 − 1
n2 by a union bound, and that C is

(r1, r2)-separated conditioned on E1 ∩ E2.

B Clusters are Well-Separated Under Binary Signatures

Analogously to the previous section, we now analyze the q-gram distance, that is, the Hamming
distance between binary signatures. We also analyze the cluster separation for random centers.

B.1 Signature Distance of Random Strings

We start by lower bounding the expected distance for random strings.
Lemma B.1. Let q be a natural number satisfying 4q > 2m and m > 2q. Then,

E
x,y∼Um

[dH(σq(x), σq(y))] > 2(m− q + 1)− 2(m− q + 1)2

4q
.

In particular, for q = d2 log4me and m large enough, dH(σq(ci), σq(ci)) > 2m − O(logm) in
expectation for distinct cluster centers ci, cj .

Proof. The number of q-grams in a string x ∈ Σm is exactly m − q + 1. Let X,Y denote the
multi-set of q-grams in x and y, respectively. Observe that

dH(σq(x), σq(y)) = 2(m− q + 1)− 2|X ∩ Y |.
By linearity of expectation, we simply need to prove that E[|X ∩Y |] 6 |X||Y |/4q . For each element
of X , the probability it is contained in Y is at most |Y |/4q, since there are 4q possible q-grams.
Therefore the bound follows by summing over the |X| q-grams in X . For distinct centers ci and cj ,
the lower bound on the expectation of dH(σq(ci), σq(ci)) follows by plugging in q = d2 log4me.
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Lemma B.2. Let Um be the uniform distribution over Σm. Let q be a natural number satisfying
4q > 2m and m > 2q. Then, for any λ > 0, we have

Pr
x,y∼Um

[∣∣dH(σq(x), σq(y))− E[dH(σq(x), σq(y))]
]∣∣ 6 λq

√
m
]
> 1− e−2λ2

.

Proof. Let X = X1X2 · · ·Xm and Y = Y1Y2 · · ·Ym be random strings drawn from Um, and let Zi
be the pair (Xi, Yi). Define f(Z1, . . . , Zm) = dH(σq(X), σq(Y )). Since σq is defined in terms of
q-grams, it is easy to see that

|E[f | Z1, . . . , Zi−1, Zi = (xi, yi)]− E[f | Z1, . . . , Zi−1, Zi = (x′i, y
′
i)]| 6 q,

where xi, yi, x′i, y
′
i are any four characters in Σm. Therefore, the statement follows from Lemma A.1.

B.2 Cluster Analysis for Signatures

We are interested in bounding the maximum difference between the edit distance of the original
strands and the Hamming distance of the signatures.
Lemma B.3. Let q be a natural number satisfying 0 6 q 6 m. For any x, y ∈ Σ∗,

dH(σq(x), σq(y)) 6 min{2q · dE(x, y), |x|+ |y| − 2q + 2}

Proof. The upper bound of |x|+ |y|−2q+2 holds simply because σq(x) contains at most |x|−q+1
non-zero coordinates (likewise for y). To show dH(σq(x), σq(y)) 6 2q · dE(x, y), we will analyze
the case of a single edit, and prove dH(σq(x), σq(z)) 6 2q when dE(x, z) = 1. Then, we observe
that the triangle inequality implies the upper bound for all edit distances. Let z be any string in
Σ∗ with dE(x, z) = 1. Let X and Z be the set of q-grams in x and z, respectively. Notice that
dH(σq(x), σq(z)) equals the size of the symmetric difference |X4Z|. We claim |X \ Z| 6 q, since
the single edit between x and z can cause at most q elements of X to be absent in Z. Similarly, we
claim |Z \X| 6 q, since the single edit between x and z can cause at most q elements to be in Z that
are not present in X . Thus,

dH(σq(x), σq(z)) = |X4Z| 6 |X \ Z|+ |Z \X| 6 2q,

as desired.

Lemma B.4. Let x be a p-noisy copy of c ∈ Σm. Then, for any λ > 0 we have

Pr
[
dH(σq(x), σq(c)) 6 2q

(
pm+ λ

√
3m
) ]

> 1− e−λ
2

.

Proof. This follows directly from Lemmas A.3 and B.3.

Lemma B.5. Let q = dlog4me. Let C = {C1, . . . , Ck} be a random clustering with Ci ∼ Ds,p,m.
Then, with probability 1− 1/n2, we have that

1. for any i = 1, 2, . . . , k and any x, y ∈ Ci,

dH(σq(x), σq(y)) 6 4q
(
pm+ 3

√
m lnn

)
=: r′1.

2. for x ∈ Ci and y ∈ Cj with i 6= j,

dH(σq(x), σq(y)) > 2m− 2q
(

4pm+ 7
√
m lnn

)
=: r′2.

Proof. Let E ′1 be the event that for all i ∈ [k] and for all x ∈ Ci, we have

dH(σq(x), σq(ci)) 6
r′1
2
,

where ci is the center of Ci. We claim that E ′1 holds with probability at least 1− 1
2n2 . This follows

from setting λ = 2
√

lnn in Lemma B.4 and a union bound over the sk = n pairs (x, ci) relevant
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to the event E ′1. Notice that when E ′1 holds, we have that dH(σq(x), σq(x
′)) 6 r′1 for any pair

x, x′ ∈ Ci.
Now, let E ′2 be the event that for all pairs of cluster centers ci and cj for i 6= j we have

dH(σq(ci), σq(cj)) > r′2 + 2r′1.

Notice that when E ′1 ∩ E ′2 holds, we have that for any two points x ∈ Ci and y ∈ Cj with i 6= j,

dH(σq(x), σq(y))) > dH(σq(ci), σq(cj))− dH(σq(x), σq(ci))− dH(σq(y), σq(cj)) > r′2,

where the first inequality follows from the triangle inequality. By setting λ = 2
√

lnn in Lemma B.2
and a union bound over

(
k
2

)
6 n2 pairs of cluster centers, we have that E ′2 holds with probability at

least 1− 1
2n2 .

We conclude that E ′1 ∩E ′2 holds with probability at least 1− 1
n2 by a union bound, and that C satisfies

the claimed bounds conditioned on E ′1 ∩ E ′2.

Lemma B.5 proves that the clusters are separated according to the binary signatures with high
probability whenever p � 1/ logm. This is a stricter requirement than we needed for the edit
distance separation, since that tolerated error rate p = O(1). Constructing an efficient binary
embedding for p = Ω(1) would indeed be interesting.

B.3 Metric Embedding Related Work

We briefly mention a connection to metric embeddings for non-repetitive strings. Charikar and
Krauthgamer [17] call x ∈ Σm a t-non-repetitive string if all of its t-grams are distinct. They
provide an embedding into the `1 metric space with distortion O(t logm) for the submetric of edit
distance corresponding to considering only t-non-repetitive stings. For random strings, we prove in
Lemmas B.2 and B.3 that the binary signatures σq(x) provide an embedding into Hamming space
with distortion O(logm) with high probability when q = 2 log4m. It is natural to wonder if our
binary signatures work in general for O(logm)-non-repetitive strings (since random strings will
have this property with high probability). Unfortunately, it is easy to construct pairs of example
strings with linear edit distance but whose signatures have only logarithmic Hamming distance (≈ q).
Therefore, it is an interesting open question to find an efficient metric embedding into `1 that has
distortion O(1) for strings under our random model. Any such embedding must crucially use that
the strings are random since Andoni and Krauthgamer [5] prove that embedding 1-non-repetitive
strings into `1 requires distortion Ω(logm/ log logm). Andoni and Krauthgamer also study a related
question, about approximately computing edit distance under a random model [6].

C Theoretical Guarantees of Our Algorithm

In this section, we estimate the number of strand comparisons performed throughout the execution
of the algorithm. We analyze a serial version of the algorithm that slightly differs from the one
described in Section 3. This version works as follows. It maintains a collection of clusters, which we
will call groups to differentiate them from the clusters in the true clustering. The algorithm starts
with singleton groups i.e., initially, every strand belongs to its own group. At every iteration t, the
algorithm picks an anchor – a random string a(t) of length LA. Then, in each group g it picks a
random strand xg(t), which we call the center of the group g. For every center x, the algorithm
finds all substrings of length L = LA + LH with prefix a(t). These substrings are hash values for g.
Denote the set of hash values by Hg(t). The algorithm adds g to all buckets of a hash table indexed
by h ∈ Hg(t). (Note that the only difference between this algorithm and the algorithm we described
earlier is that in that version we add g only to one of the buckets.) Then, the algorithm compares
every two elements in each bucket and merges those groups whose centers are nearby with respect to
the edit distance.

Theorem C.1. There exists absolute constants p0 > 0, β1, β2, β3 > 0, such that for every p 6 p0,
ε > 0, integer s > 1, and sufficiently large n, m (n > m2) the following holds. Let LA = dlog4me,
L = min(b logm

6p c, log4(n/m)). Then, after T = β14LA log(s/ε)
m(1−2p)L

steps, the algorithm recovers (1− ε)
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fraction of all clusters in expectation. The expected number of comparisons performed by the
algorithm is upper bounded by

O
(n2m(1 + log(s/ε)/s)

4L(1− 2p)L

)
.

If L = b logm
6p c, we get the bound

O

(
n2(1 + log(s/ε)/s)

mβ2/p

)
.

If L = log4(n/m), we get the bound

O
(
n1+2pm2(1+p)(1 + log(s/ε)/s)

)
.

Proof. As discussed before, the true clusters Ci are separated, so we never merge groups from
different true clusters. Hence, every group g is a subset of some cluster Ci. Let us introduce some
notation: Denote the set of groups a cluster Ci is split into at the beginning of iteration t by Gi(t);
the set of centers chosen for these groups by centeri(t), and the number of these groups/centers
by si(t). Note that Gi(0) is a set of singletons Gi(0) = {{u} : u ∈ Ci}; centeri(0) = Ci; and
si(0) = |Ci| = s. Let T be the total number of steps performed by the algorithm; and Gi(T ),
centeri(T ), and si(T ) be the set of groups, the set of centers, and the number of centers (respectively)
in the cluster i at the end of the algorithm.

We need to show that the expected number of i such that si(T ) = 1 is (1− ε)n and then give a bound
on the expected number of comparisons.

To analyze the algorithm we need to obtain lower and upper bounds on the probability that at one
iteration two distinct centers u and v end up in the same bucket. For any two strands u and v, let
Suv be the set of all strings of length L that are substrings of both u and v; and let Auv be the set of
prefixes of strings in Suv of length LA. That is,

Suv = {s ∈ ΣL : s is a substring of u, and s is a substring of v};
Auv = {prefix of length LA of s : s ∈ Suv}.

Suppose that at iteration t, strands u and v are chosen as centers of two distinct groups g1 and g2.
Then, the strands u and v are placed into the same bucket of the hash table if and only if the anchor
a(t) belongs to the set Auv. This happens with probability |Auv|/4LA , since the anchor a(t) is a
random string of length LA, and there are exactly 4LA strings of length LA. Recall that in this version
of the algorithm, a strand may be placed not in one but a few different buckets if the anchor string
occurs in it several times. The expected number of buckets that contain both u and v at step t is
|Suv|/4LA .

The sets Auv and Suv are random; and the quantities |Auv| and |Suv| are random variables. We
estimate the expectation of |Suv| and |Auv|.

Claim C.2. Suppose 4LA > 6m. Then the following bounds hold.

1. If u, v ∈ Ci for some i, then E|Suv| > (m−L+ 1)(1− 2p)L and E|Auv| > 1/6 (m−L+
1)(1− 2p)L.

2. If u ∈ Ci, v ∈ Cj for i 6= j, then E|Suv| 6 m24−L.

Proof. 1. If u and v belong to the same true cluster Ci, then they are noisy reads/copies of the same
strand w. The strand w has length m and contains (m−L+ 1) substrings of length L. Each of these
substring is present in both u and v with probability (1− p)L × (1− p)L > (1− 2p)L. Hence, the
expected number of common substrings is at least (1− 2p)L(m− L+ 1).

We now estimate E|Auv . The strand w contains (m− L+ 1) prefixes of length LA of substrings of
length L. Let Za be the number of occurrences of a fixed “anchor” a (i.e., a substring of length LA)
in w that starts at least L characters before the end of the strand w. The expectation of Za equals
E[Za] = (m−L+ 1)4−LA , we denote this expectation by µ. A standard computation shows that the
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variance Var[ZA] is upper bounded by µ+2/3µ. Thus, E[Z2
A] = Var[Za]+(E[ZA])2 6 µ+2/3µ+µ2.

Let I(Za > 1) be the indicator of the event {Za > 1}. Then, by Cauchy–Schwarz,

Pr(Za > 1) = E[I(Za > 1)] = E[I(Za > 1)2] > 2E[I(Za > 1)Za]− E[Z2
a ] >

> 2µ− (µ+ 2µ/3 + µ2) = µ/3− µ2 > µ/6.

Thus, the expected number of distinct anchors in strand w is at least µ/6× 4LA = (m− L+ 1)/6.
Each of these anchors gets copied to u and v without errors together with the next LH = L− LA
characters in w with probability at least (1− 2p)L. Hence, E|Auv| > (m− L+ 1)(1− 2p)LA/6.

2. Similarly, if i 6= j, then each u and v contains m−L+ 1 6 m substrings of length L. The number
of pairs of strings of length L – one from u and one from v – is at most m2. The probability that two
particular substrings are the same is 4−L (as strings u and v are independent random strings in the
alphabet Σ). Hence the expected number of common substrings of length L is at most m24−L.

We would like to show now that the random variables |Suv| and |Auv| are concentrated around the
mean w.h.p. That is true for |Auv| if u, v ∈ Ci (see Lemma C.3). However, that is not true for |Suv|
if u ∈ Ci, v ∈ Cj . To overcome this problem, we consider a sum of many random variables |Suv|.
We fix a cluster Ci and vertex u ∈ Ci and bound the sum

∑
v/∈Ci

|Suv| (see Lemma C.3).

Lemma C.3. There exists an absolute constant β such that the following inequalities hold ifL < m/2
and LA > log4 6m.

1. If u, v ∈ Ci for some i, then

Pr(|Suv| > 1/10m(1− 2p)L) > 1− exp(−βm(1− 4p)L/L2);

2. If u ∈ Ci, v ∈ Cj for some i 6= j, then

Pr
( ∑
v/∈Ci

|Suv| 6
2nm2

4L

)
> 1−m2 exp

(
− βn

4L

)
.

The proof of Lemma C.3 is similar to the proof of Claim C.2. We estimate the expectation as in
Claim C.2 and then apply a concentration inequality. The only minor complication is that not all
random variables in the sum we get are independent. Thus, in part (1), we use McDiarmid’s Bounded
Difference Inequality; and in part (2), we use the standard Chernoff bound, but we break the sum into
m2 sums of independent random variables. We omit the details here. We now proceed to the proof of
Theorem C.1.

Correctness. We first show that the expected number of clusters completely recovered after T steps
of the algorithm is (1− ε). Consider a cluster Ci and u, v ∈ Ci. Suppose that u and v are centers of
two different groups in Ci. If the algorithm places u and v in the same bucket of the hash table, which
happens with probability |Auv|/4LA , then the groups corresponding u and v are merged, since all
clusters are separated (as discussed in Sections 3 and A). We say that Ci is good if for all u, v ∈ Ci
we have |Auv| > 1/10m(1− 2p)L; otherwise, we say that Ci is bad.

Lemma C.3 asserts that the expected fraction of bad clusters is at most exp(−βm(1−4p)L). Observe
that

(1− 4p)L = exp(−L log(1/(1− 4p))) > exp(−5Lp) > exp(−5/6 logm) = m
−5/6.

Here we used that for a sufficiently small p, we have log(1/(1 − 4p) 6 5p. We also substituted
L = b logm

6p c. Hence, the expected fraction of bad clusters is upper bounded by exp(−βm1/6/L2),
which is much less than ε for a sufficiently large m. Thus, we can ignore bad clusters.

Consider a good cluster Ci. At every iteration t, for any two centers u, v ∈ centeri(t), the probability
that the algorithm puts u and v into the same bucket is |Auv|4−LA , which at least

α =
m(1− 2p)L

10 · 4LA
.
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Therefore, using Lemma C.5 from Section C.1, we obtain the following bound on the expected
number of non recovered clusters:

s(1− α)T = s
(

1− m(1− 2p)L

10 · 4LA

)T
6 ε/2.

The last inequality holds, since

T =
β14LA log(s/ε)

m(1− 2p)L
.

Number of Comparisons. We now upper bound the total number of comparisons. We divide all
strand comparisons into two types: internal and external. We say that a comparison of u and v is
internal if u and u belong to the same true cluster Ci; we say that it is external, if u and v belong to
two distinct clusters Ci and Cj . It is easy to see that the total number of internal comparisons for a
cluster Ci is bounded by |Ci| − 1 = s− 1, since after s− 1 comparisons the algorithm will merge
all vertices in Ci into one group. Thus, the total number of internal comparisons is k(s − 1) < n.
Below, we prove Lemma C.4 that gives a bound on the number of external comparisons. This bound
together with the bound on the number of internal comparisons gives us the desired result.

Lemma C.4. The expected number of external comparison performed by the algorithm in T steps is
upper bounded by

O
(n2m(1 + log(s/ε)/s)

4L(1− 2p)L

)
.

Proof. Fix a cluster Ci. We estimate the expected number of external comparisons between strands
in Ci and outside of Ci. Consider a step t of the algorithm. If u is chosen as a center of a group in
Ci, then the expected number of external comparisons between u and strands v outside of Ci is upper
bounded by 4−LA

∑
v/∈Ci

|Suv| (note: as we discussed earlier 4−LA |Suv| is the expected number
of buckets in which both u and v are placed at iteration t if u and v are centers). Here, we use a
conservative estimate: instead of counting only strands v that are centers of groups outside of Ci we
count all v’s outside of Ci. Summing over all centers u ∈ centeri(t), we get a bound on the expected
number of comparisons between centers in Ci and other centers:

4−LAE
[ ∑
u∈centeri(t)

∑
v/∈Ci

|Suv|
]

6 4−LAE
[
|centeri(t)|max

u∈Ci

∑
v/∈Ci

|Suv|
]

(1)

= 4−LAE
[
si(t)

∑
v/∈Ci

|Suv|
]
. (2)

Let Eu be the event {
∑
v/∈Ci

|Suv| 6 2nm2/4L}, and

ECi
= ∩u∈Ci

Eu =
{

max
u∈Ci

∑
v/∈Ci

|Suv| 6
2nm2

4L

}
.

Let Ii be the indicator of the event ECi
. By Lemma C.3, Pr(¬Eu) 6 m2 exp(−βn/4L). Using the

union bound, we get E[1 − Ii] = Pr(¬ECi
) 6 sm2 exp(−βn/4L) 6 4−L/s. The last inequality

follows from the bound L 6 log4(n/m) for sufficiently large m. We now consider two cases: Ii = 1,
then we bound the expected number of comparisons using (2); and Ii = 0, then we bound the number
of comparisons by sn (this is the maximum possible number of comparisons). We get the following
bound on the number of comparisons between centers in Ci and all other centers at iteration t:

1

4LA
E
[
Ii · si(t) ·

∑
v/∈Ci

|Suv|
]

+ E
[
(1− Ii) · sn

]
6

1

4LA
E
[
Ii · si(t) ·

2nm2

4L

]
+ E

[
(1− Ii) · sn

]
6

2nm2

4L+LA
E[si(t)] +

n

4L
.

We now sum up this bound over all steps t = 0, . . . , T − 1 of the algorithm. By Lemma C.5,
E
[∑T−1

t=0 |si(t)|
]
6 T + s/α, where α = m(1− 2p)L/(10 · 4LA). Hence, the expected number of

external comparisons for a cluster Ci is upper bounded by

2nm2

4L+LA
·
(
T +

10s · 4LA

m(1− 2p)L
)

+
nT

4L
= O

( Tnm2

4L+LA
+

snm

4L(1− 2p)L

)
.
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Summing up this bound over all k clusters Ci, we get the bound:

O
( Tn2m2

s4L+LA
+

n2m

4L(1− 2p)L

)
= O

(n2m(1 + log(s/ε)/s)

4L(1− 2p)L

)
.

C.1 Single Cluster Dynamics

In this section, we analyze the evolution of a single cluster Ci from the underlying true clustering
throughout the execution of the algorithm. We obtain the desired bounds, we will only rely on the
following fact: The probability that any two groups in Ci are merged at step t is at least α. Note,
however, that the events {g1 and g2 are merged at step t} and {g2 and g3 are merged at step t} are not
independent.
Lemma C.5. The following bounds hold.

1.
Pr(Si(T ) > 1) 6 (s− 1)(1− α)T .

2.

E
[ T−1∑
t=0

si(t)
]
6 T +

s− 1

α
.

Proof. 1. Pick a designated vertex u in Ci. For every v the probability that u and v are in two distinct
groups after t steps of the algorithm is at most (1− α)t since at every step the probability that the
group containing u and group containing v are merged is at least α. Thus, the expected number of
vertices that are not in the group containing u is at most (s − 1)(1 − α)t. This is also a bound on
the number of groups not containing u. Hence, E[si(t)] 6 1 + (s− 1)(1− α)t, and, consequently,
Pr(si(t) > 1) 6 E[si(t)− 1] 6 (s− 1)(1− α)t.

2. Using the bound E[si(t)] 6 1+(1−α)t, we get
∑T−1
t=0 (1+(s−1)(1−α)t) 6 T+(s−1)/α.

D Outlier Analysis

For this proof, we analyze a slightly simplified version of our algorithm that does not use signatures
for merging. A similar result holds for the original algorithm, but it is more complicated to state
(since it depends on Ds,p,m), and this complexity does not add new insight. In particular, for this
section, we will set θlow = −1. The other parameters of the algorithm can be arbitrary, except for r
which depends on the separation (and is mentioned in the theorem statement).

We need some definitions for the proof.
Definition D.1. Let C = {C1, . . . , Ck} be (r, 2r)-separated. A point z touches a cluster Ci if
dE(z, x) 6 r for any x ∈ Ci. For a set O of outliers, say a cluster Ci is untouched by O if no point
in O touches it.

Proof of Theorem 4.2. We show that at most ε′k terms in the sum in Aγ differ for C̃ versus C̃′. This
follows from two simple claims:

1. If Ci is untouched by O, then the ith term is the same in the sums for both Aγ(C, C̃) and
Aγ(C, C̃′).

2. Each outlier in O can touch at most one cluster in C.

To see the first of the these claims, notice that if a cluster Ci is untouched, then dE(x, z) > r for any
z ∈ O∪ (S \Ci). Therefore, no element of Ci will ever merge with an element outside of Ci, and the
output of the algorithm will be the same with respect to Ci on both inputs S and S ∪ O. The second
claim follows directly from the (r, 2r)-separated property. Indeed, if an outlier z has dE(x, z) 6 r
for any point x ∈ Ci, then it must be that dE(y, z) > r for all y ∈ Cj with j 6= i. Putting these
claims together, at most ε′k terms differ in the sums for Aγ and thus the accuracies differ by at most
ε′, since each term is at most 1.
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E Additional Information about Datasets and Experimental Setup

E.1 Computing Environment and Implementation Details

We use dedicated virtual machines on Microsoft Azure within a single region and virtual network.
They machines have Azure size H16mr. The specifications are as follows: Intel E5-2667 V3 3.2
GHz processors, utilizing 224GB DDR4 memory and 2TB SSD-based local storage. They have
a dedicated RDMA backend network enabled by FDR InfiniBand network. The Linux operating
system uses image Centos 7.1-HPC.

We implemented out algorithms using C++. We used the MPICH MPI-3 compilers and the Intel MPI
5.2 runtime library. We compiled with the -O2 flag. For MPI, we allocated a single rank per core,
and the large communication steps of our algorithm are implemented with non-blocking windows,
which support RDMA.

E.2 Real Datasets Used for Evaluation

We provide details about the real datasets that we used for experimental evaluation. The real data
came from a DNA data storage system presented by Organick et. al. [45]. We explain the way we
have processed their sequencing data to generate our datasets. In particular, we explain the methods
we used to produce a gold standard on which we evaluate our algorithm and Starcode.

Overall, the data from Organick et. al. [45] is the output of an Illumina NextSeq machine. They
prepared and sequenced molecules of synthetic DNA that store encoded data. The details of wetlab
preparation and amplification can be found in the paper by Organick et. al. [45].

To generate a gold standard for clustering, we must find the true mapping between references and
reads. To do this, we used a standard biological alignment tool, the Burrows-Wheeler Aligner
(BWA) [39]. We run BWA with 10 threads using the command

bwa mem -t 10 [reference file] [read file]

BWA first indexes the references (the expected synthesized DNA) to create a database of references.
After the references are indexed, BWA compares the references to all reads in order to find the best
mapping between the references and reads. Each reference maps to many reads, which will be the
basis for the clusters.

BWA also outputs an alignment between reads and references in the “bam” file format. From this, we
extract the reads that aligned successfully. More precisely, each line in a bam file contains several
fields, one of which is the read. Another field in the bam file keeps track of the most similar reference
for this read, or leaves this field empty if no references are found to align. For a read that aligns, the
file also identifies the best alignment (that minimizes edit distance between the read and reference).
We discard lines that do not align to any reference. Since reads of DNA often contain errors, as well
as additional nucleotides before and after the expected strand, we used the alignment results to extract
the portions of the reads that align to the references. Finally, from the BWA output, we know which
reference each read is most similar to. Thus, we use this to create gold standard clusters.

We note that in our experiments, the clustering algorithms do not have access to the references, so
the clusters generated using BWA should have much higher quality than anything produced by a
clustering algorithm that does not have access to the references. Therefore, the alignments serve as a
good gold standard.

The datasets were generated from a single sequencing run, which in total produced 58M reads after
processing. The set of references for this run corresponds to about 40MB of data stored in DNA.
Additionally, using the original file information, we are able to separate out three smaller datasets,
each corresponding to a single encoded file. These represent a movie file, a text file, and a music file,
respectively. The sizes of the these smaller files appear in Table 1.

We remark that in practice, any true DNA storage system has an additional challenge. The data
retrieval pipeline must identify the noisy reads from the sequencer output. The complication arises
because the sequencer may append relatively long strings of random characters on either end of
each read that it outputs. Since systems cannot align to true references, they must use additional
information, such as a known substring, to extract a high-quality subsection of the read for clustering.
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Figure 4: For the 12M real reads dataset, the graph plots the accuracy Aγ , for varying γ, of our algorithm
versus Starcode (with different distance threshold settings for Starcode). Higher is better. Tests were run on one
processor, 16 threads.

E.2.1 Synthetic Datasets Used for Evaluation

We follow Definition 2.3. The datasets with generated using Python 3.6, using the default random
library. We implemented the uniform noise generation with “random.uniform”, picking insertion,
deletion, or substitution, each with equal probability for 4% total chance of error. We picked insertion
and substitution characters uniformly at random in {A,C,G,T}.

E.2.2 Sources of Errors

In DNA data storage systems, errors arise not only from sequencing, but also from synthesis and
amplification. This leads to a higher overall error rate than sequencing alone, with less than a ten-fold
difference between substitution and insertion/deletion rates. In particular, the majority of reads
contain at least one insertion or deletion, and therefore the clustering algorithm must be tailored to
edit distance. Finally, although Illumina error rates may be low, future technologies such as Nanopore
sequencing will require clustering algorithms that are robust to much higher error rates.

F Accuracy Justification

We expound on our definition of accuracy and its relationship to DNA storage. Recall that the goal of
clustering is to find the groups of reads that came from the same reference. Then, using these clusters,
a method called trace reconstruction is used to determine the most likely reference for each group of
noisy reads. The effectiveness of trace reconstruction depends on the number of traces. Therefore,
larger clusters are clearly better. When the size of the original clusters varies, it is better to have more
traces from small clusters, therefore we use this parameter γ to measure the fraction of recovered
strings in a cluster.

Trace reconstruction methods do not have a built-in way to handle false positives. Fortunately, it is
easy to check false positives because we know the threshold r. In particular, we assume that any
clustering methods will check false positives before outputting the clusters.

G Additional Experimental Result

We include an accuracy comparison in Figure 4 for the 12M real reads dataset. This corresponds
to the times reported for this dataset in Figure 2a in Section 5. We show the output of Starcode for
distance parameters 1 through 7 (the setting of distance 8 did not finish in 28 hours).
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