
Supplementary information

1 Dataset generation
1.1 ShapeNet category refinement and object preprocess-

ing
Starting from the original 55 categories in ShapeNet [2], we further split them
into 117 categories based on the information provided by ShapeNet. For every
object in ShapeNet, beside the label from 55 categories, a tree of synsets in
WordNet [8] is also provided where the object will be described in more and
more detail. For example, one tree could include "artifact", "instrumentation",
"transport", "vehicle", "craft", "vessel", and finally "ship". The deeper for one
synset in the tree, more refined that synset will be. The label provided is usually
not the deepest synset in the tree, which gives rise for refinement. Therefore, we
first regrouped the objects in ShapeNet using their deepest synset in synset tree.
Then we manually combined some of them as they represent the same thing,
such as "liquid crystal display" and "computer monitor". In order to get a dataset
with balanced category distribution, we dropped the subcategories containing
less than 30 objects, which left 117 subcategories (a full list of the categories
can be found in Table 4). Furthermore, with the aim of including roughly 10000
objects with balanced category distribution, we first sorted the categories by the
number of objects contained and then sampled objects from smallest category to
largest category sequentially. For every sampling, we would first multiply the
number of objects in this category with the number of categories left (cl). If
the result was smaller than 10000 minus the number of objects already sampled
(na), we would just take all of objects in this category. Otherwise, we would
randomly sample (10000− na)/cl objects from each category left. Finally, we
got 9981 objects in 117 categories, with most categories containing 91 objects
and smallest category containing 41 objects.

The correct collision simulation in Bullet [9] requires the object to be com-
posed of several convex shapes. Therefore, we used V-HACD [7] to decompose
every object. The decomposation is done to each object with "resolution" pa-
rameter being 500000, "maxNumVerticesPerCH" being 64, and other parameters
being default.

1.2 Sweep simulation procedure
Two technical details about sweep simulatin would be described in this section,
including rescaling of the object and the adjusting of the position to avoid

1



collision with fixed whisker bases.
For each object, we first computed a cuboid cover for the whole shape

by getting the maximal and minimal values of points on the object in three
dimensions. The longest distance in the cuboid cover would then be used as the
current scale of this object. And scaling factor was computed by dividing the
desired scale by the longest distance.

After rescaling, the object was moved to make the center of cuboid cover to
be placed at the desired position and then the nearest point on the object to the
center of whisker array was computed. The object was moved again to make the
nearest point to be placed at the desired position. To avoid collision, we sampled
points on the surfaces of cuboid cover and then computed the trajectories of
these points. We would move the object to right to make the nearest distance
from every fixed base to every trajectory larger than 4mm.

1.3 Basic control experiment
We generated 24000 independent sweeps for each version of control dataset,
meaning 12000 for each category. For each dataset, we split the dataset equally
to three parts containing 8000 sweeps overall. We then took 7000 of them as
training dataset and the left as testing dataset. To reduce the over-fitting, we
randomly sampled 1000 data from input data and the sampling remained the
same for all control datasets. The number of units sampled has been searched to
make sure that performance could not be added with more units. A LinearSVM
is then trained to do the classification with a grid search of parameters. The
standard deviation shown on the figure was based on the performances across
three splits in one control dataset.

2 Model training and visualization
2.1 Training procedure
We searched the learning parameter space including the choices of learning algo-
rithm, learning rates, and decay rates. Among them, training using Adagrad [3]
with a initial learning rates at 0.003 and batch size of 128 gave the best result,
which was then applied to the training of all networks. The learning rate would
not be changed to 0.0015 until the performance on validation saturated. Ten
more epoches would be run after changing the learning rate to 0.0015. The
reported performances were the best performances on validation during the
whole training procedure.

2.2 Model structures
To make the description of model structures easier, we would use conv(filter
size, number of filters), pool(filter size, stride), and fc(dimension of outputs) to
represent convolution layer, pooling layer, and fully connected layer respectively.
The size of stride in convolution layers is set to be 1× 1 for all networks and the

2



pooling used in our networks is always max-pooling. For example, conv(3× 3,
384) represents a convolution layer with filter size of 3× 3, stride of 1× 1, and
384 filters.

We used Xavier initialization [5] for the weight matrix in convolution layers
while the bias was all initialized to 1. The weight matrix in fully connected
layer was initialized using truncated normal distribution with mean being 0 and
standard deviation being 0.01, where values deviated from mean for more than
two standard deviations would be discarded and redrawn. The bias in fully
connected layer was initialized to 0.1. A ReLu layer would always be added
after convolution or fully connected layer. And for the fully connected layers, we
would use a dropout of rate 0.5 during training. [6]

Simultaneous Spatiotemporal Integration. This family of networks
(family S) will usually have several convolution layers followed by fully connected
layers. The convolution is applied to both the temporal and spatial dimension.

In Table 1, we showed the structure of all networks in this family, correspond-
ing to the name used in the main paper. The output of previous layer will serve
as the input to the next layer. And the layers before fc_combine are shared
across three sweeps. For example, in model "S", conv1 to fc7 are shared across
sweeps while the outputs of fc7 will be concatenated together as the input to
fc_combine8. Besides, S_rand is the same model with S_more except that the
weights of conv1 to fc7 there are not trained. Only fc_combine8 is trained to
prove that training of weights is necessary.

Separately, we trained another network based on S_more combining 12
sweeps rather than 3 sweeps. The model shared the same structure as S_more.
But fc_combine8 there would combine information from 12 sweeps, which means
that the input to fc_combine8 is a vector of 1024×12. The performances of this
network surpassed all other networks, with top1 being 0.20 and top5 being 0.53.
This means that our network could utilize information from 12 sweeps to help
finish the task.

Separate Spatial and Temporal Integration. The network structures
for those two families are shown in Table 2. For the "Temporal-Spatial" family,
temporal convolution is applied to the inputs first for each whisker using shared
weights and then "spatial regroup" in Table 2 means that the outputs from
previous layer for each whisker will be grouped according to the spatial position
of each whisker in 5 × 7 grid, with vacant positions filled by zeros. For the
"Spatial-Temporal" family, the input is first split into 22 vectors on temporal
dimension and each vectore is further reshaped into 2D spatial grid, which means
the final shape of each vector would be 5× 7× 90. Spatial convolution networks
with shared weights will be applied to each vector. After that, the "temporal
concatenating" in Table 2 means that the outputs from spatial networks will first
be reshaped to one dimension vector and then be concatenated in the temporal
dimension to form a new input for further processing. Then temporal convolution
will be applied to the new input.

Recurrent Neural Networks with Skip and Feedback Connections.
Similar to "Spatial-Temporal" family, the input is first split and reshaped into
22 vectors of size 5× 7× 90. And then the vectors are fed into the network one

3



by one in order of time. The structures of networks in this family are shown in
Table 3 with additional edges. The "RNN_lstm" and "RNN_gru" is just adding
LSTM/GRU between fc8 and fc_combine9 with number hidden units being 512.

2.3 Visualization related
Calculating category and object level RDMs. After the network training
finished, we took the network with best performances in each family and generated
the responses of each layer on validation set. For category RDM, we calculated
the category mean of responses for each layer and then calculate the RDM based
on that using Pearson correlation coefficient between each category. For object
level RDM, the average was computed for each object for each layer and then
the RDM was calculated from that using Pearson correlation coefficient between
each object.

Object grouping. The categories are regrouped using category level RDM
to show that the categorization is reasonable. The group is shown in the
confusion matrix visualization in main paper, with 117 categories into 10 groups.
Specifically, we took the RDM of the highest hidden layer in our best network
("TS") and used affinity propagation to group them [4] with parameter "damping"
being 0.9. The results are shown in Table 4.

MDS embedding of RDMs. In order to estimate variance caused by
initialization of the DNNs, we trained 5 networks for both "TS" model and
"RNN_fdb" model from different initializations. We then generated the responses
of these 10 models on validation set and computed object level RDMs based on
the responses. For "RNN_fdb", we take the responses of last time point of each
layer to compute the RDMs. We also tried RDMs computed from averages and
concatenations of responses from last half of time points, the results are similar.

After calculating RDMs, we computed Pearson correlation coefficient between
RDMs to get a distance matrix between them. Then we used MDS algorithm
for to get a 2D embedding [1].

References
[1] Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory

and applications. Springer Science & Business Media, 2005.
[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository.
ArXiv, 2015.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[4] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data
points. science, 315(5814):972–976, 2007.

[5] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

4



[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. Advances In Neural Information
Processing Systems, pages 1–9, 2012.

[7] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for 3d mesh
approximate convex decomposition. In Image Processing (ICIP), 2009 16th IEEE
International Conference on, pages 3501–3504. IEEE, 2009.

[8] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[9] Wikipedia. Bullet (software) — wikipedia, the free encyclopedia, 2016. [Online;
accessed 19-October-2016].

5



Table 1: Network structure for S family
Name Structure

S conv1(9× 3, 96), pool1(3× 1, 3× 1), conv2(3× 3, 128), pool2(3× 3,
2 × 2), conv3(3 × 3, 192), conv4(3 × 3, 192), conv5(3 × 3, 128),
pool5(3× 3, 2× 2), fc6(2048), fc7(1024), fc_combine8(117)

S_more conv1(9× 3, 96), pool1(3× 1, 3× 1), conv2(3× 3, 256), pool2(3× 3,
2 × 2), conv3(3 × 3, 384), conv4(3 × 3, 384), conv5(3 × 3, 256),
pool5(3× 3, 2× 2), fc6(4096), fc7(1024), fc_combine8(117)

S_few conv1(9× 3, 32), pool1(3× 1, 3× 1), conv2(3× 3, 64), pool2(3× 3,
2×2), conv3(3×3, 96), conv4(3×3, 96), conv5(3×3, 64), pool5(3×3,
2× 2), fc6(256), fc7(128), fc_combine8(117)

S_4c2f conv1(9× 3, 96), pool1(3× 1, 3× 1), conv2(3× 3, 128), pool2(3× 3,
2× 2), conv3(3× 3, 192), conv4(3× 3, 128), pool4(3× 3, 2× 2),
fc5(2048), fc6(1024), fc_combine7(117)

S_3c2f conv1(9× 3, 96), pool1(3× 1, 3× 1), conv2(3× 3, 388), pool2(3× 3,
2× 2), conv3(3× 3, 128), pool3(3× 3, 2× 2), fc4(2048), fc5(1024),
fc_combine6(117)

S_2c2f conv1(9× 3, 96), pool1(3× 1, 3× 1), conv2(3× 3, 144), pool2(6× 6,
4× 4), fc3(2048), fc4(1024), fc_combine5(117)

S_1c2f conv1(9 × 3, 96), pool1(6 × 3, 6 × 2), fc2(896), fc3(512),
fc_combine4(117)

S_3c1f conv1(9× 3, 96), pool1(3× 1, 3× 1), conv2(3× 3, 128), pool2(3×
3, 2 × 2), conv3(3 × 3, 192), pool3(3 × 3, 2 × 2), fc4(1532),
fc_combine5(117)

S_2c1f conv1(9× 3, 96), pool1(3× 1, 3× 1), conv2(3× 3, 128), pool2(3× 3,
2× 2), fc3(708), fc_combine4(117)

S_3c0f conv1(9× 3, 72), pool1(3× 1, 3× 1), conv2(3× 3, 144), pool2(3× 3,
2× 2), fc_combine3(117)

S_2c0f conv1(9× 3, 72), pool1(3× 1, 3× 1), fc_combine2(117)
S_1c0f fc_combine1(117)
S_3D conv1(9×2×2, 96), pool1(4×1×1, 4×1×1), conv2(3×2×2, 256),

pool2(3× 1× 1, 2× 1× 1), conv3(3× 2× 2, 384), conv4(3× 2× 2,
384), conv5(3× 2× 2, 256), pool5(3× 3× 3, 2× 2× 2), fc6(4096),
fc7(1024), fc_combine8(117)

S_deep conv1(5× 3, 64), conv2(5× 3, 64), pool2(3× 1, 3× 1), conv3(2× 2,
128), conv4(2 × 2, 128), pool4(3 × 3, 2 × 2), conv5(3 × 3, 192),
conv6(3× 3, 192), conv7(3× 3, 192), conv8(3× 3, 192), conv9(3×
3, 128), pool9(3 × 3, 2 × 2), fc10(2048), fc11(1024), fc12(512),
fc_combine13(512), fc_combine14(117)

6



Table 2: Network structure for "Temporal-Spatial" and "Spatial-Temporal" family
Name Structure

TS conv1(9, 64), pool1(3, 3), conv2(3, 256), pool2(3, 2), conv3(3,
384), conv4(3, 384), conv5(3, 256), pool5(3, 2), spatial regroup,
conv6(1×1, 896), conv7(1×1, 512), conv8(3×3, 384), conv9(3×3,
384), conv10(3×3, 256), fc11(2048), fc12(512), fc_combine13(512),
fc_combine14(117)

TS_few conv1(9, 64), pool1(3, 3), conv2(3, 192), pool2(3, 2), conv3(3,
256), conv4(3, 256), conv5(3, 192), pool5(3, 2), spatial regroup,
conv6(1×1, 512), conv7(1×1, 384), conv8(3×3, 256), conv9(3×3,
256), conv10(3×3, 192), fc11(1024), fc12(512), fc_combine13(512),
fc_combine14(117)

ST conv1(2×2, 256), conv2(2×2, 384), conv3(2×2, 512), conv4(2×2,
512), conv5(2 × 2, 512), conv6(2 × 2, 384), temporal concate-
nating, conv7(1, 1024), conv8(1, 512), conv9(3, 512), conv10(3,
512), conv11(3, 512), conv12(3, 512), pool12(3, 2), fc13(1024),
fc_combine14(512), fc_combine15(117)

7



Table 3: Network structure for Recurrent Neural Networks family
Name Structure Additional Edges
RNN conv1(2× 2, 96), conv2(2× 2,

256), conv3(2 × 2, 384),
conv4(2× 2, 384), conv5(2× 2,
384), conv6(2 × 2, 256),
fc7(2048), fc8(1024),
fc_combine9(1024),
fc_combine10(512),
fc_combine11(117)

RNN_byp conv1(2× 2, 96), conv2(2× 2,
128), conv3(2 × 2, 256),
conv4(2× 2, 384), conv5(2× 2,
384), conv6(2 × 2, 256),
fc7(1024), fc8(512),
fc_combine9(1024),
fc_combine10(512),
fc_combine11(117)

conv1→conv3, conv1→conv4,
conv2→conv4, conv2→conv5,
conv3→conv5, conv3→conv6,
conv4→conv6, conv2→fc7,
conv4→fc7

RNN_fdb conv1(2× 2, 96), conv2(2× 2,
128), conv3(2 × 2, 256),
conv4(2× 2, 384), conv5(2× 2,
384), conv6(2 × 2, 256),
fc7(1024), fc8(512),
fc_combine9(1024),
fc_combine10(512),
fc_combine11(117)

conv3→conv2, conv4→conv2,
conv4→conv3, conv5→conv3,
conv5→conv4, conv6→conv4,
conv6→conv5, conv2→fc7,
conv4→fc7

8



Table 4: Results for category regroup based on RDM
Group Categories

1 table-tennis table, folding chair, grand piano, lawn chair, rocking
chair, windsor chair, swivel chair, park bench, armchair, straight
chair, chair

2 drafting table, kitchen table, secretary, pool table, piano, berth,
worktable, console table, easy chair, laptop, bench, coffee table, desk,
table

3 upright, basket, birdhouse, platform bed, vertical file, dishwasher,
convertible, monitor, love seat, printer, microwave, washer, file, stove,
bookshelf, dresser, tweeter, bathtub, loudspeaker, cabinet, sofa

4 camera, school bus, bag, pendulum clock, mailbox, planter, bus
5 floor lamp, dagger, delta wing, revolver, propeller plane, carbine,

knife, sniper rifle, guitar, rifle, airplane, jet
6 ferry, cabin cruiser, sea boat, cruise ship, yacht, wheeled vehicle,

pistol, ship, tender, train, boat
7 limousine, ambulance, stock car, roadster, jeep, beach wagon, wine

bottle, cruiser, sports car, convertible, bottle, racer, sport utility,
sedan, coupe, car

8 cap, soda can, coffee mug, jar, mug, helmet, bowl, pot, ashcan, vase
9 data input device, remote control, pillow, telephone, screen, clock,

liquid crystal display, cellular telephone
10 microphone, earphone, sailboat, motorcycle, table lamp, faucet, lamp

9


	Dataset generation
	ShapeNet category refinement and object preprocessing
	Sweep simulation procedure
	Basic control experiment

	Model training and visualization
	Training procedure
	Model structures
	Visualization related


