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Appendix
A Derivation of eq. (6)

Note that we can write the mini-batch gradient as

ĝ =
1

M

N∑
n=1

gnsn with sn ,

{
1 , if n ∈ B
0 , if n /∈ B

Clearly, ĝ is an unbiased estimator of g, if

Esn = P (sn = 1) =
M

N
.

since then

Eĝ =
1

M

N∑
n=1

gnEsn =
1

N

N∑
n=1

gn = g .

First, we consider the simpler case of sampling with replacement. In this case it easy to see that
different minibatches are uncorrelated, and we have

E [snsn′ ] = P (sn = 1) δnn′ + P (sn = 1, sn′ = 1) (1− δnn′)

=
M

N
δnn′ +

M2

N2
(1− δnn′) .

and therefore

cov (ĝ, ĝ) = E
[
ĝĝ>

]
− EĝEĝ>

=
1

M2

N∑
n=1

N∑
n′=1

E [snsn′ ]gng
>
n′ − gg>

=
1

M2

N∑
n=1

N∑
n′=1

[
M

N
δnn′ +

M2

N2
(1− δnn′)

]
gng

>
n′ − gg>

=

(
1

M
− 1

N

)
1

N

N∑
n=1

gng
>
n ,

which confirms eq. (6).

Next, we consider the case of sampling without replacement. In this case the selector variables are
now different and correlated between different mini-batches (e.g., with indices t and t+ k), since we
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cannot select previous samples. Thus, these variables stn and st+k
n have the following second-order

statistics

E
[
stns

t+k
n′

]
= P

(
stn = 1, st+k

n′ = 1
)

=
M

N
δnn′δk0 +

M

N

M

N − 1
(1− δnn′δk0) .

This implies

E
[
ĝtĝ
>
t+k

]
− EĝtEĝ>t+k

= E

[(
1

M

N∑
n=1

stngn

)(
1

M

N∑
n′=1

st+k
n′ g>n′

)]
− gg>

=
1

M2

N∑
n=1

N∑
n′=1

E
[
stns

t+k
n′

]
gng

>
n′ − gg>

=
1

M2

N∑
n=1

N∑
n′=1

[(
M

N
− M2

N2 −N

)
δnn′δk0 −

M2

N2 −N

]
gng

>
n′ − gg>

so, if k = 0 the covariance is

E
[
ĝtĝ
>
t

]
− EĝtEĝ>t =

(
1

M
− 1

N − 1

)
1

N

N∑
n=1

gng
>
n +

1

N − 1
gg>

M�N
≈ 1

M

(
1

N

N∑
n=1

gng
>
n

)
while the covariance between different minibatches (k 6= 0) is much smaller for M � N

E
[
ĝtĝ
>
t+k

]
− EĝtEĝ>t+k =

1

N − 1
gg>

this again confirms eq. (6).

B Estimating α from random potential

The logarithmic increase in weight distance (Figure 2 in the paper) matches a “random walk on
a random potential” model with α = 2. In such a model the loss auto-covariance asymptotically
increases with the square of the weight distance, or, equivalently (Marinari et al., 1983), the standard
deviation of the loss difference asymptotically increases linearly with the weight distance

std ,
√
E (L (w)− L (w0))

2 ∼ ‖w −w0‖ . (1)

In this section we examine this behavior: in Figure we indeed find such a linear behavior, confirming
the prediction of our model with α = 2.

To obtain the relevant statistics to plot eq. 1 we conducted the following experiment on Resnet44
model (He et al., 2016). We initialized the model weights, w0, according to Glorot & Bengio (2010),
and repeated the following steps a 1000 times, given some parameter c:

• Sample a random direction v with norm one.

• Sample a scalar z uniformly in some range [0, c].

• Choose w = w0 + zv.

• Save ||w −w0|| and L(w).

We have set the parameter c so that the maximum weight distance from initialization ||w −w0|| is
equal to the same maximal distance in Figure 2 in the paper, i.e., c ≈ 10.

2



Figure 1: The standard deviation of the loss shows linear dependence on weight distance (eq.
1) as predicted by the "random walk on a random potential" model with α = 2 we found in
the main paper. To approximate the ensemble average in eq. 1 we divided the x-axis to b bins and
calculated the empiric average in each bin. Each panel shows the resulting graph for a different value
of b.

Figure 2: Comparing regime adapted large batch training vs. a 2048 batch with no adaptation.
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Figure 3: Comparing a learning scale fix for a 2048 batch, to a multiplicative noise to the gradient of
the same scale

Figure 4: Comparing L2 distance from initial weight for different batch sizes

4


	Derivation of eq. (6)
	Estimating  from random potential

