
A Proof of Proposition 2.1

Denote vector v as (
√
d1,
√
d2, . . . ,

√
dn)T . To shift any vector x so that vT x = 0, we only need to

multiply (I − 1vT
vT 1 ) on the left. For any k, we have

x(k) = L†Bt(k), x(k)shift = (I − 1vT

vT 1
)x(k) (8)

Based on the algorithm (see (4)), we also know

x̄k,l+1 = (1− ε)D−1(Axk,l +Bt(k)) + εxk,l (9)

= (1− ε)D−1(D − L)xk,l + (1− ε)D−1Bt(k) + εxk,l ( A = D − L ) (10)

= (1− ε)(I −D−1L)xk,l + (1− ε)D−1Lx(k) + εxk,l ( from (8) ) (11)

= xk,l − (1− ε)D−1Lxk,l + (1− ε)D−1Lx(k) (12)

= xk,l − (1− ε)D−1Lxk,l + (1− ε)D−1Lx(k)
shift (since L1 = 0) (13)

= xk,l − (1− ε)D−1L(xk,l − x(k)
shift) (14)

This immediately implies

xk,l+1 − x(k)shift = (I − 1vT

vT 1
)(xk,l − x(k)) (15)

= (I − 1vT

vT 1
)(xk,l − x(k)shift) (16)

= (I − 1vT

vT 1
)(I − (1− ε)D−1L)(xk,l − x(k)shift) (17)

or more related to the proposition, we have

D
1
2 (xk,l+1 − x(k)shift) = [D

1
2 (I − 1vT

vT 1
)(I − (1− ε)D−1L)D−

1
2 ]D

1
2 (xk,l − x(k)shift) (18)

where the middle part can be simplified as

D
1
2 (I − 1vT

vT 1
)(I − (1− ε)D−1L)D−

1
2 = (D

1
2 − vvT

vT 1
)(I − (1− ε)D−1L)D−

1
2 (19)

= (D
1
2 − vvT

vT 1
)D−

1
2 (I − (1− ε)D− 1

2LD−
1
2 ) (20)

= (I − v1T

vT 1
)(I − (1− ε)D− 1

2LD−
1
2 ) (21)

The first equality comes from D
1
2 1 = v and the last equality comes from vTD− 1

2 = 1T .

(21) is crucial to our analysis, the first matrix I − v1T
vT 1 has eigenvalues 1 with multiplicity n− 1 and

0 with multiplicity 1, the eigenvector corresponding to eigenvalue 0 is v.

The eigenvalues of D−
1
2LD−

1
2 is in range [0, 2]. By assuming spectral gap ρ < 1, we have

2− ρ ≥ λ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ ρ > λn = 0.

Therefore, I − (1− ε)D− 1
2LD−

1
2 has eigenvalues in {1, [−1 + 2ε+ (1− ε)ρ, 1− (1− ε)ρ]}, where

the corresponding eigenvector for eigenvalue 1 is v. However, notice that (I − v1T
vT 1 )v = 0, i.e. this

eigenvector will be filtered out by the first matrix.

Therefore, we have

‖(I − (1− ε)v1T

vT 1
)(I −D− 1

2LD−
1
2 )‖ ≤ max{1− (1− ε)ρ, 1− 2ε− (1− ε)ρ} = 1− (1− ε)ρ

which completes the proof of the proposition.

�
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B Proof of Theorem 3.1

Proposition B.1 Given two graph Laplacian matrices L1, L2 ∈ Rn×n. Suppose λn(L2) < λ2(L1),
then

(L1 − L2)† = L†1 +

∞∑
n=1

(L†1L2)nL†1.

Proof: By using the identitiesL†L = I−J , JL = 0 in whichL is a Laplacian matrix and J = 1
ne·e

T ,
we have

L1(I − L†1L2) = L1 − (I − J)L2 = L1 − L2.

Plugging it into (L1 − L2)†, we obtain

(L1 − L2)† = (L1(I − L†1L2))†) = (I − L†1L2)†L†1.

With orthogonal decomposition, we can express L1, L2 as

L1 =

n∑
i=2

λi(L1)uiu
T
i , L2 =

n∑
i=2

λi(L2)viv
T
i ,

in which {ui}, {vi} are the corresponding eigenvectors of L1, L2 respectively. In this way,

L†1 =

n∑
i=2

1

λi
uiu

T
i .

By definition of quadratic matrix norm, for any vector x ∈ Rn, ‖x‖2 = 1, we have

‖
∑
i=2

λi(L2)viv
T
i x‖2 ≤ λn(L2),

and

‖
∑
i=2

λi(L2)viv
T
i

n∑
i=2

λi(L1)uiu
T
i x‖2 ≤

λn(L2)

λ2(L1)
< 1,

which means ‖L†1L2‖2 < 1.

Since ‖L†1L2‖2 < 1, the matrix series M = I +
∑∞
n=1(L†1L2)n converges and (I − L†1L2)M = I .

Thus I − L†1L2 is invertible and its inversion is I +
∑∞
n=1(L†1L2)n. Hence we obtain

(L1 − L2)† = L†1 +

∞∑
n=1

(L†1L2)nL†1.

�

Proposition B.2 Given two n by n Laplacian matrices LG, LG′ corresponding to graph G, G′,
which satisfies G′ ⊆ G. LG′ equals to BG′BTG′ , where BG′ is the edge matrix of G′. The maximum
degree among all vertices of G′ is less or equal to d, then we have the following inequality:

‖L†GBG′‖∞ ≤ d

max
k
|L†G,kk|+ max

i 6=j
|L†G,ij |+

n

2
max
i,j,k

pairwisely different

|L†G,ki − L
†
G,kj |


In particular, if G is a clique, the above inequality can be reduced to

‖L†GBG′‖∞ ≤
d

n
.
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‖L†GBG′‖∞ = max
k
{‖eTk L

†
GBG′‖1}

= max
k
{
∑

(i,j)∈G′

|L†G,ki − L
†
G,kj |}

≤ max
k

∑
j∈N (G′,k)

|L†G,kk − L
†
G,kj |+ max

k

∑
i,j 6=k

(i,j)∈G′

|L†G,ki − L
†
G,kj |

≤ dmax
k
|L†G,kk|+ max

k

∑
j∈N (G′,k)

|L†G,kj |+ max
k

∑
i,j 6=k

(i,j)∈G′

|L†G,ki − L
†
G,kj |

≤ dmax
k
|L†G,kk|+ dmax

i 6=j
L†G,ij +

nd

2
max
i,j,k

pairwisely different

|L†G,ki − L
†
G,kj |

The last line comes from the fact that the size of neighborhoods N (G′, k) is upper bounded by d so
the number of edges in G′ should be bounded by nd

2 as well. �

Proposition B.3 Given two n by n Laplacian matrices LG, LG′ corresponding to graph G, G′,
which satisfies G′ ⊆ G. The maximal degree among all vertices of G′ is equal or less than d, then we
claim

‖L†GLG′‖∞ ≤ d

2 max
k
|L†G,kk|+ 2 max

i 6=j
|L†G,ij |+ n max

i,j,k
pairwisely different

|L†G,ki − L
†
G,kj |


In particular, if G is a clique, the above inequality can be reduced to

‖L†GLG′‖∞ ≤
2d

n
.

Proof:

‖L†GLG′‖∞ = max
k
{
∑
j

∣∣∑
i

L†G,kiLG′,ij

∣∣}
= max

k
{
∑
j

∣∣L†G,kjdeg(G′, j)−
∑

i∈N (G′,j)

L†G,ki
∣∣}

= max
k
{
∑
j

∣∣ ∑
i∈N (G′,j)

(L†G,kj − L
†
G,ki)

∣∣}
≤ 2 max

k

∑
(i,j)∈G′

∣∣L†G,kj − L†G,ki∣∣
= 2

∑
j∈N (G′,k)

∣∣L†G,kk − L†G,kj∣∣+ 2
∑

(i,j)∈G′

i,j 6=k

∣∣L†G,ki − L†G,kj∣∣
≤ 2dmax

k

∣∣L†G,kk∣∣+ 2dmax
i 6=j

∣∣L†G,ij∣∣+ n max
i,j,k

pairwisely different

∣∣L†G,ki − L†G,kj∣∣
�

Proof of Theorem 3.1: At first we show that assuming xgt = 0 will not damage the generality of the
proof. To this end, do transformation from original measurements t to t’ as t′ij = tij − xgti + xgtj .
The condition for correct measurement tij turns to |t′ij | ≤ σ. If t′ with ground truth 0, the same

truncation strategy as t with xgt produces iterative solution x’
′(k), and initializaion x’(0) = x(0)− xgt,

then we assert that
x(k) = x’(k) + xgt

holds for all k ∈ N.
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By induction we assume x(k) = x’(k) + xgt, thus the truncated graph Gk of x’(k) must be the same
as x(k) since they use the same truncation strategy. Our algorithm provides the next x and x’ as

x(k+1) = L†Gk
BGk

tGk

x’(k+1) = L†Gk
BGk

t’Gk
.

Since our truncation strategy make sure the correct measurements will not be truncated,Gk is certainly
a connected graph. Thus xgt is the unique precise solution of the linear function BGk

x = t0Gk
in

which t0Gk
is the measurements without error on graph Gk. Thus by the process of the derivation of

L†Gk
BGk

we know that

L†Gk
BGk

t0Gk
= xgt.

Note tGk
= t’Gk

+ t0Gk
, hence we get the identity

x(k+1) = x’(k+1) + xgt.

We have seen x(k) with xgt behaves completely the same as x’(k) with 0, therefore they must have
the same concentration bound, so we assume xgt = 0 below.

Returning to the original proposition. Prove this theorem by induction. Assume

‖x(k)‖∞ ≤ qσ + 2pεck−1

and

k ≤ − log

(
ε(c− 4p)

(1 + 2q)σ

)
/ log c+ 1

, or
(1 + 2q)σ ≤ ε(c− 4p)ck−1.

At k-th iteration, the truncation threshold should be ckε. Since for any correct measurement tij we
have

|tij − x(k)i + x
(k)
j | ≤ σ + 2‖x(k)‖∞ ≤ (1 + 2q)σ + 4pεck−1 ≤ εck,

no correct measurement can be truncated. On the other hand, all survived measurement should satisfy

|tij | ≤ |tij − x(k)i + x
(k)
j |+ 2|x(k)|∞ ≤ εck + 2qσ + 4pεck−1

Let GT be the graph consisting of all edges that are dropped at k-th iteration. According to the
previous argument, we can write xk as

x(k+1) = (LG − LG)†BG\Gt(k)

in which LG, LG are the Laplacian matrices of G and GT respectively while BG\G is the edge
adjacent matrix of G\G. It is clear that GT ⊆ G\Ga.

Using Proposition B.1, we have

(LG − LG)† =

∞∑
k=0

(L†GLG)nL†G.

Using Proposition A.2, A.3, we obtain upper bounds

‖L†GBG\Ggood
‖∞ ≤ dbadα = h,

‖L†GLG‖∞ ≤ 2dbadα = 2h,

and
‖L†GBGgood

‖∞ ≤ nα,
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so that

‖x(k+1)‖∞ = ‖
∞∑
k=0

(L†GLG)n(L†GBG\Gt(k))‖∞

≤ 1

1− 2h

∥∥∥∥L†GBGgood
tGgood

+ L†GBG\G\Ggood
tG\G\Ggood

∥∥∥∥
∞

≤ 1

1− 2h

(
nα‖tGgood

‖∞ + dbadα‖tG\G\Ggood
‖∞
)

≤ 1

1− 2h

(
nασ + h(εck + 2qσ + 4pεck−1)

)
= qσ + pσ + p(εck + 2qσ + 4pεck−1)

≤ qσ + 2pεck

in which the last line used the inductive condition (1 + 2q)σ ≤ ε(c− 4p)ck−1. The correctness of
proposition follows immediately by induction.

Continue the iterative process until ε(c− 4p)ck < (1 + 2q)σ (this means (1 + 2q)σ ≤ ε(c− 4p)ck−1,
so our inductive argument works for x(k)), at which time we obtain the bound on x(k)

‖x(k+1)‖∞ ≤ qσ + 2pεck ≤ 2p+ cq

c− 4p
σ

�

C Analysis of the randomized case

C.1 Proof of Lemma 3.1

The key idea is to leverage the independence of {tij} from x(0) and redefine the noise model so that
the selection of the edges is separated from the measurements. To simplify the notations, we denote

r =
2δ

a+ b
, r =

p

p+ (1− p)r
.

Lemma C.1 Associate each edge (i, j) ∈ E with a random variable wij given by

wij =

{
1 with probability p+ r(1− p),
0 with probability (1− r)(1− p) (22)

Redefine the independent measurement t̂ij along each edge as

t̂ij = tij+(1−r)(x(0)i −x
(0)
j ), tij :=

{
−(1− r)(x0i − x0j ) + σU [−1, 1] with probability r

r(x0i − x0j ) + rζij with probability 1− r

Then this noise model and the original model are identical.

Proof: It is clear that the probability that an edge is selected is p + 2δ
a+b (1 − p) = p + (1 − p)r.

Moreover,

wijtij =


0 with probability p

(x
(0)
i − x

(0)
j ) + rζij with probability 2δ

a+b (1− p)
0 with probability a+b−2δ

a+b (1− p)

�

The following proposition provides a decomposition of x(1) under the new noise model.

Lemma C.2 Let Lw and Bw denote the truncated Laplacian matrix and vertex-edge adjacency
matrix, respectively. Let t collect tij , (i, j) ∈ G. Then

x(1) = (1− r)x(0) + L+
wBwt. (23)
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Proof: Let t̂ collect t̂ij , (i, j) ∈ G, then

x(1) = L+
wBw t̂ = L+

wBw((1− r)BT x(0) + t)

= (1− r)(In −
1

n
11T )x(0) + L+

wBwt)

= (1− r)x(0) + L+
wBwt.

�

Since L+
wBw and t are independent, (23) allows us to apply concentration bounds on tij . To this end,

we first establish the following inequality:

Lemma C.3 Denote ‖x(0)‖d,∞ = max
1≤i,j≤n

|x(0)i − x
(0)
j | and let r2 = max(‖x(0)‖d,∞, r). For fixed

w, we have

Var
(
eTi L

+
wBwt

)
≤
(
(1− r)(1

3
+ r) · r22 +

rσ2

3

)
L+

w,ii (24)

Proof: First of all, we have

Var
(
tij
)

= (1− r)(r
2

3
+ r(x

(0)
i − x

(0)
j )2) +

rσ2

3

≤ (1− r)(r
2

3
+ r‖x(0)‖2d,∞) +

rσ2

3

It follows that

Var
(
eTi L

+
wBwt

)
=

∑
(j,k)∈G

Var
(
wij(L

+
w,ij − L

+
w,ik)tij

)
≤

∑
(j,k)∈G

wij(L
+
w,ij − L

+
w,ik)2(1− r)(r

2

3
+ r‖x(0)‖2d,∞)

= eTi L
+
w · Lw · L+

w eTi (1− r)(r
2

3
+ r‖x(0)‖2d,∞)

= eTi L
+
w ei(1− r)(

r2

3
+ r‖x(0)‖2d,∞)

= (1− r)(r
2

3
+ r‖x(0)‖2d,∞) · L+

w,ii

≤
(
(1− r)(1

3
+ r) · r22 +

rσ2

3

)
L+

w,ii.

�

Moreover, the range of each summand in eTi L+
wBwt is bounded above by

max
1≤j,k

|L+
w,ij − L

+
w,ik||max(tij)−min(tij)| ≤ 2L+

w,ii|max(tij)−min(tij)|

≤ 4L+
w,iir2.

The following proposition directly follows from the Bernstein inequality:

Fact C.1 Let ‖Diag(L+
w )‖∞ = max

1≤i≤n
L+

w,ii. For fixed w, we have for

Pr
(
‖x(1)−(1−r)x(0)‖ ≥ r2

√
Diag(L+

w )t
)
≤ 2n exp

(
− t2

2
(
(1− r)( 1

3 + r) + 4
3

√
Diag(L+

w ) · t
)).
(25)

It remains to bound the diagonal entries of L+
w , which is given below:
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Lemma C.4 Let dmin = Ω(log2(n)) be the minimal degree of G. Suppose p + r(1 − p) =
Ω(log2(n)/dmin) . Then w.h.p.,

‖Diag(L+
w )‖∞ ≤

1 + o(1)

(p+ r(1− p))dminλ2(LG)
, (26)

where LG is the normalized graph Laplacian of G.

Proof: We first show that for the Laplacian matrix L of any graph G,

L+
ii ≤

1

diλ2(L)
,

where L is the normalized graph Laplacian of G. In fact,

L+
ii =

1

di
L
+

ii ≤
1

di
λn(L

+
) =

1

di
λ2(L).

The rest of the proof follows from the concentration of vertex degrees of random subgraphs and
Theorem 1 in [6]. �

Now we can complete the proof of Lemma C.1 by setting t = O(
√

log(n)) in (25).

C.2 Proof of Theorem 3.2

As shown in the previous Section, we assume xgt = 0 with losing generality. Lemma 3.1 tells us that
for fixed x(0), one step of TranSync results in a solution that is closer to the ground-truth solution. We
can apply it to a dense samples along the segment between xgt and xgt + a+b

2 1, e.g., n
√
n(a+ b)/2

samples so that the distance between adjacent samples along each axis is at most 1
n . It is clear that

Lemma 3.1 still holds among these sample points.

To prove the convergence of x(k), we seek to bound

‖x(k+1) − p

p+ (1− p)ck
x(k)‖∞ ≤ ‖x(k+1) − p

p+ (1− p)ck
x(k)‖∞ (27)

+ ‖x(k+1) − x(k+1)‖∞ +
p

p+ (1− p)ck
‖x(k) − x(k)‖∞, (28)

where x(k) is chosen to be the closest point of x(k) to the segment under the L∞ norm, and x(k+1)

is the result of one step of TranSync. We can apply Lemma 3.1 to obtain a bound on ‖x(k+1) −
p

p+(1−p)ck x(k)‖∞. It remains to bound ‖x(k+1) − x(k+1)‖∞. To this end, we start with the following
Lemma.

Lemma C.5 Given a fixed input t, starting from two different points x(k) and x(k). Let x(k+1) and
x(k+1) be the results of applying one step of TranSync. Then

‖x(k+1) − x(k+1)‖∞ ≤
2ddifmax‖L+

t,x(k)‖1,∞
(
‖x(k+1)‖∞ + ‖x(k) − x(k)‖∞ + 1

2c
k
)

1− 2ddifmax‖L+
t,x(k)‖1,∞

, (29)

where Ldif = Lt,x(k) − Lt,x(k) , and Lt,x(k) and Lt,x(k)) are truncated Laplacians derived from x(k)

and x(k), respectively. ddifmax is the maximum number of different edges between these two graphs per
vertex.
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Proof: Let Bt,x(k) and Bt,x(k)) be the corresponding vertex-edge adjacency matrix. Define Bdif =
Bt,x(k) −Bt,x(k) . First, we have

‖x(k+1) − x(k+1)‖∞ = ‖
(
Lt,x(k) + Ldif

)+
(Bt,x(k) +Bdif )t− L+

t,x(k)Bt,x(k) t‖∞

≤ ‖
((
Lt,x(k) + Ldif

)+ − L+
t,x(k)

)
Bt,x(k) t‖∞ + ‖

(
Lt,x(k) + Ldif

)+
Bdif t‖∞

= ‖
+∞∑
i=0

(
L+

t,x(k)Ldif
)i
L+

t,x(k)Bt,x(k) t‖∞ + ‖
+∞∑
i=0

(
L+

t,x(k)Ldif
)i
L+

t,x(k)Bdif t‖∞

≤
+∞∑
i=0

‖L+
t,x(k)Ldif‖i1,∞

(
‖L+

t,x(k)Ldif‖i1,∞‖x(k+1)‖∞ + ‖L+
t,x(k)Bdif t‖∞

)
=
‖L+

t,x(k)Ldif‖1,∞‖x(k+1)‖∞ + ‖L+
t,x(k)Bdift‖∞

1− ‖L+
t,x(k)Ldif‖1,∞

≤
‖L+

t,x(k)‖1,∞ddifmax

(
2‖x(k+1)‖∞ + ‖t‖∞)

1− 2ddifmax‖L+
t,x(k)‖1,∞

Now we can complete the proof as

‖t‖∞ ≤ ‖x(k)‖d,∞ + ck ≤ 2‖x(k) − x(k)‖∞ + ck.

�

We proceed to control the two remaining quantities ddifmax and ‖L+
t,x(k)‖1,∞. In both cases, we leverage

the fact that x(k) lies on the line between 0 and 1 so that we can utilize the independence of tij . We
first provide an upper bound on ddifmax.

Lemma C.6 Suppose ck = Ω(log2(n)/n). Denote dt,x(k)

max as the maximum degree of graph truncated
from x(k), then

ddifmax ≤ 4‖x(k) − x(k)‖∞dt,xk
max + log(n)

√
4‖x(k) − x(k)‖∞dt,xk

max

≤ 6‖x(k) − x(k)‖∞
(
p+ (1− p)ck

)
n (30)

almost surely.

Proof: Note that the different edges are incurred if each tij falls in the two intervals [(x
(k)
i − x

(k)
j )−

ck, (x
(k)
i − x

(k)
j ) − ck] and [(x

(k)
i − x

(k)
j ) + ck, (x

(k)
i − x

(k)
j + ck]. The total length of these two

intervals is at most 4‖x(k)−x(k)‖∞. The first inequality directly follows from the Bernstein inequality.
The second inequality follows from the fact that maximum vertex degree of a random sub-graph of
edge selection probability p+ (1− p)ck is concentrated around (p+ (1− p)ck)n. �

The following lemma provides a concentration of ‖Lt,x(k)‖1,∞.

Lemma C.7 Consider random sub-graphs of clique Kn with edge selection probability q, we have

‖L+
w ‖1,∞ =

1

qn
(2 +

O(1)
√
q

). (31)

with high probability.

Proof: First of all, for any matrix A ∈ Rn×n,

‖A‖1,∞ = max
1≤i≤n

n∑
j=1

|aij | ≤ max
1≤i≤n

√
n

√√√√ n∑
j=1

a2ij ≤
√
nσmax(A).
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Since the non-zero eigenvalues of L+ fall in-between [ 1
λn(L)

, 1
λ2(L)

], it follows that

‖L‖1,∞ ≤ ‖L+ − 1

pn
(In −

1

n
1n1Tn )‖1,∞ +

2

pn

≤ 2

pn
+
√
nmax

(
| 1

λ2(L)
− 1

pn
|, | 1

λn(L)
− 1

pn
|
)
.

Since it is well known that the eigenvalues of the graph Laplacian of a Erdős-Rényi graph G(n, q) is
concentrated within in the interval [qn−O(

√
qn), qn+O(

√
qn)], it follows that

‖L‖1,∞ ≤
2

pn
+
O(
√
qn)
√
n

p2n2
.

�

Completing the proof of Theorem 3.2. Now we are ready to prove Theorem 3.2. Denote δk =

‖x(k) − x(k)‖∞. Combing (29), (30) and (31), we arrive at the following recursion:

δk+1 ≤
15δk(ck + δk)

1− 15δk
. (32)

As δ1 = O( log(n)√
n

). It follows that we can choose a small constant C2 so that

δk < p/128, 1 ≤ k ≤ min(C2

√
log(n), log(

a+ b

2σ
)/log(1/(1− p/2))).

and
1

32
≤ cC2

√
log(n) ≤ 1

16
.

It then follows from (32) that
δk ≤ pck/4

for sufficiently large n.

It remains to check ‖x(k+1)‖∞ ≤ 1
2c
k+1. In fact, using (28) we have

‖x(k+1)‖∞ ≤
(1− p)ck

2(p+ (1− p)ck)
ck + ckO(log(n)/

√
n) +

pck

5
+

p

p+ (1− p)ck
pck−1

5

≤ 1

2
(1− p/2)ck

≤ 1

2
ck+1,

which ends the proof of Theorem 3.2.
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