A Proof of Proposition 2.1]

Denote vector v as (v/dy, v/da, . .. ,v/d,)T. To shift any vector x so that vI'x = 0, we only need to
multiply (I — ﬁ) on the left. For any k, we have

7T
x(F) — LTBt(k)7 (l]fl)ft (I— le) x(*) (8)

Based on the algorithm (see (@), we also know

L = (1 — ) D71 (AxP! + BtW) 4 exP 9)
=(1—-€D (DfL) T+ (1—eD'BtW yexB (A=D—-L) (10
=(1—e)(I-=D'L)x" + (1 —e)D7'Lx® + exP! (from (§)) (11)
=xP —(1—e)D'LxM + (1 — e) D~ Lx® (12)
—x" — (1 - D' Lx" + (1 — D' Lx{f),  (since L1=0) (13)
=x" — (1D 'LEM —x{f)) (14)
This immediately implies
v’
I = (- ) (8 —x®) (15)
1VT k
= (1 - ) = x) (16)
I _ k
= (I = )0 = (1= D' D) = x[h) (17)
or more related to the proposition, we have
1 .
D1 sy = (DRI - By - Dbt ) as)
where the middle part can be simplified as
1 1v7? 1yl 1wl Pt
D3 (I = ) = (1= D' L)D™% = (D* = (I = (1—¢) D7 L)D ™ (19)
1 VVT _1 _1 _1
=(D* = 7D *(I = (1= )D*LD"%)  (20)
1T
— (- %)(1— (1— €)D" LD~ %) 1)

The first equality comes from D21 = v and the last equality comes from vI' D~z =17,

(21) is crucial to our analysis, the first matrix I — has eigenvalues 1 with multiplicity n — 1 and
0 with multiplicity 1, the eigenvector correspondmg to eigenvalue O is v.

The eigenvalues of D 2LD"2 is in range [0,2]. By assuming spectral gap p < 1, we have
2—p>M 2> >N 1 2p> N, =

Therefore, I — (1 —€)D~2 LD~z has eigenvalues in {1, [—1+ 2¢+ (1 — €)p, 1 — (1 — €)p]}, where

. . . . . T . .
the corresponding eigenvector for eigenvalue 1 is v. However, notice that (I — %)V = 0, i.e. this
eigenvector will be filtered out by the first matrix.

Therefore, we have

T
I - a—a”pu—D%LnﬁmSmwu—a—aml—%—u—aﬁ=1—u—ap

which completes the proof of the proposition.
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B Proof of Theorem 3.1

Proposition B.1 Given two graph Laplacian matrices L1, Ly € R™*™. Suppose \,,(L2) < A2(L1),
then

oo
(Ly — Z (LiLy)" LI

Proof: By using the identities LTL = I—J, JL = 0 in which L is a Laplacian matrix and J = Le-e”,

we have
Ly(I—LiLy) = Ly — (I — J)Ly = Ly — Lo.
Plugging it into (L; — L), we obtain

(Ly — Lo)" = (L1 (I — LILy))T) = (I — LIL,) LT

With orthogonal decomposition, we can express L1, Lo as
Z)\ Lluuz,Lg Z)\ LQ'U»Lz’
=2

in which {u;}, {v;} are the corresponding eigenvectors of Ly, Lo respectively. In this way,

By definition of quadratic matrix norm, for any vector z € R", ||z||2 = 1, we have

1> Xi(La)viv] zll2 < An(L2),

1=2

and

- /\n(L2)
>\i L Uz'UiT )‘z L ’U,Z’UJZCC < < 17
I Ni(La)viol Y Ai(Ly) o= 57

i=2 =2
which means ||LIL2H2 <L

Since || LI Ly||» < 1, the matrix series M = I + ZZO:l(LJ{LQ)” converges and (I — LiLy)M = I.
Thus I — LJ{LQ is invertible and its inversionis I + Y~ (LJ{LQ)". Hence we obtain

(L1 — Lo)t = L] + > (LILs)"L].

n=1

O

Proposition B.2 Given two n by n Laplacian matrices Lg, Lg corresponding to graph G, G/,
which satisfies G' C G. Lg equals to Bg: BL,, where Bg is the edge matrix of G'. The maximum
degree among all vertices of G' is less or equal to d, then we have the following inequality:

n
|LEBer|loo < d max ILE ol + max|LG ultg ma ILE e — LG

pairwise’lyvdiffercm

In particular, if G is a clique, the above inequality can be reduced to

d
LLBaolle < =
IL6Berlloo <

12



ILEBe oo = max{|ej FLEBor |1}

—max{ Z |LG ki TG,kj|}

(i,5)€G’
Smax 3 |Lh g - Lyl tmax Y0 LL g - Ly
JEN (G’ k) 1,57k
(i,5)€G’
§dm?X|Lg’kk|+m’?X Z |LGk; —|—max Z |Lsz ij\
JEN(G' k) L,j7#k
(i,5)€G’
<dmax|L!, , |+ dmax L} .,+n—d max Lt — L%, |
S dme G, kk X ai Ty o) G ki G,kj

pairwisely7 different

The last line comes from the fact that the size of neighborhoods N (G’, k) is upper bounded by d so
the number of edges in G’ should be bounded by %d as well. ]

Proposition B.3 Given two n by n Laplacian matrices Lg, Lg: corresponding to graph G, G/,
which satisfies G' C G. The maximal degree among all vertices of G' is equal or less than d, then we
claim

i T
||LGLGrHC>O <d 2max|LG kk|+2max\LG il +n max LG i — Ll
pairwise)1y7differem
In particular, if G is a clique, the above inequality can be reduced to

2d
ILE Lerlloo <

Proof:
LG Lerlloo = max{D 7| > LE piLeris}
7 i

= mﬁx{z ‘LTG’kjdeg(G’,j) - Z LG wil}
J

iEN(G,5)
= m,?X{Z ‘ Z (LTG k) Lg,ki ‘}
J o iEN(G'.))
<2max Z ’LGk] sz‘
(i,§)€G’
=2 Z ’LTG,kk - LG,kj| +2 Z ‘LG ki LI},kj|
JEN (G’ k) (i,5)eG’
i,7#k
< 2dmax |LE i + 24 max [LE 5]+ max | L ki = Loy

pairwisely different
O

Proof of Theorem 3.1: At first we show that assuming x9* = 0 will not damage the generality of the
proof. To this end, do transformation from original measurements t to t’ as t}; = t;; — zd* + x?t.
The condition for correct measurement ¢;; turns to [t;;| < o. If t’ with ground truth 0, the same

truncation strategy as t with x9¢ produces iterative solution x’ (k) and initializaion x*(*) = x(0) — x9t

then we assert that
xB) — x2(k) + x9t

holds for all k¥ € N.
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By induction we assume x(*) = x*®) 4 x9¢ thus the truncated graph Gy, of x*® must be the same
as x(*) since they use the same truncation strategy. Our algorithm provides the next x and x” as

b+ — LTGkBthGk

(1) — LTG)CBth’Gk,'

Since our truncation strategy make sure the correct measurements will not be truncated, G is certainly
a connected graph. Thus x9¢ is the unique precise solution of the linear function Bg, x = t%k in

which tOGk is the measurements without error on graph G. Thus by the process of the derivation of
L B¢, we know that
G k

i 0 _ gt
LGkBthGk - Xg .
Note tg, =t'q, + t%k , hence we get the identity
X(k+1) — X’(k+1) + th.

We have seen x(*) with x9* behaves completely the same as x*® with 0, therefore they must have
the same concentration bound, so we assume x9¢ = 0 below.

Returning to the original proposition. Prove this theorem by induction. Assume

||x(k) loo < go+ 2})60}‘3*1
and
e(c — 4p)
E<—1 — 7 /1 1
<tos ({5 ) fomet
, or

(1+2¢)0 < e(c—4p)cFt.

At k-th iteration, the truncation threshold should be c¥¢. Since for any correct measurement t;; we

have
ti; — M 4 x§-k)| <o+ 2|x®|| o < (1 +2¢)0 + dpec® < e,

1 —

no correct measurement can be truncated. On the other hand, all survived measurement should satisfy
|tij‘ S ‘tij — .’L'Sk) + .Tgk)| + 2|X(k)‘oo S ECk + 2(]0 =+ 4p60k_1
Let G be the graph consisting of all edges that are dropped at k-th iteration. According to the
previous argument, we can write 2k as
xH = (L — L) Byt

in which L, L are the Laplacian matrices of G' and G respectively while BG\@ is the edge
adjacent matrix of G\G. It is clear that Gr C G\G,.

Using Proposition[B.T} we have

(Lo —Lg)' =Y (LhLg) L,
k=0

Using Proposition A.2, A.3, we obtain upper bounds
HLLBG\GWMHOO < dpaacx = h,

ILE Lglloo < 2dpaga = 2h,

and
ILEBG, 0l < ner,
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so that

XD = | S L) (L By ot ®)
k=0

1
1 1
< 1—oh HLGBGgoodtGgood T LeBaG\G,ooat\G\G oo
o0

1
S1-a (”O‘HtGgood||°° + dbada||tc\6\0gm||°°)

1
< T (nao + h(ec® + 2qo + 4pec™™1))
= qo + po + p(ec® + 2qo + 4pec® 1)
< qo+ 2peck

in which the last line used the inductive condition (1 + 2¢)o < €(c — 4p)c*~!. The correctness of
proposition follows immediately by induction.

Continue the iterative process until €(c — 4p)c® < (1+2q)o (this means (1 +2q)o < €(c—4p)cF 1,

so our inductive argument works for #(¥)), at which time we obtain the bound on z(*)
2p+c
x| < go +2pect < P
c— 4p

C Analysis of the randomized case

C.1 Proof of Lemma[3.1]

The key idea is to leverage the independence of {¢;;} from x(%) and redefine the noise model so that
the selection of the edges is separated from the measurements. To simplify the notations, we denote

_ 2 P
r = — r =

a+b’ p+(1—p)T’

Lemma C.1 Associate each edge (i,j) € € with a random variable w;; given by

~_ J 1 withprobability p+7(1—p), 22)
Wi =\ 0 with probability (1 —7)(1— p)

Redefine the independent measurement fij along each edge as
£y = oyt (1) (" 0 _ (0)) 7 —(1=7)(z) —23) + oU[-1,1] with probability T
i " A r(z? — :cg )+ T with probability 1 —r

Then this noise model and the original model are identical.

Proof: It is clear that the probability that an edge is selected is p + - +b( p)=p+ (1-p)T.
Moreover,

with probability P
wijti; = (I’EO) — x;-o)) +7(;;  with probability a+b(1 -p)
0 with probability 22520 (1 — p)

The following proposition provides a decomposition of x(!) under the new noise model.

Lemma C.2 Let L, and B, denote the truncated Laplacian matrix and vertex-edge adjacency
matrix, respectively. Let t collect t;;, (i, j) € G. Then

xM =1 —rx© 4 LI B, (23)

15



Proof: Let t collect t”, (i,7) € G, then
x(V = LI Byt = LI By((1 — r)BTx© + 1)
=1 -r)I, - %11T)x(0> + L Byt)
=(1 -7z + LI Byt.
(]

Since Ly} By and t are independent, (23) allows us to apply concentration bounds on ¢;;. To this end,
we first estabhsh the following inequality:

Lemma C.3 Denote [|x\V) 4,00 = | max |2{% — x§0)| and let 75 = max([x(*)| 4,00, 7). For fixed
<i,j<n :
w, we have
_ 1
Var(e] L, Byt) < ((1— T‘)(g +7)-T 3 )L‘f“ (24)

Proof: First of all, we have

_92 2
— r 0 0 ro
Var(t;;) = (1 — 7’)(§ + T(IE ) x§ 2y + S
72 r 2
< (-5 +rIx@)3 ) + on
3 ’ 3
It follows that
Var( TLJrBwt Z wZJ w 17 Lj; zk)f )
+ 7 (0) 2
Z L sy = L) (1= 1) (5 + 7lx 3 00)
j.k)e

—2
7
= eiTLv’? Ly Lyef (1~ n(5 + rx )7 0)

»

= e Lie;(1— r(g + r[x )3, 0)

7 (0) 2 +

=@ =n)(5 +rixPlG00) - Ly
2

1 N ro
< ((1— T)(g +7r)-T5+ ?)L$zz

Moreover, the range of each summand in e! L} Byt is bounded above by

max |L | max(t;;) — min(t;;)|

mae L3, — L ]| max(By) — min(E)] < 2L

Wl’L

< ALY T

WZ’L

The following proposition directly follows from the Bernstein inequality:

Fact C.1 Let |Diag(L,})||0o = max L ... For fixed w, we have for
<i<n ’

2
Pr(|lx®) — (1—r)x9|| > 721 /Diag(Ly )t) < 2nexp (— ! )

2((1 —r)(5 + ) + 31/Diag(Lyf) - t)
(25)

It remains to bound the diagonal entries of Ly}, which is given below:
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Lemma C4 Let di, = Q(log?(n)) be the minimal degree of G. Suppose p + (1 — p) =
Q(log*(n)/dumin) . Then w.h.p.,

1+o0(1)

=, (26)
(p —+ F(1 - p))dminA2(Lg)

IDiag(Ly)loe <

where Lg is the normalized graph Laplacian of G.
Proof: We first show that for the Laplacian matrix L of any graph G,

1
dida(L)’

L <

where L is the normalized graph Laplacian of G. In fact,

j — 1 1 _
Lf = Tl = o = E&(L)-

The rest of the proof follows from the concentration of vertex degrees of random subgraphs and
Theorem 1 in [6]. O

Now we can complete the proof of Lemmaby setting t = O(y/log(n)) in .

C.2 Proof of Theorem

As shown in the previous Section, we assume x9° = 0 with losing generality. Lemmatells us that
for fixed x(°), one step of TranSync results in a solution that is closer to the ground-truth solution. We
can apply it to a dense samples along the segment between x9 and x9% 4 ‘IT“’I, e.g., ny/n(a+b)/2

samples so that the distance between adjacent samples along each axis is at most % It is clear that
Lemma|3.1|still holds among these sample points.

To prove the convergence of x(*), we seek to bound

ktt)y _ P < gty - P Sk 27
I p+(1—p)k" oo < I¥ p+(1—p)k" e &7

- p k) =(k)
+x®FD gty B ix(R) o, (28
|| (. lo: @8)
where X*) is chosen to be the closest point of x(*) to the segment under the L>° norm, and x(F+1)
is the result of one step of TranSync. We can apply Lemma to obtain a bound on ||i(k+1) —
mi(k) | oo It remains to bound [|x(**1) — g(*+1)|| . To this end, we start with the following
Lemma.

Lemma C.5 Given a fixed input t, starting from two different points x*) and %) Let x(*+1) and
x5 pe the results of applying one step of TranSync. Then

_ 2L

max

l,m(llf(kJrl)Hoo + ||x(k) _f(k)”oo + %Ck)

1-— 2dg1igx||Lt_;(k) ”1,00

kD) — g+ , (29)

where Lgi = L, 00y — Lt7x(k), and Lt,x(k) and L, zoy) are truncated Laplacians derived from x(®)

—(k . di . . .
and ¥, respectively. A% is the maximum number of different edges between these two graphs per
vertex.
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Proof: Let By ) and B ;) ) be the corresponding vertex-edge adjacency matrix. Define Byir =
B, w0y — Bt’x(k) . First, we have

< +
[xEHD — kD = [ (Lego + Lair) " (B, s + Baif)t — L:i(k)Bt’i(k)tHoo

+
< ((Lt,i("’) + Laig) " — L W)) By tlloo + [ (Lez + Laig) " Baiftlloo

—+oo —+oo .
= || Z ( tx (k)Lde) L X(k)Bt 0 t|oo + || Z (L:;(deif)tL;;(k)BdiftHoo
i=0 i=0

(k
< Z ||L (k)Lde”l oo(”L (k)Lde”l oc”x ) ”oo + ||Lt x(k)BdiftHOO)

HLt i(k)Ldlf”l oc”X (k1) ||<>o + ”Lt x<k)Bdift||<>o

B 1— L

t,x(F)
<(k
HLt o [1,00diL (2D o + [t )
d
1- QdH;Lgx”Lt (k) ||1 o)

Now we can complete the proof as
Itlse < Ix® .00 + ¢ < 2)x® =2 + -,

O

We proceed to control the two remaining quantities %'/ and ||L o |[1,00- In both cases, we leverage

the fact that X*) lies on the line between 0 and 1 so that we can utlhze the independence of ¢;;. We
first provide an upper bound on d%/ .
Lemma C.6 Suppose c* = Q(log?(n)/n). Denote d'; x

T x " as the maximum degree of graph truncated
from f(k), then

ddif < 4x® —x®)|| diE +log(n) \/4||x<’“) — 0| o diE
< 6[lx™ —x®) || o (p+ (1 — p)c¥)n (30)

almost surely.

Proof: Note that the different edges are incurred if each ¢;; falls in the two intervals [(x; (k) _ §k)) -
k. (z Ek) — gk)) — ¥l and [(x Ek) — g-k)) +ck (Z Z(»k) — g ) te ¥]. The total length of these two

intervals is at most 4|x(¥) —x(®) |loo- The first inequality directly follows from the Bernstein inequality.
The second inequality follows from the fact that maximum vertex degree of a random sub-graph of
edge selection probability p + (1 — p)c¥ is concentrated around (p + (1 — p)c*)n. O

The following lemma provides a concentration of || L <) |[1,c0-

Lemma C.7 Consider random sub-graphs of clique K,, with edge selection probability q, we have
1 0(1)
Va

L o =—(2+ . 31
” w ”L qn( ) (3D
with high probability.

Proof: First of all, for any matrix A € R"*",

,00 = max Z|aw| < 12 x \/n Zagj < VNomax(A).
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1 1
An(L)? A2(L)

2
pn
gy
Ao(L)  pn” ' A (L)  pn'/’

Since the non-zero eigenvalues of L™ fall in-between |

], it follows that

1

1
IL||1,00 < |ILF - 2%(In - 51n1£>||1,oo +

2
< — 4 v/nmax (|
pn

Since it is well known that the eigenvalues of the graph Laplacian of a ErdGs-Rényi graph G(n, q) is
concentrated within in the interval [gn — O(,/qn), gn + O(,/qn)], it follows that

2 O(y/qn)+/n
Ll e < = + LT
bn b n
]
Completing the proof of Theorem 3.2} Now we are ready to prove Theorem 3.2} Denote §;, =
[x*) —x®)|| . Combing , and (31), we arrive at the following recursion:
1565,(c* + 6
Spi1 < 150k (c” + dk) (32)

1— 150,

As ) = O(M). It follows that we can choose a small constant Cy so that
vn

b
0r <p/128, 1<k< min(C’Q\/log(n),log(%)/log(l/(l —p/2))).
and
1 < C2V/log(n) < i
32 — — 16
It then follows from (32)) that
5k < pct /4

for sufficiently large n.

It remains to check [|x**V)||oo < L1c**1 In fact, using we have

1 )Ck: e D pck—1
Uty o (=P ok pc”
X oo c® 4+ c"O(log(n n) + +
KD < g (o(m) Vi) + P+ s P
1
< S0 -p/2
1
S §Ck+17

which ends the proof of Theorem 3.2]
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