A Mathematical Background

A.1 Vectors, Matrices, Intervals

Vectors are denoted by small boldface italics u, u, . . ., matrices by large italics A, B, P,. ... The
norm ||-|| denotes the standard Euclidean norm for vectors, and the operator norm for matrices, i.e.,
[All = supy,. |ju=1lAul|. The range of a matrix, denoted range(-), is the span of its columns.

For a symmetric matrix A, its pseudoinverse, denoted AT, is the unique symmetric matrix with
range(A™) = range(A) such that AT A = AA™ = P where P is the projection on range(A).

For symmetric matrices A and B, we write A < B to denote that B — A is positive-semidefinite.
We use the notation A ~ B + C to denote B — C' < A < B + C. For scalars, we similarly write
a~btctomeana € [b—c,b+ .

We use Apin(A) and Apax(A) to denote the smallest and the largest positive eigenvalue of a sym-
metric positive-semidefinite matrix. We also write Apin(A, B) and \pax (A, B) for the generalized
minimum and maximum eigenvalues defined as follows whenever B # 0:

uTAu uTAu

/\min(Aa B) = P )\max(Aa B) =

uEranIgI;}el(%)\{O} uTBu ueranréle;( B)\{0} uTBu
The following formulas follow by substituting v = B'/2u
Amin (4, B) = Ain ( (BI/Q)"’A(BUQ)"') if range(A) C range(B),
Amax (A, B) = Amax ( (BY%H) T A(BY?)* ) ifrange(A) D range(B).
By Eq. (180) of Petersen and Pedersen [14], we also have for any matrix A (not necessarily square):
Amin (AAT) = Anin(ATA) |, Anax(AAT) = Apax (ATA) . (7

The following two results relate A and its pseudoinverse A*:

Proposition A.1. Ler A and B be symmetric matrices such that range(A) = range(B). Then
A <X Bifand only if Bt < At,

Proof. Assume that range(A) = range(B) = L. Then we have the following equivalences
A< B iff uTAu < u"Bu forallu € £\{0}

B
iff 1< min u bu
uel\{0} uTAu

iff 1< Apin(B,A) = min((A1/2)+B(A1/2)+)

= Amin (B2AYBY?) = \uin(AT, BT) (by Eq. 7)
uTAtu
iff 1< adiaiied
! uelzn\r{lo} uTBtu
iff Bt <At O

Proposition A.2 (Blockwise Inversion). Let A, B,C € R4*¢, where A and C are symmetric, and
let S = C — BTA™T B. Assume the following conditions hold:

e range(A) Nrange(C) = {0}
e range(B) C range(A).

e range(BT) C range(C).

e range(S) = range(C).

Then
(A+ B+ BT+ C’)+ = At + (I - A*B)S*(I — A*B)T

Proof. This follows by the formula in Section 9.1.3 of Petersen and Pedersen [14] for the block
matrix

VIBU VICV

where U and V' are matrices with an orthonormal basis of range(A) and range(C), respectively. [

(UTAU UTBV)
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The final result of this section relates the optimization of a quadratic form with a matrix A to the
quadratic form with the matrix A™:

Proposition A.3. Let A € R¥? be a symmetric positive-semidefinite matrix and let u € range(A).
Then

min (JTu + ;5TA5> = —%uT/ﬁu .

S

Proof. The result follows from convex conjugacy of quadratic convex functions, see page 108 of
Rockafellar [15]. L]

A.2 Convex Analysis

If f: R? = R U {oo} then the epigraph of f is the set of points in R? x R that lie on or above the
graph of f. The function f is called convex if its epigraph is convex. It is called closed if its epigraph
is closed, and proper if it is not identically equal to co. The effective domain of f is the set of points
where it is finite, denoted dom f. The convex hull of a set S, written conv S, is the smallest convex
set containing .S. For instance, the simplex in R? is the convex hull of the vectors of standard basis.

An affine subspace of R? is any set that can be written as A = {a+wu : u € L} for some fixed vector
a where L is a linear subspace of R%. We refer to £ as the linear space parallel to A. The affine hull
of a non-empty set .S, denoted aff .S, is the smallest affine set that contains S. The relative interior of
aset .S, denoted ri S, is the interior of S under the topology of its affine hull. The relative boundary
of a set S consists of points in the closure of S that are not in its relative interior, (c1.5)\(riS). For
instance, the affine hull of the simplex consists of vectors w such that uT1 = 1, where 1 is the
all-ones vector. The parallel linear space is {w : uT1 = 0}. The simplex has an empty interior, but
its relative interior consists of points {u € (0,1)¢ : w71 = 1}. The relative boundary of the simplex
consists of those points in the simplex which have at least one coordinate equal to zero.

For a convex f : R? — R U {co}, the subdifferential of f at u is defined as 9f(u) == {v € R? :
f') > f(u) + o7 (v —u), Vu' € R}, Any convex f : R? — R U {co} is subdifferentiable,
i.e., its subdifferential is non-empty, at all points in ridom f. If the subdifferential is a singleton,
it coincides with the gradient. Given a proper convex function f : R¢ — R U {oc}, we define its
convex conjugate f* : R — RU {00} by f*(p) = sup,cpe[uTp — f(u)]. For a closed proper
convex function f, its conjugate is also closed, proper and convex, and the following statements are

equivalent:
pedf(u) iff wedf(u) iff flu)+ f*(p)=up .

We will use the following variant of a duality result known as Fenchel’s duality:

Theorem A.4 (Fenchel’s duality). Let f : R? — Rand g : RX — RU{oco} be closed proper convex
functions and A € RE*?. Assume that there exists some u € R? such that Au € ri(dom g) and
some p € ri(dom g*) such that ATy € ri(dom f*). Then

inf | [f(—u) + g(Au)] = sup [f*(ATw) — g" ()]
ue HERK

and both the supremum and the infimum are attained. Vectors w and fi are their respective solutions
ifand only if ATfi € Of(—u) and fx € Og(Aw).
Proof. The results follows from Corollary 31.2.1 and Theorem 31.3 of Rockafellar [15]. O

A.3 Convex' Functions

Throughout the paper we work with functions that satisfy additional assumptions beyond convexity.
We refer to them as convex™ functions. They have a close relationship to functions of Legendre type
(see Sec. 26 of Rockafellar [15]). Before we define convex™ functions, we introduce the gradient
space, which plays a role in their structure.

Definition A.5. Let f : R? — RU{oo} be differentiable on the interior of its domain D := int dom f.
Its gradient space, denoted G( f), is the linear space parallel to the affine hull of the set of its gradients,

G(f) =span{Vf(u) = Vf(u'): u,u’ € D} .
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Definition A.6. Let f : R — RU{oc} and D := int dom f. We say that f is convex™ if it satisfies
the following conditions:

1. fis closed and convex.

2. D is non-empty.

3. f has continuous third derivatives on D.

4. range(V2f(u)) = G(f) forallu € D.

5. limyo0|| VS (1t)|| = 0o whenever wy, o, . .. is a sequence in D converging to a boundary
point of D.

Proposition A.7. Let f : R? — R U {oo} be convex®, D := int dom f. Let P be the projection on
G(f) and a the unique point in AN G(f)*, where A is the affine hull of the set of gradients of f.
Then the following statements hold:

f(w) = f(Puw) + aTu.

. Vf(u) = Vf(Pu).

. V2f(u) = V2f(Pu).

. [ is strictly convex on D N G(f).
. Vf is one-to-one on D N G(f).

LR W N~

Proof. We prove the first statement by the Mean Value Theorem. First, since f is differentiable
on an open convex D, it must be actually continuously differentiable on D (by Corollary 25.5.1 of
Rockafellar [15]), so the Mean Value Theorem can be applied on D. Let w € D and v € G(f )J-.
Then for any u’' = u + tv € D, we have, for some u on the line segment connecting u and u’,

f') = fu) + [Vf(@)]tv = f(u) + taTv (8)

where the second equality follows because v L G(f). We argue that the entire line {u + tv : t € R}
must be contained in D. For contradiction, assume it intersects the boundary of D at u* = u + t*v,
and say t* > 0. Consider an increasing sequence 0 = 1, to, ... converging to t*. Eq. (8) holds for v’
replaced by uw; = u +t;v as well as points u; = w+ t;v, where w is in a small enough neighborhood
of u along directions in G(f). This means that V f (u;) = PV f(u) + a = V f(u). However, this
is not possible for convex™ functions, because the norms of their gradients go to oo towards the
boundary. Similar argument holds for ¢* < 0. This means that the entire line {u + tv : t € R}
must be in D. This holds for arbitrary w € D, so D can be written as D = Dy + G(f)* where
Dy C G(f). Eq. (8) now implies that statement (1) holds over D. Since f is closed, the statement
also holds over dom f, which then necessarily has form dom f = Sy + G(f)* where Sy C G(f).
Therefore, statement (1) also holds for u ¢ dom f.

The remaining statements are more straightforward. To prove the second statement, note that for any
u' € D, its gradient can be decomposed as V f (u') = PV f(u') + a. Thus, V f(u) = PV f(Pu) +
a = V f(Pu). For the third statement, we have V2 f(u) = P[V2f(Pu)]P = V?f(Pu), because
range(V?2f(Pu)) = G(f). The fourth statement is equivalent to the fifth statement and they follow
because range(V2f(Pu)) = G(f). O

This proposition immediately implies that the Hessian of f can be expressed as a function of the
gradient of f. We will denote such a function H:

Proposition A.8. Let f : R? — R U {oc} be convex™ and D := intdom f. Let D' == {V f(u) :
u € D} be the set of its gradients. Then there exists amap Hy : D' — R*? such that V? f (u) =
H¢(Vf(u)) forallu € D.

Proof. Let Dy = DN G(f). Proposition A.7 implies that V f is a bijection from Dy to D’. Denoting
its inverse from D’ to Dy as h, we can then define the map H via Hs(u) = V2 f(h(u)). Now, for
any u € D, we have

V2 f(u) = V2 f(Pu) = V2 f(h(V f(Pu))) = Hy(Vf(Pu)) = Hy(Vf(u)) . H

Proposition A.9. Let f : R? — R U {oo} be a convex™ function and let A = aff dom f*. Then
there exists a convext function g : RY — R U {co} such that the following hold:

1. g agrees with f* on A.
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2. G(g) is parallel to A, or equivalently G(g) = G(f).
3. Forp € ridom f*: 0f*(u) = Vg(u) + G(f)*.
4. For p € ridom f*: V2g(pu) = HJf(p,).

Proof. We begin by representing f via a function of Legendre type and then rely on the properties of
such functions to obtain g. In particular, we note that by Proposition A.7, the function f is defined by
its values on G( f), except for a linear term, and so we construct a function fy that is a transformation
of f on G(f) and is of Legendre type.

To start, let D = int dom f, and Dy = D N G(f). Assume that G(f) is dy dimensional dy < d, and
let A € R%*% be a matrix whose columns form an orthonormal basis of G(f). Then ATA = I,
i.e., AT is the left inverse of A. The matrix A is an injective linear map from R% — R?, but it is also
a bijection from R% to G(f). We also have AAT = P, where P is the projection on G(f). Define
the function fy : R% — RU {oo} as

fo(v) = f(Av) .
Let S = int dom fy, so S = ATDy. We have
va(v) = ATVf(A'U)a VQfO('U) = ATVQf(A'U)Aa VSfO(U)['? *y ] = ng(A'U)[A(), A()7A()L

so in particular fy has continuous third derivatives over .S. We next argue that fj is of Legendre type
in the sense of Rockafellar [15], page 258. For that we need to check that it satisfies the following
conditions:

(a) S is non-empty.
This follows, because Dy is non-empty and Dy C G(f). Now, AT, as a linear map, is a
bijection from G(f) to R%, so the set S = ATDj is also non-empty.

(b) fo is differentiable throughout S.
Similarly to the previous property, this holds, because f is differentiable throughout D.

(©) limy—, oo ||V fo(vi)|| = 0o whenever vy, va, . .. is a sequence in S converging to a boundary
point of S.
If wy,us, ... is any sequence in Dy converging to the relative boundary of Dy, then this
point is on the boundary of D and therefore ||V f(u;)|| — oo, because f is convex ™. Now,
suppose we are given a sequence vi, Vs, ... in S converging to a boundary point of S.
Then u; = Aw, is exactly a sequence in Dy converging to the relative boundary of Dy, so
IV f(Av:)|| — oo. Since V f(Av,) € G(f) and the row space of AT coincides with G(f),
we also have |V fo(vy)|| = ||ATV f(Avy)|| — o0.

(d) fo is strictly convex on S.
Since fj has a continuous Hessian on S, it suffices to show that its Hessian is full rank,
i.e., its range is R%. For any v € S, we have range(V2fy(v)) = range(ATV? f(Av)A),
which must be R%, because range(V?2f(Av)) = G(f) and A is a bijection from R% to
g(f).

We now express f in terms of fy. Note that by conjugacy, the affine hull of gradients of f coincides
with A = aff dom f*. By Proposition A.7, the function f is defined by its values on G(f), except for
the linear term, described by the unique a € A N G+. We defined f; to exactly represent f on G(f),
so forany ' € G(f), we have fo(ATu') = f(AATu') = f(u'), because AAT = P. Thus, for any
u € R? we have, by Proposition A.7,

f(u) = f(Pu) + aTu = fo(ATPu) + aTu = fo(ATu) + aTu , ©)

because the row space of AT coincides with G(f). This relationship between f and f; implies the
following relationship for their conjugates (by Theorems 12.3 and 16.3 of Rockafellar [15]):

[ (p) = inf foly) » (10)

yeRY: Ay=p—a
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where the infimum of an empty set is co. The linear map A is injective and range(A4) = G(f), so
the linear system Av = p — a has a single solution v = AT(p — a) when (u — a) € G(f), and no
solutions when (u — @) € G(f). Therefore,

i [Ii(AT(p—a)) ifpe A
/ (“){ooo ifp g A

Since fj is of Legendre type, so is its conjugate f;; (see Theorem 26.5 of Rockafellar [15]), which
means that f§ with S* := int dom fj satisfies the properties (a)—(d). The function g is constructed

as follows:
9(n) = fo (AT(p —a)) = f5(ATp) ,

where the equality follows because a € G(f)*. This differs from the expression for f* in that it does
not equal to oo outside A. Before we argue that g is convex™, we analyze the gradient, Hessian and
third derivatives of f. From the properties of the conjugates, we know that V f; is the inverse of

V fo, so for all y € S*,
Visy) = [Vl (y) .

Since V fj is continuously differentiable and its derivative (i.e., the Hessian of fj) is an invertible
matrix, the inverse of V fj is also continuously differentiable and its derivative (i.e., the Hessian of
fo)is

V) = VRV @) = [V R(VE®)] an
In particular note that V2 f (y) is also an invertible matrix. We next show that f¢ has a continuous
third derivative, by using the chain rule to argue that V2 £ is continuously differentiable. This
follows, because V2 f¢ is the composition of (i) the matrix inversion [-] %, (ii) the Hessian map V2 f,
and (iii) the conjugate gradient V f;;', and all of them are continuously differentiable at points where
the respective derivatives are taken; specifically, the matrix inversion is taken at an invertible matrix
V2 fo(Vfi(y)). the Hessian at V f§ (y) € S, and the conjugate gradient at y € S*.

Now we can show that g is convex ™. From the definition of g, we have
Vg(p) = AV f5(ATp), VZg(p) = AV (ATp)AT, (12)

and

Vi)l ] = V2 (ATR)[AT(), AT(-), AT()]. (13)
Let D* := int dom g. From the definition of g, we have D* = AS*+G(f)L. Note that G(fg) = R",
because dom fj has a non-empty interior. Therefore, by Eq. (12), G(g) = range(A) = G(f). We

next verify that g satisfies properties (1)—(5) of convexity™, relying on the properties (a)—(d) satisfied
by f; and S*:

1. g is closed and convex.
This follows, because f;j is closed and convex.
2. D* is non-empty.
This follows, since f{ satisfies (a), so S* is non-empty, and so is D*.
3. g has continuous third derivatives on D*.
This follows by Eq. (13), because f{j has continuous third derivatives on S*.
4. range(VZ2g(p)) = G(g) for all p € D*.
Since the Hessians of f; are full rank, Eq. (12) implies that range(V2g(u)) = range(A) =
G(g)-
climes oo [ V() || = 0o whenever piq, po, - . . is a sequence in D* converging to a bound-
ary point of D*.
If p1, converges to a point on the border of D* = AS* 4 G(f)~, then the sequence of points
y, = ATp, converges to the border of S*. Since f] satisfies property (c), this means that
IV i (y,)|l = oo. And since A is injective, also | Vg(u,)|| = [|AV f& (y,)]| — oo.

W

We now prove that g has the properties stated in the theorem:

1. g agrees with f* on A.
Immediate from the definition of g.
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2. G(g) is parallel to A, or equivalently G(g) = G(f).
As we already argued, Eq. (12) and the fact that G(f}) = R™ imply that G(g) =

range(A) = G().
3. For p € ridom f*: 0f*(u) = Vg(u) + G(f)*.
Note that pp € A, so (u — a) € G(f). The statement follows by the following chain of
equivalences
e af () iff Vf(u)=
iff AVfo(ATu)+a=p (by Eq. 9)
iff Vfs(ATu) =AT(p—a)=ATu
(because (¢ — a) € G(f) = range(A))
iff Vf§j(ATp) = ATu
iff AVfi(ATp) = AATu = Pu (because A is injective)
iff Vg(p) = Pu (by Eq. 12)
iff w e Vg(p)+G(f)* (because Vg(p) € range(A4) = G(f))
4. For p € ridom f*: V2g(p) = Hf+(p,).
From Eqgs. (12) and (11), we have
VZg(p) = A[V2 5 (ATp)] AT
= A[V2fo(Vf5 (ATw))] " AT .
By Proposition A.8, H¢(p) = V2 f(u) for any u such that V f(u) = p, which is equivalent

tou € f*(p). Above, we have shown that Vg(p) € 9f*(p), so He(p) = V2f(Vg(p)).
We continue the derivation of H () using Eqs. (9) and (12):

Hy(p) = V2 f(Vg(w))

V2 fo(ATVg(p))] AT

V2 fo(ATAV f§(ATp)) | AT
= A[V2fo (V£ (ATw))]AT

:A[
fA[

where the last equation follows, because ATA = I,. Since G(g) = G(f), the ranges of
V2g(p) and H () coincide with G(f). From the above derivations of V2g(u) and Hf(p),
we also have

[V2g()]Hy (1) = Hy(1)[V?g(p)] = AAT = P
so indeed VZg(u) = H}F(u) O

Thanks to the continuity of third derivatives of f and the continuity of second derivatives of g from
Proposition A.9, we can easily prove a local Lipschitz property for H y:

Proposition A.10. Let f : R? — RU{oo} be convex™ and D' be the set of its gradients (necessarily
open within aff D'). Let p € D’ and let B be a closed ball (in aff D’) centered at p and fully
contained in D'. Then there exists a constant c such that for all u’ € B

Hy(w') ~ (L£cllp' — pll) Hy(p) -
Proof. Let g be the function from Proposition A.9. Similarly as we argued in the proof of Proposi-

tion A.9, we can write
Hy(p) = V2 f(Vg(w) ,

because Vg(u) € f*(w), and thus V f(Vg(u)) = w. Since, g has continuous second derivatives
and f has continuous third derivatives, the Mean Value Theorem implies that Vg is Lipschitz
continuous on any compact subset of D’, and V2 f is Lipschitz continuous on any compact subset of
int dom f. Since B is compact, and so is its image under Vg by continuity of Vg, we obtain that
both Vg and V2 f are Lipschitz on required sets, and so H is also Lipschitz within B, with some

constant L, i.e.,
[Hyp(p') — He(p)|| < Lljp" — pl|
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Since range(Hs(p')) = range(H¢(p)) = G(f), this implies that
Hy(p') = Hy(p) £ L||p' = pll P,

where P is the projection on G(f). Since range(H ;(p)) = G(f), we have P < o~ 'H(u) where
0 = Amin (Hy(pt)) is the smallest positive eigenvalue of H;(p). Thus, we have

Hp(w') = (1£ Lo~ t|p' — pll) Hy (w) - O
A.4 Lipschitz Gradients and Strong Convexity

In addition to (or instead of) convexityt, some of our results require Lipschitz gradients or, dually,
strong convexity. To be precise, we say that a differentiable function f : R? — R has a Lipschitz
gradient if there exists a constant L such that |V f(u) — Vf(v)|| < L||u — v|| for all w,v € R% If
f is twice differentiable, it suffices to check that V2 f(u) < LI, for all u, where I; € R4*% is the
identity.

We say that f is strongly convex with the strong convexity constant ¢ if
1
F(0) = f(w) + g7 (v —u) + 5ol —ul?

for all v,u € R? and g € Of(u). A standard convex analysis result states that if f : R? — R has
a gradient with Lipschitz constant L then f* is strongly convex with the strong convexity constant
o = 1/L (see Prop. 12.60 of Rockafellar and Wets [16]).

B Proofs and Additional Results for Section 4

B.1 Proof of Theorem 4.1

We prove a more explicit version of the theorem:
Theorem B.1. Under the exponential trader model, (7, ¢, i) is a market-clearing equilibrium if and
only if
N N _
7 € argmin ZFi(—ri), Z@ =0, and = VT(0; —a;7;) Vie[N].
LED DAY JE ] i=1
A market-clearing equilibrium always exists. Furthermore, for any market-clearing equilibrium, the
equilibrium prices are unique solutions of the following dual problem:

[ = argmin [Z Fl*(u)} .
HERK i

Proof. We first express the market-clearing equilibrium definition using the trader potential functions
F; instead of trader utilities. Since [—F;(—7;) + ¢;] is a monotone one-to-one transformation of the
utility U (7, ¢;), we get the following equivalences

0 € argmax U;(7; + 0, ¢ — 6 - ) iff 0 € argmin[Fi(fFi —d)—¢+46- ﬂ}
SERK dERK
iff VF(—7;) =,
where the last step follows by setting the gradient of the objective to zero at § = 0. Thus, we have
that (7, ¢, t) is a market-clearing equilibrium iff

N N
> Fi=0, > =0, VF(-7)=pforallic [N]. (14)
i=1 i=1

We now analyze the minimization of the potential ) . F;(—r;) subject to the market clearing con-
straint ) -, r; = 0. We express this constraint using the convex indicator function I{-}, which equals

zero if its argument is true and co when its false. We also introduce the matrix A € REXNK ith the
block structure A :== (I Ik --- Ix) where Ik is the K x K identity matrix. Thus, A implements
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the summation over the blocks r;, since Ar = , T+ With this notation, the potential minimization
problem can be written as

min [ZF —1;) +I{Ar = 0} (15)

reRNK

f(=r) g(Ar)

where we introduced the functions f(r) = Y, Fi(r;) and g(s) = I{s = 0} for s € RX. Now, if
certain conditions are satisfied, we can apply Fenchel’s duality (Theorem A.4) and obtain that the
value of the primal (15) equals the value of the following dual problem

max [—f*(ATu) - 9*(u)] ;

which is equivalent to

s[5

because g*(p) =0 and f*(y) =), FZ*(yZ), for y € RVE o f*(ATp) = >, FF (). It remains
to verify that the preconditions of Theorem A.4 are satisfied. First, we need to check that there exists
r such that Ar € ri(dom g). Since ri(dom g) = {0}, the vector = 0 satisfies this. We also need to
check that there exist g such that ATy € ri(dom f*), which for our choices of A and f is equivalent
to p € ri(dom F;*) for all ¢ € [N]. Since dom F; = dom T* = M, any pu € M satisfies this. Thus,
conclusions of Theorem A.4 hold.

The conclusions state that both the primal and the dual are attained, and 7* and fs are their solutions if
and only if ATy = V f(—7) and fx € dg(A7). From the definitions of A and f, the first condition is
equivalent to

ﬂ = VF(—’IA"l) = VT(éZ — aﬁ“z) .
The second condition is by conjugacy equivalent to A7 = Vg(ix) = 0, i.e.,

N
Zm:o .
=1

This establishes that 7 and f are solutions to the primal (15) and dual (16), if and only if they satisfy
the conditions in (14), i.e., if and only if they form a market-clearing equilibrium. This proves the
theorem except for the uniqueness of the equilibrium prices ft. The uniqueness follows from the fact
that i minimizes ) |, F;*(p), and the functions F;* are strongly convex on their domain M, which in
turn follows because the functions F; have Lipschitz gradients (a property they inherit from the log
partition function 7). [

B.2 Proof of Theorem 4.2

We prove a more explicit version of the theorem:

Theorem B.2. Under the exponential trader model, (v*, c*, p*) is a market-maker equilibrium for
. ) ) N

cost function Cy, if and only if, for the market state s* =Y _._ | r},

r* e argmlnF Zc = Cy(0)=Cy(s*), and p* =VCy(s*) = VT (0;—a;r}) Vi € [N].

A market-maker equlllbrmm always exists. Furthermore, for any market-maker equilibrium, the
equilibrium prices are unique solutions of the following dual problem:

wt = argmin| 37 F; (1) +bC" ()]
HERK i

Proof. We proceed similarly to the proof of Theorem B.1. We first express the market-maker
equilibrium definition using trader potentials instead of trader utilities:

0 € argmax Uj (r; 18, ¢ — Oy(s* +0) + C’b(s*))
SERK
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iff 0 € argmin[F;(—r} — ) — ¢ + Cy(s* + ) — Cy(s™)]
SERK

iff VF;(—r}) =VCy(s*) .

Thus, we have that (r*, ¢*, u*) is a market-maker equilibrium iff, for the market state s* = Zf\il T,

N
ZC? + Cb(S*) — Cb(O) = O, [L* = VCb(s*), VFi(—’Fi) = VCb(s*) for all i € [N] (17)
=1

We next use Fenchel’s duality to analyze minimization of the potential F'(r) = >, F;(—7;) +
Cy(>_; ri). We again define A := (Ix Ix --- Ix)and f(r) = ), Fi(r;), but in this case set
g(s) = Cp(s). Therefore, by Theorem A.4, we obtain the following correspondence between the
primal and the dual:

min, [_zNj Fy(=ri) + Co(dr)| = min, [£(=r) +g(4r)] (18)
= max [~ (ATw) ~ 5" ()|
= ma |- i_v; F; (1) = bC* ()] (19)

where we used the fact that g(r) = bC(r/b) and therefore g*(p) = bC*(r) (this is immediate from
the definition of conjugate). It remains to check the preconditions of Theorem A.4. First, we need to
check that there exists 7 such that Ar € ri(dom g). Since ri(dom C},) = R¥, this is vacuous and any
vector 7 satisfies this. We also need to check that there exist p such that ATy € ri(dom f*), which is
equivalent to p € ri(dom F*) for all ¢ € [N]. Since dom F;* = dom T* = M, any p € M satisfies
this. Thus, conclusions of Theorem A.4 hold.

The conclusions state that both the primal and the dual are attained, and 7* and fs are their solutions if
and only if ATf = Vf(—#) and fi = Vg(Ar). As in the proof of Theorem B.1, for our A and f,
the first condition is equivalent to

The second condition, g(s) = Cy(s), is

This establishes that 7* and fi are solutions to the primal (18) and dual (19), if and only if they satisfy
the conditions in (17), i.e., if and only if they form a market-maker equilibrium. It remains to show
that pu* is unique. As before this follows by strong convexity of F* and the fact that p#* minimizes

> FF(p) +0C™ (). O
B.3 Proof of Theorem 4.3

By Theorem 4.1, pt = argmin,,cpx [>; F;*(p)] and from the first-order optimality
0¢ a[z F;(ﬁ)} .

Since Fj(s) = T (6;+a;s), the properties of the conjugates (Theorems 12.3 and 16.1 of Rockafellar

[15]) yield
1 -
Fi(p)=—(T"(n) - 6i - p) .

a;
Thus,

S F ) = [ 1/ T ) - [Y6i/ed] - u

K3
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2

— O[S F (@) = [ Ve or () - [Y6i/ai] -
Therefore, 0 € 0>, F;* ()] iff .
S cor )

which is equivalent to
_ iéi a; -
=T <2/> = VT(8) = Ep [9()] .

where @ := (3, 0,/a;)/(3; 1/a;) and the last equality follows from the properties of the log
partition function.

B.4 Sampling Error

The market’s forecasting ability is fundamentally limited by the information present among the
population of traders, and the traders’ risk attitudes in communicating their information via trades. In
this appendix, we quantify these sources of error by analyzing the discrepancy || "™ — 1| between
the true expected security values and the market-clearing equilibrium prices.

The characterization of f in Theorem 4.3 reflects two possible sources of error. First, the beliefs

6; are typically noisy signals of the ground truth. Second, beliefs are weighted according to risk
aversions a;, which can skew the prices. To formalize the latter concept, we write

—1\2
(Zz a; )
-2
(Xia”)
to denote the effective sample size of the weighted average. When risk aversion coefficients are equal
across agents, we have No.g = N, and when one agent has much smaller risk aversion than the others,

Neg — 1. As the next result shows, the magnitude of the sampling error depends on the effective
sample size as it relates to the number of securities and the variance in trader beliefs.

Neff =

Theorem B.3. Under the exponential trader model, assume that the beliefs 6; are drawn indepen-

dently for each trader i € [N] with mean E[0;] = 0™ and covariance V(0;) < oI for some
02 > 0. Forany 6 € (0,1), the market-clearing prices ju satisfy, with probability at least 1 — 6,

|7 — p™| <O (m/K/(Neff 0) ) . Furthermore, assuming that each a; lies in a bounded range

[@min, Gmax] Where Qmin, Gmax > 0, we have that Neg — 00 as N — oc.

Proof. We write w; = a; ' /(3" a; ") for the weights in the average. Note that Neg = (3, w?) ™.
By the fact that beliefs are independent, we have:

N

N
E lz wzél] =0"° and V (Z w20~1> < N jo%Ik.
i=1

i=1

By applying the multidimensional version of Chebyshev’s inequality, we therefore have

N

~ Ko?

Pr ( Zwﬁz —0" | > t) < d
1=1

= Negt?’
The result then follows from the fact that 2 = VT'(Y", w;6;) by Theorem 4.3, the fact that g™ =
VT (6"™°), and the Lipschitz continuity of V7.

For the final claim, we have

( 7 ar;;x)g

= . =N Amin/ QGmax 2. ]
e = (yasy Y minfmes)
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Theorem B.3 implies that as the number of traders grows large, the market prices it converge to the
ground truth g™ in probability. It is important to note that this relies on Theorem 4.3, which is an
artifact of exponential utility—for general utilities, market-clearing prices may not be consistent in
the statistical sense, and this extra discrepancy would need to be quantified in the error decomposition.

For a finite number of traders, the bound in Theorem B.3 increases with the belief variance and the
number of securities, as one would expect. It decreases with the effective sample size: the information
incorporated into market-clearing prices improves when risk aversions are more uniform, and when
the number of agents increases.

C Proofs and Additional Results for Section 5

C.1 Proof of Theorem 5.1

Since gradients V F; are Lipschitz, the functions F}* are strongly convex over their domain, which
is M. Therefore, their sum G(p) = >, F;*(p) is also strongly convex on M with some strong
convexity constant o. Since it € ri M, G is subdifferentiable at fz, and since & minimizes G, any
element g € 0G () satisfies gT(p — ) = 0 for all & € M. This together with strong convexity
yields the lower bound Y°, Fy* () > >, Fy* (i) + 50| e — 2]|*. At the same time, C* () is bounded
below by a linear function of the form C* (&) + u7(p — &), because C* is subdifferentiable at fi
since it € ri M C ridom C*.

Now from the optimality of p+* and the lower bounds on ), F;*(u) and C* (), we have

S () 007 () 2 Y () + 0 ()
> (30 B+ 5ol — BI%) +0(C° (B) + T (w — )

* — 20 * —
= | *MHQS*FUT(M )

)
=t~ < |

C.2 A Remark on Partial and Incoherent Beliefs

The proof of Theorem 5.1 crucially relies on the fact that dom(zi Fr) =M CdomC*,i.e., that
the cost function C' does not force any additional constraints on g beyond those already represented by
the trader potentials F;;. This is natural in our setting, because trader utilities restrict the equilibrium
prices to lie in the smallest set including all coherent price vectors, M. This property of the trader
utilities means that the traders would be always willing to trade if the prices were outside the set M.
If the trader utilities did not have this property, for instance, if each trader was interested in only a
few securities, or their beliefs were incoherent, then this result might not hold. In such a setting, we
might end up with & ¢ dom C*. At best, we could then show that

N
ZFi*(M)

This, of course, agrees with Theorem 5.1 for our specific setting when the restriction to dom C*
creates no additional constraints, because dom() . ;") € dom C*.

lim p*(b; C) = argmin
b—0 pEdom C*

C.3 Proof of Theorem 5.6

The proof will proceed by analyzing the Taylor expansion of the dual objective characterizing p*.
However, the functions F;* and C* might not be differentiable in the standard sense, because their
domains might have empty interiors (and only non-empty relative interiors). Fortunately, F; and C'
are convex ', so by Proposition A.9 there exist convex ™ functions G; and R that coincide with F*
and C* on aff dom F* and aff dom C*. These functions are three times continuously differentiable,
which is what we need to obtain the third order Taylor expansion.
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Note that dom F;* = M for all i € [N]. Let A denote the affine hull of M = dom F}*. Since
M C dom C*, the dual in Eq. (6) is equivalent to

ZG )+ bR(p)

i=1

p* = argmin (20)

pneA

Note that 1 € ri M, because by the definition gt = VT'(s) for some s and the gradients of 7" are
in ri M. Thus, functions G; and R are differentiable and have Hessians at i (by convexity™). We
apply the Taylor expansion at f to analyze the value of the objective at p*. Let G(p) == >, Gi(p).
By Mean Value Theorem, we have

VG(p*) = VG(i) + V?G(pe) (B — 1)
VR(p*) = VR(R) + V?R(pg) (B — p*)

for some p1; and pp on the line segment connecting p* with fi. By Theorem 5.1, ||p* — || = O(b)
as b — 0, and thus also || — o] = O(b) and ||y — || = O(b). By the continuity of third
derivatives of G and R in the neighborhood of fz, the Hessians of G and R are Lipschitz in some
neighborhood of f1, which means that

V2G(pg) = V2G(R)
VQRmR):sz( )
i

where Ag and A i are matrices with ||Ag|| = O(||pe —
o(b).

We next calculate Hessians V2G () and V2 R(fz). First, note that

V2G(p) =) V?Gi(p)

g

+
+

)= ( )and [|[Ag[ = O(lpr—pll) =

and by Proposition A.9, we have
V2Gi(w) = HE, () = (1/ai) Hp (k)
where the last equality follows, because Hp, (1) = a; Hr(p) from the definition of F;. Thus,
VG(n) =) (1/a)Hf(n) = (N/a)Hf (1) .
We also have
V2R(p) = H¢ (p) -
By Proposition A.9, the affine space A is parallel to G(7T'). From the optimality of p* in (20), we
have (VG(p*) + bVR(p*)) L G(T). Thus, writing P for the projection on G(T'), we obtain
0= P(VG(,u,*) + bVR(u*))
= PVG(p) + PV?G()(p* — ) + PAg(p* — o) +bPVR(R) + bP[V*R(R) + Ar] (1" — )
—_—

Eqg €R

1)
= VG () (1" — o) + bPVR(R) +ec +er - (22)

In Eq. (21), the terms ec and e have norms O(b?), because ||pu* — ]|, ||Ag| and ||Ag| are
all at most O(b). In Eq. (22), we use that PVG(ft) = 0 by optimality of zi. We also use that
PV2G () = V2G(ia), because range(V2G () = G(T).

Since (u* — ir) € G(T), multiplying Eq. (22) by [V2G(i2)]*, we obtain
p* =+ [V’G(p)]* (e +er) = —b[V>G ()| TPV R(R)

€

= —b(a/N)Hr(p)PVR(f)
= —b(a/N)Hr(r)0C" () ,

where the last step follows, because Hr(fx)P = Hr(ft), and by Proposition A.9, 0C* (i) =
VR(x) +G+(C), and G+ (C) C GH(T). The theorem now follows by noting that ||e|| = O(b?).
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C.4 Proof of Theorem 5.7

We prove a slightly stronger statement that holds not only for the bias measured under the Euclidean
norm, but also when it is measured by the KL divergence. We use a more compact notation g™ (b)
and p™*S®R(b) for p* (b; IND) and p*(b; LMSR).

Theorem C.1. For any [u there exist ) € [1,2] and nky. € [1, 2] such that for all b

[ ®/m) = | = [|#550) = ]| + OF?) (23)
KL(p™(b/nx0) || &) = KL(u™(0) || ) + O (%) | 24)
KL (g2 [| ™ (b/nx1)) = KL(a || 555(0)) + O(F°) (25)
For these same 1 and ngy, we also have, for all b,
[P () — fl| = nl|u"(0) — Al £ 00%) (26)
KL(u™(5) || 1) = n KL(S(0) || ) + O | @)
KL(A || p™ (b)) = ng KL(R || p™5% (b)) +O(0°) (28)

Proof. Without loss of generality, we assume that the coordinates of g are sorted in the non-increasing
order, i.e., fiy > g > -+ > K.

Our proof is based on Theorem 5.6, which states that
a
pr(b;C) —p=b <7NHT(;1)8C*(;1)) tey, where | = O0?). (29)

Let H = Hy(p) = (diagye g fix) — 27, and let ™% and s™P denote arbitrary elements of

OC* () for the costs LMSR and IND, respectively. Then Eq. (29) yields
_ a _ a
1n™2®) = Bl = b5 - 1Hs™I +0®%) , [|p™(b) - Al| = b - |1 Hs™| + O0(%)
so Egs. (23) and (26) follow by setting
| Hs™| ( (sT0)T 72 510 1/2
~\ )

= [ H sWiSR|[ — \ (LMSR)T ]2 gLMSR

(30)

and it remains to prove that n € [1, 2]. (We do so below.)

For KL divergence results, we begin by using the fact that all entries of @ are positive so both
fi(p) =KL (p||p) and fo(p) = KL (@r||t) have bounded and continuous third derivatives in a
sufficiently small neighborhood of f&. Therefore, by Taylor’s theorem, we obtain in this neighborhood

KL (i) = fi(w) = f1(B) + VAR (1= )+ — B)TV2 (@) (0 = ) + Ol — all*)
=0
KL (f|p) = fo(m) = f2() + V2(B)T (1 — i) +( — B)TV2 fo ()T (1 — ) + O(|| e — BI°) -
=0
By direct calculation, V2 f1 (1) = V2 fo(f1) = diagye () (fix) "' =t M. Now, by Theorem 5.1, we
have ||p*(b; C) — p|| = O(b), and so we obtain
KL(p*(b;0) || &) = (1*(b;C) — o) "M (p*(b;C) — 1) + O(b*) (31)
KL(@ || p*(b50)) = (p*(b;C) — o) "M (p* (b; C) — ) + O(b°) . (32)

We next invoke Eq. (29), but before we do so, note that since H = (diagke[ K] hx) — ppt and
M = diagck; (fix) ", we have HM H = H. Now, invoking Eq. (29) and plugging it into Eq. (31),
we obtain

)
KL(NIND(b) H ﬂ) _ b2% (8™ THS™ 4 O®b®)

=2
KL(HLMSR(b) H N) — 2 ]6\0[2 (sHSR)T F MR O (b3)
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and similarly for KL (f||-). Therefore Egs. (24), (25), (27) and (28) follow by setting

IND D \ 1/2
L = (((S)THS> (33)

SLMSR) T H gLMSR

and it remains to prove that ng;. € [1,2].

In the remainder of the proof, we show that n and nk defined in Egs. (30) and (33) are in [1, 2].
We proceed by Lemma C.2 (see below), which shows that 1 < (vTHv)/(sTHs) < 4and 1 <
(vH?v)/(sH?*s) < 4 for any sorted vectors s and v, whose differences between consecutive
coordinates are within a factor-of-two of each other. We only need to show that s = s™5® and

v = g™ gatisfy this condition.

Recall that s™* and s™P can be chosen as arbitrary elements of 9C*(f) for the costs LMSR and IND.
From the properties of conjugates, s € 9C* (i) iff VC(s) = 1, so we can obtain s"* and s™P by
inverting the gradients of LMSR and IND:

LMSR __

SR log Siwnzmg(lf;k) for all k € [K].

Note that both si"5F and s¥> are monotone transformations of jig, and since f is sorted, so must be

s™R and s™P. We next show that the differences between the consecutive coordinates of s™** and
s™P are within a factor two of each other. For any k € [K — 1], we have
SEMSR - Sszllx =log (_Mk )
Hk+1
and we also have
IND IND i 1- k41
S$3.° — S = log < — . >
. ht Pr+1 1 — [
- 4@ - -
:10g<uk ,_Cnt ik > :log<uk ) g (cwruk)
Br+1  Ck + fgt1 Pr41 Ck + fik+1
where ¢ == 1 — iy, — jig41 > 0. Since fig > [ig+1, we therefore have
0 < log <W> < log (uk )
Ck + Hk+1 Hr+1
and therefore
LMSR _ _LMSR IND _ _IND LMSR  _LMSR
Sk = Sl S Sk — Spr < 208K — Sk)
Thus, Lemma C.2 with s = s"* and v = s™ and H = H¢(j2) proves that indeed i) € [1, 2] and
nKL € [1, 2}. O

Lemma C.2. Let pu € RE be a sorted probability vector, i.e., 11 > pg > -+ > ug, and let
H = (diagke[ K] 1) — ppT be the covariance matrix of the associated multinomial distribution.

Let s, v be sorted vectors in RX  ie., s1 > - > sgand vy > -+ > vk, such that sj, — Spt+1 <
Vg — Vg1 < 2(8k — Sk+1). Then the following two statements hold

sTHs <vTHv<4-s8THs , sTH?s <vTH?v<4-sTH?s .
Proof. The proof proceeds in several steps.

Step 1: Decomposition of s and v into an alternate basis. We begin by rewriting s and v in
the basis consisting of vectors z; € RE fork =1,..., K, where each z}, has ones on positions 1
through £, and zeros on the remaining positions, i.e., z;; = 1{j < k}. Let

ag =Sk — Sg+1 and by =wvp —vg4y fork=1,... K —1.

The vectors s and v can then be written as

K-1 K-1
s:usK+Zakzk , v:szK—i—Zbkzk (34)
k=1 k=1
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where

From the definition of H, we have Hz = 0 and so

sTHs = (s)\THs' , vTHv= (v)THv' , sTH?s=(s\TH?s' , v H?v = (v)TH?v ,

(36)
where s’ and v’ exclude the basis element z g, i.e.,
K-1 K-1
Sl = Z ARz , ’U, = Z bk.zk . (37)
k=1 k=1

Therefore, we have the decomposition

K—1 T K—-1
sTHs = (s)THs' = (Z am) H (Z am) = Y walz[Hz) . (38)
k=1 (=1

kle[K—1]
and similar decompositions for vT Hv, sTH?s, and vT H?v.
In the remainder of the proof we show that for all k,¢ € [K — 1], we have z] Hz, > 0 and
zlH 2z ¢ = 0, which together with the decomposition in Eq. (38) and similar decompositions implied
by Eq. (36) will imply the theorem, thanks to the fact that 0 < a; < by < 2ay.
Step 2: z] Hz; > 0. Fix k,¢ € [K] and assume k < {. Then

z]Hz, = Z wizkjze; — (ZEp)(n"z,)

JEK]
O o) = O w) O m)
J<k J<k Jj<e
—_—— —
g ! g
==y >0 (39)

Above, we introduced notation for partial sums

k
d
="l
j=1

and used the fact that p[ J < < 1, because entries of p are non-negative and sum to one. This proves
that 2] Hz, > 0 when k; < 0. The case k > ¢ follows by symmetry of H.

Step 3: ZZHZZg > 0. Again,letk, ¢ € [K] and k < . First note that
= (diagjeqrg i) — D Hle;u™ — > pdpel + pbdppt
JE[K] JEIK]
[2]

where e; is the jth vector of the standard basis and we used our partial sum notation to substitute iz
for ||p||?. Thus, we can write

z[H’z, *ﬂ” i = g gy
= g = i ) (40)
= (ML] i) (1= ufl)
> (P! = uf ) (1= ul) (41)
= il (”E—%) (1-u") =0 (42)
i, He
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In Eq. (40), we used the bound M[ | [2] . InEq. (41), we used that 0 < ME] < 1 so um( ug]) >

ML ],u?]( [1]) The final mequahty uses the fact that ,uL ] < 1and [J,E] / uk > ,uf] / um The
latter clearly holds 1f€ =kor u[l] = Mk (in which case p; = 0 for k < j < £ and thus ME - ,ugf]).

We now argue that uk / ,uLl] > M@ / ME] also holds when k& < ¢ and pg11 > 0. We introduce the
interval sum notation

[d]
/‘k+1/ Z MJ _W My -
j=k+1

We begin by writing Mz / ,u[l] as the following convex combination

2 2 1 2
@ . :[LEC] + /LL-]H:Z _ ﬁ [2] X :uu_l 0 ”L-]&-l Y
= [1] Y [1] (1] (1]
H Hy g™ Hy My Krt1:e
'u[2] M[2]
= AR (1= ) Rl (43)
[1] (1]
Hiy1:e

where we write \ = ME] / uy]. The expressions weighted in Eq. (43) by A and 1 — )\ can be viewed
as weighted averages of 17, with the weights also equal to p;. Since p is sorted, we have

2] k (2]

E My Frite
T2y M= e and = D e S
j=1 M Mrite  j=k+1 Mii1we
SO o -
2
By
% > Mk = P41 = ﬁJ]ru
K M0
Plugging this back into Eq. (43), we obtain
[2] (2] (2] (2]
[11 =a-Br -y gt < B
Mg Hey1e Mg

finishing the proof of Eq. (42), showing that 2] H 2z ;> 0when k < £. The case k > /£ again follows
by symmetry of H?2.

Step 4: Putting it all together. Let M be either the matrix H or H?. Since in both cases 2] Mz, >
0, the inequalities 0 < ay < by < 2aj imply that

Z apae(zf Mz,) < Z bibe(zfMz,) < 4- Z apae(zfMz,) .
kte[K—1] kte[K—1] kle[K—1]

This is by the decomposition in Eq. (38) and analogous decompositions for v7Hv, sTH?s, and
vT H?v equivalent to
sTMs<vTMv<4.-8TMs

proving the lemma. O

3

D Proofs and Additional Results for Section 6

D.1 Trader Dynamics

To study convergence properties of the market, we need to posit a model of how the traders arrive in
the market and which securities they buy or sell, as a function of their current holdings of securities
r; and cash ¢;, and the current market state s. We refer to such a model as trader dynamics. We
consider two simple trader dynamics:

o All-securities dynamics (ASD). In each round, a trader ¢ € [N] is chosen uniformly at random.
This trader then buys a bundle § € RE which optimizes her utility, i.e., if the current state
of the market is s and the current cash and security allocations of the trader are c; and r;,
then the trader picks & maximizing U;(r; + 8, ¢; — Cp(s + 8) + Cp(s)).
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o Single-security dynamics (SSD). In each round, a trader ¢ € [N] is chosen uniformly at
random and this trader picks a security k& € [K] uniformly at random. The trader then buys
a quantity § € R of the kth security to optimize her utility. Let e be the kth vector of the
standard basis. Then the trader picks 6 maximizing U, (r; +de, ¢; — Cp(s+deg) + Cy(s)).

The all-securities dynamics has been recently studied by Frongillo and Reid [9]. This model assumes
that traders are able to calculate the optimal bundle over all securities, which may not be a realistic
assumption when the number of securities is large. The single-security dynamics, in which we
only assume that traders can optimize over a single security at a time, is more appropriate for
computationally limited traders.

We formalize both dynamics in a unified analysis via blocks. Specifically, we assume that the
coordinates [N] x [K] are partitioned into blocks o € A, where o C [N] x [K], such that ) ,. 4 @ =
[N] x [K]. Blocks are disjoint subsets of coordinates of the overall allocation vector r € RVX. We
further assume that each block o € A is fully contained within coordinates corresponding to some
trader i. Thus each block « can be written as {i} x 3 for some ¢ € [N] and 8 C [K]. For ASD, we
have N blocks A = {{i} x [K] : i € [N]}. For SSD, we have NK blocks A = {{i} x {k}: i€
[N], k € [K]}.

Let E, € RVKxlel be the embedding matrix for the block . It maps |«|-dimensional vectors
u € Rl?l to vectors v € RVK that are zero everywhere except for the block «, where they coincide
with u. The range of E,, is exactly the set of vectors that are zero outside the block «. Its transpose
ET projects vectors from RVX to RI®l by removing all coordinates outside the block c. For any
subset 3 C [K], we similarly define the embedding matrices E5 € RX* 181,

The next theorem shows that optimizing utility, as in ASD or SSD, corresponds to the greedy optimiza-
tion of the potential function F' along the coordinates of the corresponding block:

Theorem D.1. Let o = {i} x 8, where B C [K|, be a block of coordinates controlled by trader i.
Assume that trader i has security bundle r; and c; units of cash, and the current market state is s.
Then

argmax Uj(r; +9, ¢; — Cy(s+6) + Cy(s)) = argmin F(r_;, r; +96) ,
dcrange(Eg) dcrange(Epg)

where T_; denotes the concatenation of T across j # i.
Proof. The proof is immediate from the definition of the potential F'. O

D.2 Relationship between the Suboptimality of Potential and the Convergence Error

In this appendix, we relate the suboptimality of the objective to several other quantities used in
analysis of convergence error. We begin by defining these quantities.

Given an allocation vector » € RVX | the associated market price (the gradient of the cost) will be
denoted p((7) and the gradients of trader potentials will be denoted g, (7):

po(r) == VG (Zf\;l ;) = VC(ZZ]-VZI 7i/b)
pi(r) == VEFi(—r;) = VT(6; — a;r;) for i € [N]

where T is the log partition function. As in the body of the paper, let »* denote an arbitrary minimizer
of F' and let F™* denote the minimum value of F'. From Theorem B.2, at any equilibrium allocation

r*,

Po(r™) = p* and pi(r*) = p* forall i € [N].

Let 7! denote the allocation vector after the tth trade, and ! := p(r?) be the corresponding market
price. We next show that to bound the convergence error || (r?) — p*|| it suffices to bound the
suboptimality of the current objective value, F'(rt) — F*. In fact, we show that the suboptimality
F(r') — F* simultaneously also bounds ||p,(r") — p*||, which can be viewed as a measure of
suboptimality of individual traders and will be used in our later analysis. We first prove this result
when C has a Lipschitz-continuous gradient and then for the case when C'is convex™.
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Theorem D.2. If VC has the Lipschitz constant L¢ then for any r € RNV
1 N

b 1
F(r) = F* > —— lpo(r) = " ? + 57— > —llm(r) — ">,
2LT im1 a;

~ 2Lc¢

where L is the Lipschitz constant of V'T..

Proof. First note that since VC' and VT have Lipschitz constants Lo and L, their conjugates
are strongly convex with constants 1/L¢ and 1/ L. Further, by the properties of conjugates (see
Theorems 12.3 and 16.1 of Rockafellar [15]), the definitions of F; and C}, yield
* 1 * N * *
Fi(p) = —(T"(w) = 0i-p) . Ci(m) =bC"(p)
and so F}* and Cj are strongly convex, respectively, with constants 1/(a;Lr) and b/Lc.

We now invoke the duality result of Theorem B.2 to prove our theorem. Specifically, from Eqgs. (18)
and (19), we have

F(r*) = - ZFZ‘(N*) —Cy(p*) .

Therefore, for any r, we have

N

Fi(=ri)) + Cy (Z r;) + Z Fr(p*) + Cy(p")

A i=1

[Fi(=r) + F7 () ol + [ (S ) + Crw) = () Tt

1 % %

F(r)—F* =

-

~
Il
—

Il
.MZ

(3

(44)

Using conjugacy and strong convexity, we next show that the terms in the brackets can be lower-
bounded by quadratic functions.

Let s := ), r;. Since p;(r) = VEj(—r;) and py(r) = VCy(s),
(=) € OF (pny(r)) and Fi(—ri) = —r]p;(r) — F (ps(r))
8 € 0C; (o(r)) and Cy(po(r)) = sTpo(r) — Cp(po(r)) -
Using these identities and invoking the strong convexity of F; and Cj, we thus obtain
Fi(=ri) + Ff (0*) +r]p* = F(0") = (—=r) (1" = ps(r)) = F (p(r))

1 t * |12
3o 1 i) — |

Cy(s) + Cp (") = sTu" = Cy(n*) = 8T (K" — po(r)) — Cy (1o(T))
b
> o x12 .
> sp=lmo(r) — |
The theorem now follows by applying these lower bounds in Eq. (44). [

>

Theorem D.3. If C is convex™ then there exist € > 0 and ¢ > 0 such that if F(r) — F* < ¢ then

F(r)—F*>c

N
1 *
bl (r) — | +Z;||ui(r) — P
i=1

Proof. The proof begins similarly to proof of Theorem D.2, by establishing the identity
N

F(r) = F* = 3 [F () = (—ra)T (1" = py(r) = F? ()]

i=1

+ G ) = 87 (1" = o) = G5 (o)) - (45)
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Let G; be the convex™ functions that match £} on dom F}* and R be the convex™ function that
matches C* on dom C*, and that have the additional properties outlined in Proposition A.9. Thus,

N

F(r) = F* = 3 [Gilu) = [VGilp ()T (1" = (7)) = Gilpaa(r))]

i=1
+ b R(u") — [V R(uo(m)]" (1" = po(r) = Rlpo(r))] - (46)

By convexity ", functions G; are strictly convex on M = dom F;* and R is also strictly convex
on M C dom C*. Thus, G; and R are strictly convex in a neighborhood of p* (in aff M), which
implies that the terms on the right-hand side of Eq. (46) are strictly convex in () and g, (7). Since
they are minimized at pu*, we obtain p,(r) — p* and py(r) — p* as F(r) — F* — 0. Thus, by
picking a sufficiently small €, we can guarantee that p,(7) and g, () are arbitrarily close to p*
whenever F'(r) — F* < . From Taylor’s theorem, and the fact that V2G; = H;Eq = (1/a;)H and

V2R = HJ,, we obtain

Gi(p*) = VG (r)]T (1 — py(r) — Gy (r)) = 2; (" = g (r)) HE (i) (" = paa(r)

R(p*) = [VR(po (r)]T (1" — po(r)) — R(po(r)) = %(u* — o (1)) THE (o) (1° — ().

Now, envoking Proposition A.10 for convex™ functions 7" and C, we obtain that for a sufficiently
small € we have that if F'(r) — F* < ¢, then

) = (15 5) miGet) . HGo) = (155 ) HA )

Plugging this back into Eq. (46), we obtain

Fir) = (15 ) 3 o (o ) B 0" = )

2a;
i=1 ¢

P (125) 50t~ o) HEWO W o) - @)

The theorem now follows by noting that the ranges of matrices Hr(u*) and Ho(p*) include all
directions g — p’ where p, p’ € M, because M = dom T* and M C dom C*. O

D.3 Local Convergence Rate of Block-Coordinate Descent

In this section, we consider general unconstrained convex minimization, but use the same notation as
in the rest of the paper. The key difference from the standard analysis of Nesterov [11] is the focus
on the local convergence in the neighborhood of the solution, rather than global convergence. This
analysis is not specific to our setting, and may be of independent interest.

We consider the optimization problem

min F(r) ,
T’ERNK
where F : RVK — R is a differentiable convex function bounded below. We are given a set of blocks
a € A, which partition the coordinates [N] x [K]. The block-coordinate descent algorithm sets the
initial iterate r = 0, and in each iteration chooses an index a € A uniformly at random and fully
optimizes the objective over the coordinates in block «: given the current iterate ¢, the new iterate is
riTl = U, (r') where
U,(r)= argmin F(r) (48)

r’€r+range(Fy)

and E, is the embedding matrix for the block « as introduced in Appendix D.1.

Nesterov [11] shows that when the optimization objective is strongly convex, it is possible to achieve
the linear convergence rate of the form E [F(r")] — F* < ¢! for some constants ¢ > 0 and y < 1.
While the objective in our setting is not globally strongly convex, it is strongly convex locally, so the
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optimization eventually stays within a region where the strong convexity constant is bounded away
from zero, yielding a linear convergence rate. Recall from Section 6 that g, is an upper bound on
the local convergence rate of an algorithm if the algorithm with probability 1 reaches an iteration ¢
such that for some ¢ > 0 and all ¢ > ¢,

E[F(r') | 7] — F* < ey’ -
Also, Yiow is a lower bound on the local convergence rate of an algorithm if Yhignh > Viow holds for all
upper bounds Ypigh.

Our local convergence-rate results are based on various local properties of F', by which we mean
properties that hold on some proper level set of ', in the sense of the following definition:

Definition D.4 (Level Set). For a given A € R, the level set S(F, \) of a function F is defined as the
set of points r where F' is at most \:

S(E,N) ={r: F(r) <A} .
The level set S(F, \) is called proper if A > F*.
Our first result requires that the objective be locally strongly convex and smooth in the sense of the
following definition:

Definition D.5 (Strong Convexity and Smoothness for Matrix Seminorms). Let A and B be symmet-
ric positive-semidefinite matrices. We say that a differentiable function F' is strongly convex on a set
S with respect to A and smooth on S with respect to B if

%(WA& <F(r+96)—F(r)—90"VF(r) < %(VB(S
wheneverr € Sandr +6 € S.

To state the theorem, we introduce additional notation. For a matrix M € RNEXNEK 'jet M,
denote the block consisting of rows and columns in «, ie., My o = EIME,. Andlet D :
RNEXNE _, RNKXNK he the operation of retaining only the block diagonal of a matrix, i.e.,
D(M) = diag,c 4 Ma,o. Recall that M denotes the pseudoinverse of M. Finally, let g :=
V F(r') denote the gradient of the objective in the tth iteration.

Theorem D.6. Assume that F attains a minimum and let S .= S(F, \) be a proper level set which
satisfies the following conditions:

1. F is strongly convex and smooth on S with respect to some positive-semidefinite matrices A
and B such that G(F') C range(A), G(F') C range(B).

2. There exist non-negative constants Olow < Ohigh < 00 and { < oo such that whenever some
iterate v lies in S, then all the consecutive iterates with t > to + £ satisfy

TiowE [(gt)Tfﬁgt 7’“’} )
E[(g")D(4)*g" ro]

where the expectation is over the random choice of updates by the algorithm.

ro| <E|(g)7D(B)"g"

T‘tU:| S UhighE |:(gt)TB+gt

Then if F* < F(r') < Aandt > to + {, we have

Ohigh E [F(rit?) | rlo] — F* Olow
1— < <1l-—.
max{ A 0} S TEEE) ] - F S A

The proof is deferred to a separate subsection below (Appendix D.4). We next show how to apply
Theorem D.6 to obtain bounds on local convergence rate. For the lower bounds, we assume that
the optimization problem is non-degenerate in the sense that the probability of reaching an iterate
rt which attains a minimum is zero; in other words, only approximate solutions are reached in a
finite number of steps. This condition holds for the potential function from the main paper under
all-security dynamics (ASD), whenever there are at least three agents with distinct beliefs.
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Proposition D.7. Let Siy = S(F, \in) and Soue = S(F, Aout) be level sets with F* < Ay < Aow, and
assume that the conditions of Theorem D.6 hold for the level set Sqy with matrices A and B, and
non-negative scalars oiow < Onigh < 00 and £ < co. Then for every rto € S, there exists ¢ > 0 such
that for all t > tg

E [F(rf’) | T‘to] —F* < c'yl:i;“ ,
where Yhigh = 1 — Olow /| A|. Furthermore, if the optimization problem is non-degenerate then for
every v € S,,, which has a non-zero probability of occurring, and all t, > to, there exists ¢ > 0
such that for all t > t,

E [F(rt) | rtl] —F* > cvlt(;fl ,

where Yiow = max{1l — onign/|A|, 0}.

Proof. For the upper bound, if F(r®) = F*, the bound holds for any ¢ > 0. Otherwise, set
c:= fylgggh (F (rlo) — F*). Since the optimization does not increase the objective, this guarantees that
the bound holds for ty <t < tg + ¢. Fort > ty + ¢, Theorem D.6 gives

E[F(rth) [ rf] — F* < g - (E [F(r!) [ 7°] — F*)
and the upper bound now follows by induction.

For the lower bound, note that the non-degeneracy guarantees that F'(rt) > F* for all t > to. If
Yow = 0, the bound holds for any c. Next consider the case when 7w > 0. Pick t1 > t( and set

€= LR Yiow (B [F(r') [77] = F*)

which is non-zero, because iy € (0,1] and F(r*) > F*. This guarantees that the bound holds up
tot = t; + £. For larger ¢, it follows by Theorem D.6 and induction. O

When the objective is convext, we can use the Hessian at the minimum of F to obtain both a
quadratic lower and upper bound on F, yielding the following bounds on the local convergence rate:

Theorem D.8. Let F be a convex™ function attaining a minimum at v*. Let H* == V*F(r*) and
assume there exists \ > F'* and non-negative constants iow, Onigh, and £ such that
E[(¢")D(H*)*g" | r'™*]
E[ (g7 (H) g [ 1]
whenever F(r < )\, where the expectation is over the choice of updates by the algorithm.
Then, for all € > 0, the local convergence rate is bounded above by Vhigh = 1 — Olow J|A| + €.
If the optimization problem is non-degenerate, the local convergence is also bounded below by
Yow = 1-— Uhigh/|A|-

< Ohigh (49)

Olow >

t—@)

We defer the proof of Theorem D.8 to a separate subsection (Appendix D.5). The ratio bounded in
Eq. (49) can be interpreted as a curvature of the quadratic form D(H*)" under the norm described
by the quadratic form (H*)T. Larger values of the ratio (larger curvature) mean faster convergence.
We will refer to the bounds oy, and onign as lower and upper bounds on local strong convexity of F'
(under randomized block-coordinate descent updates). Any non-trivial lower bound, i.e., gjow > 0,
yields local linear convergence rate since it implies Ypign < 1, since € can be chosen arbitrarily small.

If we know the Hessian H*, we can obtain a simple lower bound oy, and a linear convergence by
considering all directions in the span of gradients (and setting ¢ = 0). The span of gradients coincides
with G(F), because 0 is a valid gradient (since F' attains a minimum). Thus, we can obtain ooy by
the following generalized eigenvalue calculation:

uTD(H*) " u

= min —
ueG(M\{0} uT(H*)tu

where Apin(+) is the smallest positive eigenvalue. This is a valid setting of oy, because for all
u € G(F) we then have oo, uT(H*)Tu < uTD(H*)*u and therefore, when F(r!=*) < ), also

o [ (g)T(H) g" | 7 | <E[(¢")TDH")*g" | 7" ].

This value of o4y is non-zero, because G(F) = range(H*)™ C range D(H*)". We pursue this

style of analysis for single-securities dynamics (SSD), where we derive oy, using Eq. (50), but do

so directly in terms of Hessians of functions C' and 7 rather than the potential F'. For all-securities

dynamics, we consider ¢ > 0 and take advantage of the averaging effect of expectations in Eq. (49),
which yields a tighter lower bound o1,y and a non-trivial upper bound orp;gp.

Olo

_ )\min((H*)1/2D(H*)+(H*)1/2) , (50)
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D.4 Proof of Theorem D.6

Proof of Theorem D.6. The vector of partial derivatives of F' within block v will be called partial
gradient and denoted V, F(r) :== EIVF(r). Since F has a minimizer, its set of gradients contains a
zero, and therefore its gradient space G(F’) coincides with the span of its gradients (see Definition A.5).
We also define the set G, (F') := ETG(F'), which then coincides with the span of partial gradients
of F'. Note that by Proposition D.9, proved below, any positive-semidefinite matrix M satisfies
range(M) C range(D(M)). Since G(F') C range(A), we therefore obtain G, (F') C range(Bq )
by the following reasoning:

Go(F) = EIG(F) C E]l range(A) C ET range(D(A)) = range(Aq.q)
and similarly obtain G, (F') C range(Bg,q).
Assume F'* < F(r'0) < X and let ¢ > to + £. Consider the bundle » := ' and analyze the value of

the objective at the next iterate 7'*! = W, (). First note that the objective does not increase during
optimization, so F'(r) < X and in particular » € S. From Eq. (48), we then have

F(U,(r)) = min F(r') (51)

r’€(r+range(Eq))NS

1
i r_ T - I T I
< r’e(r-s-rgnlgel(Ea))ns (F(T) + (' —=7r)TVF(r) + 2(7“ r)TB(r 7’)) (52)
- T’E(r-&-r!ginrée(Ea)) (F(’r‘) + (’P/ _ "")TVF(T) + %(7‘/ - T)TB(TI - T)) (53)
= i T 1 T
= 5Ienﬂ§|1clx\ (F(T) + 3"V F(r)+ 25 Bg 00 (54)
=F(r)— %(VQF(T‘))TB;&(VQF(T‘)) . (55)

In Eq. (51) it suffices to consider minimization over S, because the objective does not increase during
the optimization and » € S. In Eq. (52) we use the fact that F' is smooth on S with respect to
B. Eq. (53) follows, because the minimum in Eq. (53) is actually attained in .S. We show this by
contradiction. Let F’ (") denote the function minimized in Eq. (53) and assume that the minimum of
F’ over r + range(E,,) is attained at ' ¢ S. Since r € S, the line connecting r and ' intersects
the boundary of S at some point "/, where F'(r’') = A by continuity of F'. From the foregoing, we
then have
F'(rY<F'(r)=F(r)<A=F@")<F'(r") .

This however contradicts the convexity of F along the line connecting r and 7', because " lies
between r and ', and thus we should have F'(r") < max{F’(r), F'(r')}. This means that the
minimum in Eq. (53) is indeed attained somewhere in S. In Eq. (54), we make the substitution
r" —r = E,d, and Eq. (55) then follows by Proposition A.3, because V,F(r) € G,(F) C
range(Ba,o)-

Taking expectation over the uniformly random choice of the block o, we have

F(r) —Eq [F(V4(r))] > ﬁ > (VaF(r)"Bf,(VaF(r))
acA

- ﬁ (VE(r)"D(B)* (VF(r)) . (56)

We can also apply the lower bound on F' and obtain

F (v, > i F "—r)TVF
(o) > min(F0) 4 00 TR+

(r' —r)TA(r — r))

DN =

> min Fr)+ (r' —=»)TVF(r) +
r’E(r+range(Ea))< ( ) ( ) ( )

(r' —7r)TA(r' — 7“)) (57)

DO =

1
— 4 T AT
= 621&'{11‘ <F(T) +6 VQF(T) + 26 Aa’a5>

= F(r) - %(VQF(T‘))TAZ;Q(VQF(T)) . (58)
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The steps are analogous as in analyzing the upper bound except for Eq. (57), which is now more
straightforward, since the minimum over a larger set cannot lie above a minimum over a smaller set.

Taking expectation over «, we thus obtain
1

F(r) — Eq [F(U,(r)] < M(vp(r))TD(Aﬁ(vp(r)) . (59)

The same reasoning that gave us bounds on F'(¥,,(r)) can be also used to bound the optimal value
F* by noting that F* = F(¥,. (7)) where o* is the block containing all the coordinates, i.e.,
a* = [N] x [K]. (Note that o* is not necessarily in .A.) Egs. (55) and (58) thus become
1
F* < F(r) - §(VF(r))TB+(VF(r)) : (60)
1
F*> F(r) — §(VF(1~))TA+ (VE(r)) . 61)

To finish the proof, we take the conditional expectations in Eq. (56), use the definition of oy, and
take the conditional expectations in Eq. (61) to obtain
rto}

B[P ) B[P | #) > ok [@)TD(5)

> ﬁ - OlowE [(gt)TA+gt ‘ rtu}
> teEre s -F) . @

Similarly,

B[F(r) | r0] ~E [P ] < T (B[P0 [ 0] 7))

Since the objective never increases, we can actually write

E[F(r') | '] —E [F(r'+) | 7] < min { T‘f'h : 1} A(E[F@) 7] - F7) . (63)
The theorem now follows by rearranging terms in Egs. (62) and (63). O

It remains to prove the following proposition, which was used in the proof:
Proposition D.9. For any positive-semidefinite matrix M, we have range(M) C range(D(M)).

Proof. Fora € A, let P, .= E, Eg be the projection matrix into range E, and note that
D(M) = diag, Moo = Z P,MP, .
Letu € RV and let z, = | M /2P, ul|. Then

2
uwTMu = ||M1/2u||2 _ HM1/2(Z Pa")”

acA
< (S IM2Pwl)® = (Y xa)?
acA acA
< A e (64)
acA
= |A]- Z uTPoMP,u = |A|l- (uTD(M)u) ,
acA

where in Eq. (64) we used the inequality between the arithmetic and quadratic mean. Thus any
u € range(M) is also in range(D(M)). O
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D.5 Proof of Theorem D.8

This proof builds on several propositions proved in Appendix D.6 below. Let epyax = VA — F™*. For
n = 1,2,... define the level sets S(n) = S(F, F* + &2, /n?). Thus, by Proposition D.11, for
some ¢ > 0, we have
V2F(r) =~ (1 % cemax /n)H* forallr € S(n) |
c1

where we have introduced the notation ¢y = cepax. By Proposition D.12, if n > ¢;, then the
function F is strongly convex and smooth on S(n) with respect to A(n) = (1 — ¢1/n)H* and
B(n) == (1 + ¢1/n)H*. Thus, S(n), A(n), and B(n) satisfy condition (1) of Theorem D.6 for
n>ci.

In the remainder, we only consider the level sets S(n) for n > ¢;. For each of them define
n—=«c

n—+c
Ulow(n) = mglow 5 Uhigh(n) = n—ocy

Ohigh -

We next argue that they satisfy condition (2) of Theorem D.6. It suffices to verify that condition (2)
of Theorem D.6 holds for ¢ = to + ¢; let’s call this limited variant condition (2'). If (2') is satisfied
then also (2) is satisfied, because if 7> € S(n), then also r*o+* € S(n) for any k > 1, and so we
can apply condition (2') at t = to + k + ¢ and by taking the conditional expectation we obtain the
original condition (2).

To prove that condition (2) holds for ¢ = ¢y + £, note that S(n) C S(1) = S(F, A), so Eq. (49) holds
whenever 7t = rt=* € S(n). So, assuming that n > ¢; and r** € S(n), we obtain

n—=«Cc

UlOW(n) = Olow
n-+c
cn/(nte) E[(g)DH)"g" | ] E[(g")"D(B(n))*g" | v ]
T nf/(n—c) E[(g)T(H*)*g! | rio] E[(g")TA(n)*tgt | rto ]
n—+c
Uhigh(n) = n—c Ohigh
_nfn—c) E[(g)DEH)g" | v ] E[(g)TDAM) g | 7]
T n/(ntea) E[(g)T(H*)tg! | rio] E[(g1)TB(n)*gt | ¥ |

Now invoking Proposition D.7 with Si, = S(n+1) and Sy = S(n), we obtain that if r** € S(n+1)
then there exists ¢ > 0 such that for all ¢ > ¢

E[F(r) | rf] — F* < cymign(n)' ™",
where Vhign(1) == 1 — oiow(n)/|-A|. Proposition D.13 now implies that S(n + 1) is reached with
probability 1, s0 Yhigh(n) is a valid upper bound on the local convergence rate.

Since the optimization starts at a deterministic point 7° = 0, and the randomization is among a
finite set of choices, there is only a finite set of allocation vectors r* that can be reached at any given
iteration ¢. If the optimization problem is non-degenerate, then none of these allocations (for any t)
are the actual minimizers of F'. In that case, Proposition D.7 yields that if 7’0 € S(n + 1), and it has
a non-zero probability of occurring, then for all £; > ¢, there exists ¢ > 0 such that for all ¢t > ¢,
E [F(rt) | rtl] — F* > cyow(n)t

where Yiow(n) = 1 — onign(n)/|.A|. Since S(n + 1) is reached with probability 1, this means that
any valid upper bound must be greater than oy (7).

The theorem now follows, because Yhigh(1) — 1 — giow/[A|, and Yiow — 1 — ohign/|Al, as n — oo.

D.6 Supporting Propositions for Theorem D.8

Throughout the propositions below, let F be a convex™ function attaining a minimum. Let P be
a projection on G(F'). Since F attains a minimum, its gradient set includes zero, and therefore in
Proposition A.7 we have a = 0. This means that

F(r)=F(Pr) ,
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so we can assume, without loss of generality, that 7* € G(F). Let H* := V2F(r*). Finally, recall
that S(F, \) denotes a level set (see Definition D.4).

Proposition D.10. For any A\ > F*, S(F,\) = Sy + G(F)* where Sy C G(F) is compact.

Proof. Since F(r) = F(Pr), any level set S can be written as S = Sy + G(F)*, where Sy =
SNG(F). Now if A > F™* then S is non-empty and closed and hence so is Sp. It remains to argue
that it is bounded. By convexity™t, F is strictly convex on G(F'), so the minimum of F on the sphere
{r € G(F): ||r —r*| = 1} must be some A; > F*. By convexity, F(r) — F* > \||r — r*|| for
all 7 € G(F). Since Sy C G(F') and F(r) < A for r € Sp, the set Sp must be bounded. O

Proposition D.11. Let €, > 0. Then there exists a constant ¢ > 0 such that for all 0 < € < enax,
and all 7 € S(F, F* + %), we have

|Pr —7*|| <ce ,VPF(r)~(1+ce)H* .

Proof. Let S == S(F,F* +¢2, ) and Sy := S N G(F), which is compact by Proposition D.10. Let

max

i (o2
o1 = min Amin(V=F(7), P) .

Note that Apin (V2F(7), P) > 0 on the compact set Sp, and V2F(+) and Ayin (-, P) are continuous,
so o1 > 0. Therefore, F' is strictly convex on S with the strict convexity constant o1. Using the fact
that VF(r*) = 0, we then have for any 7 € S,

1
F(r) = F(Pr) > F* + §al||Pr — % .
Therefore, if r € S(F, F* + %) C S then

1Pr — || < ey/2/or .
For the bound on the Hessian, note that since the third derivative of F' is continuous, it is upper
bounded on Sy. Therefore, the Hessian is Lipschitz with some constant L on Sy, and so || V2F(r) —
H*|| < L||Pr — r*||. Thus, since range(V2F(r) — H*) C G(F), we have
V2F(r) ~ H* + L|Pr — r*||P .
Since o9 P < H* for some o3 > 0, we obtain
V2F(r) ~ (1 4+ Loy !||Pr — v*|)H* .
Thus, for r € S(F, F* + %) C S we have
V2F(r) ~ (1+eLoy'\/2/o))H* .
Setting ¢ := max{ \/% , Loy ! \/2/701 } then proves the proposition. [

Proposition D.12. Let S be a convex set and A and B positive-semidefinite matrices such that
A =X V2F(r) X Bforallr € S. Then F is strongly convex and smooth on S with respect to A and
Proof. Letr € S, + 6 € S. Then from the 2nd-order Taylor expansion, we have
1
F(r+6)— F(r)—6VF(r) = §(ST[VQF(r’)](S :
where 7’ € S. The proposition now follows, because A < [V2F(r')] < B. O

Proposition D.13. For any A > F™*, with probability 1, the randomized block-coordinate descent
algorithm with the objective F reaches an iteration t in which r* € S(F, ).
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Proof. Since the proposition holds for A > F(r°), consider the case F'* < A < F(r%), and in
particular assume F'* < F'(r°). We prove the proposition by applying Theorem D.6.

Let S :== S(F, F(r%) + 1) and Sy := S N G(F), which is compact by Proposition D.10. Let
Cmin = Min Apin(V2E (1), P) | Cmax = MaxX Apax (V2F(7), P) .
r€Sy reSy
Note that Apin (V2F(7), P) > 0 on the compact set Sp, and V2F(+) and Ay (-, P) are continuous,

SO Cpnin > 0. Similarly, since Apax (V2F(7), P) < 0o on Sp, the continuity yields ¢y < 00. Since
V2F(r) = V2F(Pr), we have that for all » € S

CminP j VzF("') j CmaxP .

Therefore, by Proposition D.12, F' is strongly convex and smooth on S with respect to A := cyin P
and B := ¢ P. Let

Olow — Amin (D(B)+7 A+) - Arnin(c_1 D(P)+, C_l P) - Cmin . )\nlirl(D(P)+, P) s

max min
Cmax

which is positive, because range(P) C range(D(P)) by Proposition D.9.

Now, by Proposition D.7, with Si, = S(F, F(r°)), Sou = S(F, F(r") + 1) = S, and the above
matrices A and B, the scalar oj,y, and / = 0, we obtain that for some constant ¢ and v =
(1 —owow/[A]) <1,

E[F(r")] - F*=E[F(r") |r°] - F* <y .
To finish the proof, we will appeal to Borel-Cantelli lemma and show that the algorithm must reach
S(F, \) with probability 1. Specifically, note that by the Markov inequality

iP{F(rt) > )\} = iP{F(rt) —F*>)\— F*}
t=1 t=1

= eyt cy
< —
_;A—F* A-)A—Fr =%

so with probability 1, only a finite number of the events {F'(r*) > A} will occur; in other words, the
level set S(F, \) is reached with probability 1. O

D.7 Local Convergence of the Market

Throughout this section, we assume that C' is convex ™, which implies that F is convex™ as well. Our
key tool for the analysis of the convergence error of the market is Theorem D.8. Therefore, we need
to analyze the gradient and Hessian of F'. We begin the analysis by deriving explicit expressions
for VF and V2F using the gradients and Hessians of 7" and C'. It will be convenient to do so for
trader-level blocks V; and V7.

Given an allocation vector » € RV ¥ the associated market price (the gradient of the cost) will be
denoted py(7) and the gradients of trader potentials will be denoted g, (7):

o(r) =V (Zf\; ri) = VC(ZfLV:l ri/b)
p;(r) =VF,(-r;) =VT(0; —a;r;) for i € [N]
where T is the log partition function.
The gradient of F' is composed of blocks
ViF(r) = =VF,(-1;) + VC, (X, ;)
= —p;(r) + po(r) - (65)
For the Hessian, first consider V;; F:

ViF(r) = V2Ei(—r;) + V2Cy (3, 74)
= aiV2T(éi — aﬂ'i) + %VQC((ZZ Tl)/b)
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= aiHr (7)) + 3 Homo(r)) (66)

Here, recall that for a convex™ function f, its Hessian at any given point is only a function of
the gradient at that point, which is denoted H . In Eq. (66), we express V2T and V2C' using the
respective functions H7 and H¢ and the definitions of p; and .

For i # j, the block V%F is

VHE(r) = V2O, (5, m) = 3 V20((Sm) o)
1

= —Hol(ug(r)) - (67)

At any optimum 7*, we have p,(r*) = p,(r*) = p*. Thus, using the Kronecker product notation,
the Hessian of I’ at * can be expressed as

117
VEF(r*) = D@ Hr(p*) + == @ Ho(w') (68)

where D := diag;¢ [y a; and 1 is the N-dimensional all-ones vector

Using local Lipschitz property of Hy and H¢ (Proposition A.10) and the fact that l,u,* — ] =0()
(Theorem 5.1), we immediately obtain the following asymptotic expression for V2 F(r*) as b — 0:

Proposition D.14. Let H* := V2F(r*) and D = diag; a;. Then

H* ~ (1+0(b)) < D ® Hr(p) + (117) ® %Hc(ﬂ) )

We next derive asymptotic formulas for matrices D(H*)™ and (H*)*, from which we will immedi-
ately obtain a lower bound on strong convexity via Eq. (50).

Recall that A is the decomposition of the coordinates [N] x [K], but for our two dynamics (ASD and
SSD), this decomposition has a special structure. This structure is described by a decomposition B of
[K], which is then applied to each trader, thatis A = {{i} x 8 : i € [N], 8 € B}. For M € RE*X,
we use the notation D (M) to describe diaggez Mps. For M € RNEXNE "we continue writing
D(M) instead of a more explicit D 4(M).

In stating our results, we use the following shorthands, some of which have been already introduced:
H* :=V?F(r*), Hp:=Hr(p), Hc = Hgo(p), D :=diag;a;, P =Iy—11T/N.
The matrix P is the projection matrix on the set of centered vectors, i.e., vectors u in RY such

that 17w = 0. With this notation, the pseudoinverses D(H*)* and (H*)" are characterized in the
following theorem:

Theorem D.15. Let M, == Iy ® Dg(Hc)t and My == (PDP)* @ HJ.. Then, as b — 0,

D(H*)t ~ (1 +£0(b)) -bM; (69)
(H*)' ~ My = O(b)M; . (70)
Local strong convexity is bounded from below by
Giow = b Amin ( (Mp/*) ML (M%) ) = O(?) (71)
— b Ain(PDP) - Ain ( HY*Dg(He) T HY? ) — 0% (72)

where Amin () denotes the smallest positive eigenvalue of a matrix.

The matrices M7 and M5 in the statement of the theorem do not depend on the liquidity parameter b.
The matrix Mo, which is the dominant part of the Hessian pseudoinverse (H*)™, is also independent
of the trader dynamics and the cost function. On the other hand, the matrix M; reflects the cost
function and dynamics. The pseudoinverse D(H*)" approximately equals b7 as b — 0. The main
implication is that ooy = §2(). This yields linear convergence rate bound ypigh = 1 — (b), which
suggests worse convergence as b — 0. However, in the absence of a matching lower bound, we
cannot conclude that the actual convergence gets worse as b — 0. In Appendix D.7.1, we derive a
matching bound oy;en = O(b) for ASD. Thus, for ASD, it is not possible to achieve a linear convergence
rate better than 1 — ©(b). (We conjecture similar behavior for SSD.) This means there is a tradeoff
between convergence, which slows down as b — 0, and the market-maker bias, which gets smaller.
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Proof of Theorem D.15. From Proposition D.14, we know that H* ~ (1 4+ O(b)) M where

1
M:=D@Hy+(11T) @ He . (73)
Proposition D.14 also implies D(H*) ~ (1 + O(b))D(M). Thus, by Proposition A.1, we obtain
D(H*)" ~ (1+0(b))D(M)" | (74)
(H*)" ~ (1£0(b)M™T . (75)

The analysis will therefore focus on M and convert to H* only in the last step.

We begin with the analysis of D(M ). Specifically, consider the block M,,, where o = {i} x 3 for
some (3 € B. From the definition of M

1
b

Since range(Hr) = G(T') C G(C) = range(Hc), there is some constant ¢; such that Hy < ¢1 He,
SO we can write

Moo = ~He pg +a;Hr gg.

1
Maa >~ <b + aicl) HC,B/B' (76)

Setting co = (max; a;)c1, and combining Eq. (76) across all blocks « = {i} x 3, we thus obtain
1
D(M) ~ (b + 02) (In®Dp(He)) -

Therefore, by Proposition A.1,

DM)T = 1 bea (Iv ® Dp(He)™)

=b(1£0(b))(In ©@Ds(He)" ) .
The bound on D(H*)™ now follows by Eq. (75).

We next bound (H*)* by analyzing M. First, decompose the matrix D into blocks corresponding
to the ranges of the projection matrices P and Iy — P. Let A = PDP, B = PD(Iy — P) and
X =(Iy — P)D(Iy — P). Thus,

D=A+B+BT+X .

Using the decomposition of D, we can decompose M in order to carry out blockwise inversion:

N
M:D®HT+?(IN—P)®HC

N
:A®HT+(B+BT)®HT+<X®HT+b(IN—P)®Hc> . (77)

We first analyze the Schur complement matrix, which appears in the blockwise inverse:

N
S = (X®HT+b<]N_P)®HC> —(BT®HT)(A+®H;)(BT®HT)

= %(IN —P)®Hc+ (X —BTA"B)® Hr .
As we argued before, range(Hr) C range(H¢). Also range(X) C range(Iy — P) and
range(BTATB) C range(Iy — P), so for some ¢3 > 0, we have
(X = BTA"B) ® Hr ~ +c3(In — P) @ He
and therefore
S:(JZiC3)((IN—P)®HC) . (78)

We now apply blockwise inversion (Proposition A.2) to Eq. (77), with the bounds of Eq. (78) on the

Schur complement to obtain
b

Y
N:l:bCS

Mt ~AT @ H} +
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where
Y= (Ivk — (A% @ Hf)(B @ Hr)) (Iy - P) @ HE) (Ink — (A% @ Hf) (B Hy) )|
is a positive-semidefinite matrix. Finally, invoking Eq. (75), we obtain
(H) "~ (1£0(0)( AT @ Hf ) +b(1 £ 0(b)Y

~(AT®H; )+O00b) (AT ®@Hf +Y)

~ (AT ®H{ )£00b)(In®@DHe)") ,
where in the last line we used that range(A* @ H}f +Y) C range(Iy ® Hf;) C range(Iy ®
Di(He)™) because range(Hr) C range(Hc) C range(Dp(Hc)).
Finally, to prove Eq. (72), we use Eq. (50). First, note that (H*)* ~ M, + O(b) My, so

range(Ms) C range(H*) = G(F') C range(Iy ® Ho) C range(My) .

Therefore, if u € G(F)\ range(Ms) we have uT Myu > 0, but uT Mau = 0, so

uTMiu . uTMiu
min = min
ueG(F)\{0} uTMou  wuerange(M:)\{0} uTMsu

= )\min(Mla MQ) >0

and so

uT Mou 1
< Ao (My, M.
uTMiu ~ mln( 1 2)

for any u € G(F)\{0}.

From the bounds in Egs. (69) and (70), there exists a constant ¢ such that for b sufficiently small, and
forall u € G(F)\{0},

uTD(H) u - (1 —cb) - uT(bMy)u
uTHtu = uTMyu + cb(uTMiu)
1—cb
S o

1—cb
At (M, My) + cb

min

Z b- (Amin(M17M2) - O(b)) .

>b-

The bound on oy, now follows by Eq. (50), after noting that

)\min(MhMQ) = )\min ( (M21-/2)+M1(M21/2)+ ) = Arnin(PDP)'Amin( H;“/2DB(HC)+H11“/2 ) .
O

D.7.1 Tighter Analysis of the All-securities Dynamics

In Theorem D.15 we derived a worst-case bound on the curvature, valid across all possible directions
that a gradient can take. In our tighter analysis of ASD, we derive a tighter bound on the expected
curvature, exploiting the fact that the updates are chosen uniformly at random. While our analysis
only applies to ASD, we conjecture that a similar style of analysis can also work for SSD.

We will index blocks by i rather than «, since each block consists of all the coordinates controlled by
the trader 7.

We begin by a detailed analysis of how the block-coordinate updates affect the value of the gradient.
Let r by the current iterate. Consider the update ¥;, which optimizes over the coordinates controlled
by trader i (see Eq. 48), and let ' = U, (r) be the new iterate. By the optimality of the update, we

have
pi(r') = VEF(—r}) = VC, (32, 75) = po(r')
and therefore, by Eq. (65), for all j € [N],
ViF(r') = —p;(r') + po(r') = —p; (') + pi(r')
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Thus, after the first update, the gradient V F'(r) can be expressed using pairwise differences of p; (7).
When the update W; is performed, the value of p; changes, whereas p; for j # i is unchanged. The
amount of change in p,; will be denoted as é;:

8i(r) == p;(r") — p;(r) where v’ = W, (r) .
This is locally bounded as follows:

Lemma D.16. There exists constants by, c > 0 such that for every b < by there exists a proper level
set S such that ifr € S then
18:(r) || < ebl[p; () — o (r)

foralli € [N].

Proof. Lete € (0,1). Since T and C are convex™, by Proposition A.10 it is possible to pick J such
that

Ho(p) ~ (14 ) Hp(@) . He(p)~ (1% ) Ho()

whenever ||u — ]| < 4. Pick by small enough such that ||p*(b; C) — || < §/2 for all b < by.
Fix some b < by and pick a level set S such that for all » € S, ||p; () — p*|| < 6/2 for all ¢ and
[leo () — p*]| < /2. Thus, for any r € S, we have

Hi(py(r)) = (1% &) Hp(f) forall i, Holp(r)) = (1 + &) Ho (R) -

Now let € S and let ¥’ = U, (7). By the optimality of 7/, we know that V,; F'(r’) = 0. From the
mean value theorem applied to V; F, there exists some g on the line segment connecting r and 7’
such that
0=V;F(r')=V,F(r)+ V;F(q)(r' —r) .
Since 7’ and 7 differ only in block 7, we obtain
+
P(r; —r;)=—(ViF(q)) ViF(r) (79)
where P is the projection on range(V% F(q)) = G(C). Now applying the mean value theorem to
V F;, we obtain that for some g’ on the line segment connecting r and 7', we have
di(r) = VE;(—r}) — VF;(—r;)
= V2E(—q)(-ri + 1)
= VFi(~q) (ViF ()" ViF(r) (80)

where in Eq. (80) we used Eq. (79). Now both r and 7’ are in the level set S and so is the line
segment connecting them, which includes the points q and q’. Therefore,

V?Fi(~q;) = aiHr(p;(q') < ai(1+ ) Hr() (81)
and
VAF() = it (1,(a)) +  Ho(ko(a)
= (o) (wttr () +  He(m))
- He(p)
Thus, also
2 + b _
(ViF(a)" = 7——H& () - (82)

Plugging Eq. (81) and Eq. (82) into Eq. (80), we obtain
_ b _
18:(r)| < ai(1+ &) [ Hr (@)l - 7= [[HE @ IViF @)
finishing the proof, since V, F(r) = —p;(r) + py(r). O

Using the lemma, we can now prove bounds for ASD:
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Theorem D.17. Consider the all-securities dynamics. Let M| .= P ® H, and My = (PDP)" ®
H; . Then for every sufficiently small b, there exists a proper level set S such that
E[(g")TD(H*) g™ | 7] ~ (¢")T( (1 £ 0(b)) - 20M7 )g' (83)
E[(g")T(H") g™ | r'] = (g")T (M2 £ 0(0)M] )g' (84)
whenever r'=1 € S. Local strong convexity is bounded from below and above by
Tiow = 2b - Amin(PDP) - Ain ( Hy *HEH/? ) — O(b%)
Ohigh = 2b - Amax(PDP) - Ao ( Hy *HEHY? ) + 0(b%)
where Amin(+) and Amax(+) denote the smallest and the largest positive eigenvalue of a matrix.

As mentioned above, the key consequence of Theorem D.17 is the fact that ASD converges at the
rate 1 — O(b). The key difference from Theorem D.15 is in the expression for D(H*)". While
D(H*)* ~ b(Iny ® Hf,), as stated in Theorem D.15, when we take an expectation over an update in

a single iteration, the action of D(H*)" is equivalent to that of the matrix 2b(P ® H). Thus, the
averaging effect of an expectation is to remove one rank from matrix I and replace it by the centering
matrix P = Iy — 117 /N (while incurring an extra factor of two). This has two consequences. First,
the lower bound o,y is a factor of two larger. Second, we can now obtain a non-trivial upper bound
Onigh, Which would not be possible via an analog of Eq. (50), because the range of D(H*)* is too
large.

Proof of Theorem D.17. Consider by and ¢ from Lemma D.16, and let b < by and .S be the level set
from the lemma. Assume that 7~! € S. After the update in the iteration ¢ — 1, it is guaranteed that
to(r') = p;(r') for some j. We analyze the update in the following iteration, i.e., the iteration ¢.

We write r for 7* and r/ for r*1. Let g := VF(r), p; == p;(r) for j € [N], pg := po(r), and
similarly define g’, p’;, p1q, for the iterate r'.

Recall from Eq. (65) that the blocks of the gradient are
g; =HK; — Mo -

Also recall that P = Iy — 117 /N. A key role in the analysis will be played by the centered gradient
vector u == (P ® I )g whose blocks are

Uj = p; —
where fu:= (3_, p;)/N is the average among f1;. As the final part of the setup, let p = max;|p; —
ft|, and since g1y = p; for some j € [N], we also have p > || — |-
By Theorem D.15, we have
D(H*' = (1 + O(b))bM1 , (H*)" = My £ O(b)M,
where
M =Iy®H}
M, = (PDP)" ® Hf .
For the first part of the theorem (Eqs. 83 and 84), it therefore suffices to show that
El(g)TMg' 7]~ (1£0(0))-g7(2P® H )g (85)
E[(g)TMog' |r] = g™ Mg £ O(b) - g™ (P @ H )g . (86)
Note that P® H, = (P® I )M (P®Ix)and My = (P® Ix)My(P® Ix), so Egs. (85) and (86)
are equivalent to
E[(g)TMig' |r]~(1+0(0)) u"(2M;)u (M;-bound)
E[(g)TMag' | 7] ~uTMou+ O(b) - uMyu , (Maz-bound)

which is what we will show next.
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Assume that the ith block is chosen for an update in the iteration ¢ and write &, for §;(r). Note that

w, ifj#i,

!

1o = pi = i + 6i uj:{
Thus, from Eq. (65), the blocks g;- can be written as

(TR T
g; = e o
0 if j =1.
Calculate:
(g)TMig' = (g))TH} g,

J
= (i — py+ 8)THE (1 — py + 65)

= Z(#z —py+ 8)THE (1 — py +8;) — ST HZES;
= [ — ) THE (s = ay) + 26T HE (1, — ) + STHES: | — STHES:
o 3y = )T HE (= )| = [ANISIHE o+ NIHEN0:2]  87)

3y = )T HE (= )]+ SNl HE[|0? + ANV HE (0] (88)

~ )| (g = ) THE (= py) | £ berp® (89)

In Eq. (87), we used the fact that
e — 5l < ey — il + [y — 2l < 2p
In Eq. (88), we used Lemma D.16, which implies that
18411 < bellps = ol < be(llpe; = il + o = i) < 2bep . 90)
And in Eq. (88), we set ¢; = 8N¢||H || + 4Nboc?||HE |
Recall that u; = p; — f1, so p; — pr; = u; — ;. Thus, taking expectation over 4, Eq. (89) yields
N N

Ei[(¢')TMig'] ~ (i — ) THE (e — )] = ber p?

=]~
™
N

@
Il
—_

<.
Il
—_

Zl\lH
B
] =

-
Il
-
<.
Il
-

[(Ui - uj)THér(ui — uj)] + beyp?

WE
WE

[uZTngl — 2uZTH§uj + unguj] + bey p?

1
N £= 4
=1 j5=1
N
= [2u] Hlwi] £ berp? 1)
=1
= 2uTMu + beip? | (92)

where Eq. (91) follows because Zl u; = 0. To prove (M;-bound), it remains to upper bound

p?. Let o be the smallest eigenvalue of H(Jg over G(C); it must be greater than zero because

range(H¢c) = G(C). We can bound p? as
N N
PP = plP <o (s — WTHE (B — ) = 0 'uTMyu 93)
i=1 =1
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Plugging this bound back into Eq. (92) yields ()/;-bound).

We next prove (Ms-bound). Again, consider an update of the block i. Let ' := (P ® Ij,)g’ be the
centered version of g’. Its blocks are

w = Jw /N i
u7—5i/N+5i lfj:Z

Thus,

2
0% (1= L) a2 < 602 < (2ben)?
N? N B -

where the last inequality follows by Eq. (90). Also, from the definition of p,
[ul]* < Np?

Now, we bound (g’)TMag'. Since My = (P ® Ix)My(P ® I ), we can write

(9")TM2g' = (u')TMou
(u+ (u — u))TMg (u+ (v —u))
uT Mou £ [2]|ul| || Mal[[|u’ — u|| + [|M2]|[|[w” — u|?]
uT Mou £ [4bev/N || Ma||p? + 4b%¢* || Ma|| p?] (94)
~uTMyu + b02p2 , 95)

where in Eq. (94) we used the previously derived bounds and in Eq. (95), we set c; = 4cv/N || Mo || 4
4boc?|| My ||. Finally, using the bound on p? from Eq. (93) in Eq. (95) yields (M»-bound).

lw’ —ul® = (N 1)

R

12

It remains to prove the bounds ooy and opigh. In particular, we will show that if rt~1 € S then
oow - E[(g)T(H*) g | ] <E[(g')TD(H")* g |ﬂ<%@EK)w* 7] 96)
then taking expectation over = r¢, conditionally on 7!~1, we also obtain
o E[(g)T(H) g’ | 7] <E[(¢)TDH) g | +'"] < onian - E [(¢)T(H) g | #7]
which will yield the des1red conclusion by Theorem D.8 (with the level set S and ¢ = 2).
To prove Eq. (96), we first apply Egs. (83) and (84):
E [(¢)T(H*) g’ | 7]
E[(g))TD(H*)"g'| 7]

g7 (26(P @ Ix)Mi(P®IK))g
gT( My £ O(b)- (PR Ix)Mi(P®Ik))g

~ (1+0(b))-

uT (20M; )u
uT( Mo + O(b)Ml )u
2b
W:I:O() :

uTMiu

— (1£0()) -

— (1£0())-

Now note that the blocks of w take form u; = p; — (3_; ;) /N, where p; € M C range(H7"), so
u € range(P ® H;.) = range(Ms) C range(M;). This means that

uTMiu
0 )\min M ,M S § /\max M aM )
< (M, M>) WMy (M, M>)

SO we can write
uTMiu

UTMQU

2o (1£0(b))-2b

and thus,
2b - Amin (M1, Mz) — O(b?) < 2z < 2b- Amax(Mi, M) + O(b?) .
The theorem now follows, because
Amin (M1, Ma) = Amin ( (M5)V2 M (M)'/2)
= Amin(PDP) - Auin ( Hy PHEHY?)
and similarly for Ay ax (M1, Ms). O
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D.7.2 Tighter Relationship between Suboptimality and Convergence Error for ASD

For ASD, it is possible to establish a tighter relationship between the convergence error ||t — po*||
and suboptimality F'(r') — F* than we proved in Appendix D.2. Specifically, we showed that
|t — p*||? = O(F(rt) — F*) for convex™ C. Under ASD, we obtain a matching lower bound for
the one-step expectation, i.e., E [[|u'™! — p*||? | rf] = O(F(r!) — F*).
Theorem D.18. Let C be convex™. Under ASD, with probability one there exists to such that for all
t > to,

E[[|n™! = w|? [r'] =~ (1 £ 0(b) - O(F(r") — F*) .

Proof. Recall that in the notation introduced in Appendix D.2, we have u! = pg(r?). We use a
similar notation as in the proof of Theorem D.17. We write 7 for r* and v for r+*. Let p; := p;(7)
for j € [N], pg = po(r), and similarly define p’;, pg, for the iterate r’. Finally, write 8; for 9;(r).

We assume that to > 1. Let p = max;||p; — p*|], and since 1y = p; for some j € [N], we also
have p > ||y — p*||. We will use the following loose bound on p?:

N
PPl — )
=1

We start with the expression for the suboptimality in Eq. (47) and specialize it to ASD:

N
F(r) — F* =~ (1 + ;) > 2; (B = ) THE (") (1" — py)

i=1

+b (1 + 1) 1(/u* — o) THE (1) (1" — o)

2/ 2
N
~ (c1 £ e2) <Z||N*—Ni2+b|ﬂ*—ﬂo||2> 97
=1
N
~(erkea)(1+0) Y It — il - (98)
1=1

In Eq. (97), we used the fact that )\min(H;f(u*), P) > 0and )\min(Hg(u*), P) > 0, where P is the
projection on the linear space parallel to M, which implies existence of constants 0 < co < ¢; such
that

1 1
(Cl — CQ)P j (1 + 2) ZGH;:([,L*) j (Cl + CQ)P

1\ 1
(c1 —c2)P = (1 + 2) QHg(u*) < (c1 +c2)P .

In Eq. (98), we used the upper bound ||p* — pq||? < p? < Zf;”m — p*||?. We now similarly
bound E [|| ™! — p*||? | rt]. Recall that in our notation p/** = po(r*1) = pf,. We assume that
b is sufficiently small, so Lemma D.16 applies, i.e., b < by:

N
1
E [lmo = I* [ 7] = 5 D_llwi = w*)?
i=1
N
> g+ 8 - pt)?

==

&
Il
—

2
2=
(=1

[lres = 7117 £ 2083l + 116411 ©9)

«
Il
-

R
=
M=

(b1, = 172 2 dcbp? + 42022 (100)

o
Il
s
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N
1 *
~ <N j:(:3b> §71||ui — ). (101)

In Eq. (99), we applied the bound ||p; — p*|| < p. In Eq. (100), we used Lemma D.16 and applied
the triangular inequality to obtain ||, — ol < ||, — #*|| + || ro — 1*|| < 2p. Finally, in Eq. (101),
we applied the bound p? < ST [|p; — p*|? and set ¢z = 4c¢ + 4¢2bo. The theorem now follows by
combining Eq. (98) and Eq. (101). Note that, as before, we suppress the dependence on N and q;
within the O(-) and ©(-) notation. O

D.7.3 Summary of Local Convergence Results

Here we summarize our local convergence results for ASD and SSD. Recall that D := diag;c(n) @is

P :=In—11T/N,and A\pin(-) and Apax(+) to denote the smallest and the largest positive eigenvalues
of a matrix.

Theorem D.19. Assume that C is convex™. Let Hy = Hp(ia), Hc = Hc(R), and D¢ be the
diagonal matrix with the diagonal of Hc. For all-securities dynamics, local strong convexity is
bounded from below and above by

Uﬁ)? = 2b : )‘min(PDP) . )\min( H;*/QHngllﬂ/Q ) - O(bz) y
T2 = 20 - Amax (PDP) - Amax ( Hy "HEH? ) + 0(8%) .
For single-security dynamics, local strong convexity is bounded from below by

Ulso? = b : /\min(PDP) : /\min( H;/2D3H;/2 ) - O(bz) .
Proof. The theorem follows immediately from Theorems D.15 and D.17. O

Recall that by Theorem D.8, the bounds on local strong convexity translate into bounds on local
convergence rate as Yhigh = 1 — Olow/N and Yiow = 1 — Onign/N for ASD, and Yhigh = 1 — Tlow /N K
for SSD.

So, for ASD, Theorem D.19 proves linear convergence with the rate ¥ = 1 — ©(b). This means that
the convergence gets worse as b — 0, leading to a trade-off with the bias, which decreases as b — 0.
Our numerical experiments in Section 7 and Appendix E show that these bounds on the convergence
rate are empirically quite tight. Below, we show an example when the two bounds match except for
the O(b?) terms: when all traders have identical risk aversions and the cost function is LMSR.

For SSD, we only present a lower bound on the local strong convexity, which suffices to establish
a linear convergence rate. This bound is worse by a factor of two than the bound for ASD. This we
believe is only an artifact of a looser analysis and we expect that the reasoning that gave rise to a
tighter analysis of ASD can be generalized to SSD. Our experiments in Appendix E also suggest that
our SSD analysis is looser than the ASD analysis.

Example D.20 (Convergence of LMSR under ASD). We next demonstrate the tightness of our bounds
for ASD. Consider the setting when N > 2 and the risk aversion of all traders equals a. Then
PDP = aPIyP = aP, and since P is a non-zero projection matrix, we obtain Ay, (PDP) =
aAmin(P) = a and similarly A\y,ax (PDP) = a. Furthermore, if the cost is LMSR then H> = Hy, and
thus H%/QHgH;/Q = I — 117 /K. Therefore, Theorem 6.2 yields the bounds oS> = 2ab — O(b?)

low
and aﬁisg% = 2ab + O(b?), whose main asymptotic terms match exactly. Thus, the objective decreases

at the rate +* and the convergence error at the rate v*/2 with v = 1 — 2ab/N + O(b?), and the linear
term in b cannot be improved.

D.8 Proof of Theorem 6.2

The theorem follows immediately from Theorem D.19, because Yhigh = 1 — Tlow /N and Yoy =
1 — onign/N for ASD (by Theorem D.8).
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D.9 Proof of Theorem 6.3

Proof of Theorem 6.3. Fix the liquidity b for LMSR and b’ = b/n for IND, where 1) € [1, 2] (following
Theorem 5.7). We begin by deriving the relationship between the upper and lower bounds on the rate
of convergence using Theorem 6.2. We will write ypign and 710w for the convergence rate bounds for
LMSR and 7, and 7, for IND. We will start with LMSR.

Following the same steps as in Example D.20, we have Ayin (PDP) = Apax(PDP) = a, and since
Hiusg = Hr, we obtain

Yhigh = 1 — 2ab/N + O(b*) ,viow = 1 — 2ab/N — O(b?) .

For IND, we have Hiyp = Dr where D is the diagonal of Hy. By Lemma D.21 (see below), we
obtain that

Min( Hyl* HiHy!” ) = Ain ( Hy*DFHy* ) > 1
Amax ( Hy?HigHy!? ) = A ( Hy*DEHY? ) < 2 .
Plugging these expressions, alongside b’ = b/7, into Theorem 6.2, we obtain
Yhigh < 1 —2ab/nN + O(b*) <1 —ab/N + O(b?)
Yw > 1 —4ab /nN 4+ O(b*) <1 —4ab/N — O(b?)

Next, note the following chain of inequalities which we will use to simplify our analysis. Let
v=1—ab+O(b?),and lett > tq and ¢ > 0. Then

ey' ™" = exp {(log ) + (t — to) log(1 — ab+ O(b?)) }
< exp {(loge) = b(t —to)(a —O(b)) }
< exp {*bt(a —0(b) — Et)} )

where &; — 0 as t — oo. Similarly, for v = 1 — ab — O(b?), we can derive the following lower
bound

ey = exp {(log ¢) + (t — to) log(1 — ab— O(b?)) }
> exp {(logc) — b(t — to) (a + O(b)) }
> exp {—bt(a+OOb) +e¢)} |

where g, — 0 as t — oo. In the remainder of the proof, we will write ¢, ¢/, €/ etc., to mean quantities
that are O(b) + ¢; with some e; — 0 ast — oo.

We can now apply our convergence rate bounds to bound the suboptimality of the potential under
both costs and liquidities. For each of the two costs C, let Fic and F denote the corresponding
potential and its optimal value, and 7}, and p’, be the corresponding iterates and market prices. By
Proposition D.7 and Proposition D.13, we obtain that with probability 1, we will reach an iteration £,
such that for all t > ¢

exp {—bt(2a/N +¢)} <E [Fuusa(riyss) | *ise) — Fiuse < exp {—bt(2a/N —¢)}
exp {—bt(4a/N +¢)} <E [Fuusa(rip) | Poin] — Fiwp < exp {—bt(a/N —¢)} ,

where we used our bounds for cy!~t. By Theorem D.18, we then also have, for some ¢, and all
t > to,

€xp {—bt(?a/N + EI)} <E [Hu'lt..MSR — bl | TE;’ISR} < exp {—bt(?a/N - EI)}
exp {—bt(4a/N + 5/)} <E [HIUEND — iwl? | Ti(l)m] < exp {—bt(a/N - 5,)}
Now writing Ey, [] instead of E [- | 739, ], E [+ | 7i3p]. we obtain that for a suitable
Ery (||t — itusa]|”] < exp {=26t(20/N — ) (1 + ")}
= exp {—bt(4a/N — 2¢' 4 dac” /N — 2¢'¢")}
<exp {—bt(4a/N +¢')} (102)
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< Ey, [HﬂgNo - “§NDH2]

< exp {~bt(a/N —€')}

< exp {—bt(a/N + /2 — 0N~ 2)} (103
=exp {—b(t/2)(2a/N +£')(1 —€")}

< Ey, {HN&/S?(PE”) - NEMSRH2:| .

It remains to verify that we can choose a suitable £ to guarantee inequalities (102) and (103) for
a sufficiently small b and large t. One possibility is to set e’ = 3Ne’/(2a), because then (for a
sufficiently small b and large t), we have

4 " 4 1
as >3 +2" = 2+ (j\f —2de" > = (102),
ag” _ 3 1 e ag” e
S > % 103). O
N = 25 255 == e > > N > = (103)

Lemma D.21. Let p € RX be a probability vector with non-zero entries, let H = (diagre s b)) —
ppT be the covariance matrix of the associated multinomial distribution, and D = diag,¢ ) bk (1-
i) be the diagonal matrix consisting of the diagonal of H. Then

1< Amin(HY2D7YHY2)  and  Apax(HY?D7THY?) <2 .

Proof. Let £ = range(D~'/2HD~/2). To prove the lemma, it suffices to show that for all u € £
wWu<u'DV2HD Y2y < 2uTu . (104)

This will imply that 1 < Apin(D~Y2HD=1/2) and Ayax(D~/2HD~1/2) < 2. Thus, by Eq. (7),
we will also have 1 < Apin (HY2D = H'/2) and Mo (HY/2D1HY?) < 2.

Letu € £ and v = D~/2u. Eq. (104) can be rewritten as
vIDv <vTHv <2vTDw .

We will next show that both inequalities hold.
Part 1: v7TDv < vTHwv. We first rewrite the constraint w € £ in terms of v. To start,
note that u € £ = range(D~'2HD~/?) iff w 1L null(D~Y2HD~'/2). Next, note that

y € null(D~Y2HD~Y/2) iff D~Y/2y € null(H), which is equivalent to y € D'/2null(H).
Now, null(H) = {c1 : ¢ € R}, where 1 is the all-ones vector. So,

null(D~Y2HD=Y/?) = DV2 null(H) = {y Ly = er/ i (1 — py) for j € [K], for some ¢ € R} .

Therefore, w | null(D~Y/2HD~1/2) iff
> iy /pi (=) =0 . (105)
jelK]
Since v = D~1/2u, we have u = D¥/?v, i.e., u; = vj/puj(1 — ;) for j € [K]. Substituting this
expression into Eq. (105) yields
> (1= py) =0 . (106)
JE[K]

When K = 1, then D = H = 0, so in this case indeed vTDv < vT Hv. Next consider K > 1. We
will use the following identity for vy i1, implied by Eq. (106):

1
1-— M1

> v (1= py) (107)

Jj=2

Vi = —
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We next argue that vTHv — vTDv > 0:

vTHv —vTDv = — Z 1 V5V (108)
J,k€[K]
ik
= — Z i VU — QZM1U1MkUk
§k>2 k>2
o
2
= — > mimvon + C— D (1= py)vspon (109)
J,k>2 J,k>2
Jj#k
2
== D mamt—— D (1-p)za (110)
Jik>2 L k>
i#k
1
=— > zu+ - D= )+ (1= ) 22 (111)
J.k>2 1 5=,
i
= [ X (O )+ 0 (1)) + Y20 - )2 |
M1t s i>2
gin
1
=1 { > ZjZk((lfm — *,Uk)+2,ul) +Zz§(2(17u1 7uj)+gm) }
Hitiese i>2
i
1
=1= {2M1 Z 22k + Z (1—m —Mj—uk)zjzk+22(1—u1 —Mj)zﬂ
i Jk>2 Jk>2 i>2
J#k
1 -
= 1 201 Z Zjzk + Z Z ez 2 +ZZQMZZJZ} (112)
H §k>2 G k>2 £>2 i>2 £>2
J#k L#£5.k £
1 -
=2 Y mmet Y Y e 3> et |
it ise jk>2 52 i>2 052
0#£3,k L#£j
1 -
R R ST I SRS 3 3y
G k>2 0>2 jk>2 §>2 0>2
FALRAL =%
1 r 2 2
—— (X m) + > m(Xm) + Y w20 (113)
Ht i>2 >2  j>2 j.0>2
J#e £

In Eq. (108), we use the fact that D is the diagonal of H, so the right-hand side only sums over
off-diagonal entries of H. In Eq. (109), we replaced p;v; using Eq. (107). In Eq. (110), introduce
the substitution z; := fi;v;. In Eq. (111), we use the fact that 23, ;<5 (1 — p15)252K = D y5o(1 —

1i)Zi%k + 325 >0l — k) zj 2. In Eq. (112), we use the fact that Z(’E | e = 1and so (1 — 1 —

g — Bk) = D ps1 jg Heand (1 — gy —puj) = 37, ; pre. Finally, the 1nequa11ty in Eq. (113) follows
because fi1, pe > 0.

Part 2: vTHv < 2vT7Dv. We show by direct calculation that 20T Dv — vTHv > 0:

2vTDv—vTHv>O—2[Z,uJ] Z,u ] [Z“Jﬂ_ Z ,uj,ukv]vk]

JE[K] JE[K] JE[K] J,k€[K]

(114)
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= Z ijj -2 Z u —|— Z g bV UK

J€[K] JE[K] J,ke[K]
= Z 11 s — 2 Z (503 + Z 1 [k V5 Uk, (115)
J,k€e[K] JEIK] J,k€e[K]
= Z ,LLJ,ukU + Z Mg HEVj Uk
J,kE[K] J.k€[K]
J#k j#k
1 2 1 2
= Z <§Mj/lk-vj + g HikkvE + Mjukvjvk-) (116)
J,ke[K]
i#k
1 2
= D himk (v +w)® 20 (117)
J,k€[K]
J#k
In Eq. (114), we just use the definition of H and D. In Eq. (115), we use that Zke (K] Mk = 1.
In Eq. (116), we use that by symmetry ., ,ujpkvjz =D itk (02 and so Dotk F ok jz =
Dtk M (0]2 + v?)/2. The final inequality in Eq. (117) follows because 4, 15 > 0. O

E Additional Numerical Experiments

In Section 7, we demonstrated that our asymptotic theory closely matches simulations for all-securities
dynamics and single-peaked beliefs. Here we include experiments for an additional set of beliefs
(uniform beliefs, defined below) and single-securities dynamics (defined in Appendix D.1). Once
again, we consider a setting in which there is a complete market over K = 5 securities with N = 10
traders who have exponential utilities, exponential-family beliefs and risk aversion coefficients a; = 1
for i € [IN]. Similar to Section 7, we fix the ground-truth natural parameter 8™ and independently

sample the belief 6, of each trader from Normal (6", 0% Ic). We consider two settings of the ground
truth and beliefs:

e Uniform Beliefs: All outcomes are equally likely. We set ™ =0 and o = 1.

o Single-Peaked Beliefs: One outcome is more likely than the others. Here we set 6" =
log(1 —v-(k—1))and 83" = log(v) for k # 1. We use v = 0.02 and o = 5.

Fig. 2 shows the trader beliefs and market-clearing equilibrium prices (calculated via Theorem 4.3)
for both settings. Note that in Section 7, we gave results for the case of single-peaked beliefs and
all-security dynamics whereas here we present results for all four combinations of belief settings and
trader dynamics.

Bias/convergence tradeoffs We first examine the tradeoff that arises between market-maker bias
and convergence error as the liquidity parameter of the market is adjusted. Since our main interest
is in the effect of the cost function C' and liquidity parameter b on error, we ignore the sources of
error that do not depend on the choice of cost function, such as the sampling error. Fig. 3 shows the
combined bias and convergence error, ||z — pt(b; C)||, as a function of liquidity, for different beliefs
and cost functions under ASD after different numbers of trades have occurred. (Other choices of norm
lead to similar results.) Similarly, we give results for SSD in Fig. 4. The minimum point on each
curve tells us the optimal value of the liquidity parameter b for the particular setting and number of
trades. When the market has not been running long, larger values of b lead to lower error. On the
other hand, smaller values of b are preferable as the number of trades grows, with the combined error
approaching O for small . The combined error of LMSR is similar to that of the sum of independent
LMSRs (IND) under uniform beliefs, but LMSR produces lower combined error for single-peaked
beliefs.

Market-maker bias We next focus in on the market-maker bias to empirically evaluate our bounds
from Section 5. From Theorem 5.6, we know that ||p* (b; C') — i|| =~ b(a/N)||Hr()0C* (@)]]. In
Fig. 5, we plot the empirical bias ||u*(b; C') — @x|| as a function of b for both LMSR and IND under
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Figure 2: Two sets of beliefs of the N = 10 traders about the K = 5 outcomes. The beliefs were
sampled once and then fixed in all experiments. The gray bars show the market-clearing equilibrium
prices f as in Definition 3.1 and Theorem 4.3.
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Figure 3: The tradeoff between marker-maker bias and convergence error for ASD with different
beliefs and cost functions. Solid lines show the total bias and convergence error of LMSR after various
numbers of trades, averaged over 20 random trade sequences. Dotted lines show the same for IND.

uniform and single-peaked beliefs, and in each case compare this bias with the approximation implied
by the theory. We find that although Theorem 5.6 only gives an asymptotic guarantee as b — 0, the
approximation above is fairly accurate even for moderate values of b. As Theorem 5.7 shows, the bias
of IND is higher than that of LMSR at any fixed value of b, but by no more than a factor of two. The
difference is greater for single-peaked beliefs than uniform beliefs. Note that the bias is unaffected by
the choice of trader dynamics.

Convergence error Finally, we turn to the convergence error. We first show that the local linear
convergence rate kicks in very quickly—essentially from the start of trade in our simulations. We
then examine the tightness of our bounds on the local convergence rate from Section 6.

From Theorem D.3, we know that F(r!) — F* is an upper bound on ||u! — p*||?, and under ASD
we also have F(rt) — F* = O(||u! — p*||?) (by Theorem D.18), where we suppress the implicit
dependence on C' and b. Rather than examining the convergence of prices directly, we examine
convergence of the objective, which will be more convenient in the discussion below. Fig. 6 shows
the empirical value of I [F(r!)] — F*, where the expectation is the empirical average over the 20
random sequences, as a function of the number of trades, plotted on a log scale, for our two belief
sets and cost functions under the all-securities trade dynamics. In all settings, the log of convergence
error appears linear, matching the local asymptotic analysis in Section 6. In other words, there exist
some ¢ and 4 such that, empirically, we have for all t, B [F(r!)] — F* ~ &'

To examine the tightness of the bounds from Section 6, we dig more deeply into the value of this
empirical constant 4, which depends on C and b. Since this approximation holds for any sufficiently
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Figure 4: The tradeoff between marker-maker bias and convergence error for SSD with different
beliefs and cost functions. Solid lines show the total bias and convergence error of LMSR after various
numbers of trades, averaged over 20 random trade sequences. Dotted lines show the same for IND.
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Figure 5: Market-maker bias as a function of b for different beliefs and cost functions.

large t, we can define 4 by choosing some ¢; and ¢ and setting
. 1/(ta—t1)
o (EIE@E) -\ T
T \EF@E) - F
If 4 is the correct asymptotic convergence rate, then from Theorem D.8, we should have 1 —opigh /N <
4 < 1—010w/N for values of ohigh and o1y that satisfy Eq. (49), since |A| = N for ASD. Rearranging
terms, we would expect that, for sufficiently large ¢; and to,

. 1/(t2—t1)

E[F(rt2)] — F*

Olow SN [ 1— % < Ohigh- (118)
E[F(rt)] — F*

We refer to this quantity that is upper and lower bounded by oy and oy as the empirical strong
convexity 6. Note that 1oy and opign implicitly depend on b and C'.

We can now check how well our theoretical lower and upper bounds on local strong convexity bound
the empirical strong convexity &. In Fig. 7, we plot ¢ as a function of b using different values of ¢;
and t5 and compare it with the asymptotic bounds of ooy and opign computed as in Theorem D.19,
dropping the terms that are O(b2). We would expect to see oiow < & < 0Opigh as b goes to 0, and
indeed this is the case. For LMSR, the values of opin and o1,y coincide, and the empirical values for &
agree for small b.

We now turn to our results for single-security dynamics (SSD). Fig. 8 shows the empirical value of
F(r') — F*, averaged over 20 random sequences of trade, as a function of the number of trades,
plotted on a log scale, for our two belief sets and cost functions under SSD. The plots show the
convergence error for LMSR and IND right on top of each other, suggesting that the main asymptotic
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Figure 6: Convergence in the objective value for various trader beliefs, cost functions, and liquidity
parameters under ASD. Solid lines show the log error in objective for LMSR, dotted lines for IND.
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Figure 7: The empirical strong convexity from Eq. (118) under ASD for various values of t1,t5
represented as dots, and asymptotic bounds for ooy and opign from Theorem D.19 (ignoring O(b2)
terms) represented as lines.

term is driven by the diagonal of H¢ (f), which is the same for both costs, and which appears in the
lower bound of Theorem D.19 (with a multiplier that could be possibly improved). Similar to ASD,
we also evaluate the empirical strong convexity 6. In this case, we only have access to a lower bound
(Theorem D.19), which our plots show to be a valid albeit a somewhat loose bound. All the bounds
that we used in the ASD and SSD strong convexity plots are summarized in Table 1.
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Figure 8: Convergence in the objective value for various trader beliefs, cost functions, and liquidity
parameters under SSD. Solid lines show the log error in objective for LMSR, dotted lines for IND; the
IND and LMSR lines are right on top of each other.
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Figure 9: The empirical strong convexity from Eq. (118) under SSD for various values of 1, to
represented as dots, and asymptotic bound for ooy from Theorem D.19 (ignoring the O(b?) term)
represented as the black solid line.

Table 1: The bounds o4y and oy;gy in the various cases we consider in our experiments, computed
using Theorem D.19.

Beliefs Dynamics C Clow Ohigh
LMSR 2b 2b

Uniform Beliefs AP IND | 2.310 | 2.785
ssp LMSR | 1.01b6 —
IND | 1.01b —
LMSR 2b 2b

ASD

. . IND | 2.03b | 3.78b
Single-Peaked Beliefs <5 TMSR | 1.015 —
IND 1.01b —

53



	Introduction
	Preliminaries
	A Decomposition of Error
	The Exponential Trader Model
	Market-maker Bias
	Convergence Error
	Numerical Experiments
	Conclusion
	Mathematical Background
	Vectors, Matrices, Intervals
	Convex Analysis
	Convex+ Functions
	Lipschitz Gradients and Strong Convexity

	Proofs and Additional Results for Section 4
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Sampling Error

	Proofs and Additional Results for Section 5
	Proof of Theorem 5.1
	A Remark on Partial and Incoherent Beliefs
	Proof of Theorem 5.6
	Proof of Theorem 5.7

	Proofs and Additional Results for Section 6
	Trader Dynamics
	Relationship between the Suboptimality of Potential and the Convergence Error
	Local Convergence Rate of Block-Coordinate Descent
	Proof of Theorem D.6
	Proof of Theorem D.8
	Supporting Propositions for Theorem D.8
	Local Convergence of the Market
	Tighter Analysis of the All-securities Dynamics
	Tighter Relationship between Suboptimality and Convergence Error for ASD
	Summary of Local Convergence Results

	Proof of Theorem 6.2
	Proof of Theorem 6.3

	Additional Numerical Experiments

