A Proof of Theorem 1

Given the graph G = (V| E), and parameters 6°, 8", we can construct a new graph by adding the
extra vertex (), together with edges {(4,0) : ¢ € V'} connecting it to all previous vertices, and edge
parameters 020 = 07 (while setting to 0 the vertex parameters). Therefore, one can always eliminate
the linear term and work with the quadratic form.

We define the cut polytope as
C:=Conv({za” :a? =1Vie V}), (A1)
which is a convex hull of 2" rank-1 matrices. Introducing the interaction variables X;; = z;x;, the
original optimization problem can be written without the linear term as
(i,J)EE
subject to: X € C.

For an edge e = (3, j), denote by X, the entry X,;, and for an edge set F' C E let X (F) be the
summation of entries X;; for which (i, j) € F,ie. X(F) =) ., X.. Further, define the metric
polytope as
M={MecS":|M,|<1VecE, (A3)
M(F)—-M(C\ F)>2—|C|for F C C,|F|is odd, C is a simple cycle}.
The inequalities that define the metric polytope are called cyclic inequalities. We recall the following
result of Barahona and Mahjoub.

Theorem 2 (Barahona and Mahjoub [BM86]). G = (V, E) is not contractible to K5 if and only if
the cut polytope C is defined by the metric polytope M.

The above result implies that the cut polytope is defined by the metric polytope, if the underlying
graph is not contractible to K5. However, cyclic inequalities are not sufficient to describe K.

Proof of Theorem 1. Define the symmetric matrix M € R™*™ as M;; = M;; = (0;,0;) and
M;; = 1fori,j € [n]. Clearly, M is positive semidefinite. Since R = {Ry, Ra,..., R} is a
covering of G, for each vertex ¢ € V, there exists j € [m| such that ¢ € R;. We have X(R;)
satisfying degree-4 SOS constraints, which implies that relaxed variable o; is on the unit sphere.
Therefore, the entries of M satisfy

[Mij| = [(os,05)] < lloillllo;ll; (A4)
<1,

by the Cauchy-Schwartz inequality. Similarly for an edge (4, j), there exists k € [m] such that i and
J both belong to Rj,. Therefore, the variable o;; satisfies degree-4 SOS constraints, which in turn
implies that it is on the unit sphere.

Let C' = {ey,ea,...,en} be a chordless cycle of length N such that e; and ey share a common
vertex. There exists p € [m] such that each node defining the elements of C' belongs to the region R,,.
Assume that the nodes ¢, j, k € R,. Then,

Mij = <Ui’o-j> = <o-ij70-0>a (AS)

by the undirected constraints. Moreover, by using the triangle constraints we can write

1
OézllaijﬂLUjk—Uik—UoIlQ, (A.6)

1 1 1 1 1
=1+ 504, o4k) = 5(Tij oik) = 5(0ij:00) = 5Tk oik) = 5(Tjk, T0) + 5(Tik, To),

=1+ (o, 00) — (0ij,00) — (Ojk, 00)

and similarly,
1
0§Z|\Uz‘j+0jk+0ik+tfo||27 (A7)

=1+ (oir,00) + (0ij,00) + (0K, 00).
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Using these two inequalities, we can conclude that Vi, j, k € R,,,

l(gij,00) + (O, 00)| <1+ (o, 00),
Next, we will show that M satisfies the cyclic inequalities given in Eq. (A.3). Recall that C'is a
chordless cycle C' = {eq, ea, ...,en } of G, and let edges forming C' be given as e; = (v;, v;41) for
i € [N],and vy41 = v1. Let F' C C be a set of edges with odd cardinality. There is at least one edge
belonging F'. We will denote by e; A, the edge created by joining v; and v;. Note that e = e; and

ena = en. For the simple cycle C, by adding the edges {e3a, €4, ..., en—1} We have created
N — 3 chords to construct the chordal graph of C, where e;, e;» and e; 11 form a triangle.

Let s; € {—1,+1} be the indicator variable for e;’s membership to the set F' (s; = 1 if e; € F).
We have Hfil si = (—1)N=IF| which implies that sy = (—1)N=IFI[¥ ' s;. Finally, we let
Sin = H;;ll s; for i > 2 and observe that 5,114 = s;A5;+1. Noticing that
N
M(F)—=M(C\F) =Y siM,,, (A.9)
i=1

we write the following inequalities that are based on the triangle inequalities given in Eq. (A.8),
s1Me, + 59 Mo, + 53aA M, +1 >0, (A.10)
S3M83 - S3AMS3A - S4AMS4A + 1 2 07
34Me4 + S4AM64A + S5AM65A +1 Z 07

stlMeN—l + (_1>N_1SN*1AM6N—1A + (_1)N_1SNAM8NA +12>0

By summing these inequalities, we obtain that

N-1
> siMe, + (—1)NsyaMey, + N =2 >0. (A.11)
=1

. N - .
Since we also have sya = [[;o; si = sn(—1)V~1¥l we can write

(DN lspa = sy (12N = 5y (A.12)

since | F'| is odd. Therefore the inequality in Eq. (A.11) reduces to

ZMG— Z M,>2—N. (A.13)

ecF e€C\F

This implies that M € M. Finally, we invoke the result given in Theorem 2 and conclude the proof.
O
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B Additional Experiments
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Figure 5: Additional denoising experiments of a binary image by maximizing the objective function
Eq. (4.1). First 4 rows: i.i.d. Bernoulli error with flip probability p € {0.05,0.1,0.15,0.2} with
fp = 1.26. Last 2 rows: blockwise noise where each pixel is the center of a 3 x 3 error block
independently with probability p € {0.006,0.01} and 6y = 1. Final objective value attained by each
algorithm along with its run time is reported under each image. We observe that PSOS(4) achieves
the best objective value compared to the other inference algorithms.
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C Further Details of the Experiments in Section 4.2

Table 1: Details of the experiments shown in Figure 4. We report statistics of run-time and ratio to
the best algorithm. More specifically, we report the mean and standard deviation of the run-time of

each algorithm within each experiment (100 replications). We also report %5/%10/%60 quantiles of
the ratio of the objective value achieved by an algorithm and the exact optimum for n € {16, 25}, or
the best value achieved by any of the 5 algorithms for n € {100, 400, 900}.

EXPERIMENT. STATS] PSOS-4 PSOS-2 GBP BP-MP BP-SP
=1
ov " Z/{((il:l) TIME(MEAN/SD): 3.9/.3 .2/.0 2.8/1.6 1./.8 1./.4
i RATIO(5/10/60% QT) 1./1./1. .82/.83/1. .91/.92/1. .71/.82/1. .91/.91/1.
07 ~ U(E1)
=16
ov " U+ 5) TIME(MEAN/SD): 4./.3 .2/.0 3.7/1.7 1.8/.9 1.7/.5
4 ) RATIO(5/10/60% QT) 1./1./1. 71/.79/1. .78/.83/1. .57/.65/1. .65/.74/1.
07 ~U(E1)
=1
o "N(06 o) TIME(MEAN/SD): 4.4/.5 2/.0 3.8/2. 2.1/.7 1.4/ .4
ée N(b' 1 RATIO(5/10/60% QT) 1./1./1. .72/.83/1. | .67/.76/.97 | .41/.5/.98 | .52/.69/.95
ij ™ >
=16
ov " N(O, 1) TIME(MEAN/SD): 4./.3 .2/.0 2.5/1.4 .9/.33 .81/.3
i NGO, RATIO(5/10/60% QT) 1./1./1. .78/.87/1. .8/.86/1. .83/.96/1. .83/.89/1.
07; ~ N(0,1)
=2
ov " l/{(i:l) TIME(MEAN/SD): 7.1/.8 .3/.0 9./3.2 2.4/1.6 1.9/.8
i RATIO(5/10/60% QT) 1./1./1. .84/.87/1. .9/.95/1. .73/.84/1. .9/.95/1.
05, ~ U(E1)
=1
91," M(()il) TIME(MEAN/SD): 58./10. 1.3/.1 77.7/.4 17.7/3.9 14.4/2.4
M RATIO(5/10/60% QT) 1./1./1. .87/.89/.94 | .92/.94/.99 | .85/.87/.96 | .93/.94/.99
05 ~ U(E1)
=400
Q,U” U(L1) TIME(MEAN/SD): 360.3/83.4 5.7/.4 386.8/7. 83.3/.7 69.4/.5
i RATIO(5/10/60% QT) 1./1./1. .89/.9/.93 | .93/.94/.97 | .9/.91/.95 | .95/.96/.98
05, ~ U(E1)
0“’n:5?il) TIME(MEAN/SD): 757.4/108. 13.9/1.1 939.8/31.4 194./1.4 161.8/1.3
RATIO(5/10/60% QT) 1./1./1. .9/.91/.93 | .94/.95/.97 | .91/.92/.95 | .95/.96/.97

05, ~ U(£1)
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