A Proofs of Theorem 2.1 and Theorem 2.2

The key idea in the proof of Theorem 2.1 is to find an “envelope” m; < k < my in the spectrum of
A surrounding k, such that the eigenvalues within the envelope are relatively close. Define

my = argmaxoc;<x{0;(A) = (14 2€)or1(A)};

my = argmax.c;<,{0;(A) > ok(A) — 2e0k41(A)},

where we let o (A) = oo for convenience. Let U,,,, U,, be basis of the top m-dimensional linear
subspaces of A and A, respectlvely Also denote U, and Z/{n m as basis of the orthogonal
complement of U, and L{m.

Lemma A.1. If||A — Al|y < 205,41 (A) for e € (0,1) then |U]_, Uy, |2, |07 Up s ll2 < e

Proof We apply an asymmetric version of Davis-Kahan 1nequa11ty (Lemma C.1), with X = A,

Y = A,i=m and j = k. By Weyl’s inequality, we know that o441 (A) < p41(A)+[|A—Alls <

2o A
(L + )ors1(A) < (14 €)orr1(A). Subsequently, [T Up, flo < 5 i <

€. Similarly, applying Lemma C.1 with X = :&, Y = A, i = k and j = my we have that
HUZUH—TVLQ ||2 S €. 0

Let Uy, .m, be the linear subspace of A associated with eigenvalues 0m1+1(A), c Omg (A).
Intuitively, we choose a (k mq )-dimensional linear subspace in Uy, ., that is “most aligned” with

the top-k subspace Uy, of A. Formally, define
W = argmaxdim(w):k,ml’Weumlzm Ok—my (WTﬁk) .

W is then a d x (k — m;) matrix with orthonormal columns that corresponds to a basis of W. W is
carefully constructed so that it is closely aligned with U, yet still lies in Uj. In particular, Lemma
3.2 shows that sin Z(W, Uy) = ||U.!_, W||5 is upper bounded by e.

Lemma A.2. If||A — Ally < 204,41(A) fore € (0,1) then |[UT_, W||; < e

Proof. First note that [|[U]_, W], < \/1 — 0k—m, (U] W)?2 because

‘a T T
IO Wi = sup |07 Wal}= suwp {|Wa|3 - 0] Wal3}

llll2=1 ll)2=1
< sup [Wa|3— inf [[Uf W[} =1— o5, (U W)
le]l2=1 llzll2=1

Subsequently, it suffices to prove that o, ([AJIW) > v/1 — €2. By Weyl’s monotonicity theorem
(Lemma C.4), we have that

Uk(ﬁzUmg) < Um1+1(ﬁgUM1) + Ok—m, (ﬁgUmymz)-

In addition, 0y, +1(U} Uy,,) = 0 because rank(U} U, ) < my and 0g—pm, (U] Upyymy,) =

Ok—m, (ﬁ;W) because of the definition of W. Subsequently,

O (OIW)? > 0x(O] U, = inf U}, Osallf = inf {073~ U, O] w3}

> i {Hﬁkmus}— s {0, Ukal3} = 1-¢.

lle)l2=1 le)l2=1

Here in the last inequality we invoke Lemma 3.1. The proof is then complete. O

Define _
A=A, +WWAWW',

The following lemma lists some of the properties of A.
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Lemma A.3. [t holds that
1. dim(Range(A)) = k and dim(Range(W)) = k — m;
2. Uy, C Range(A) C U, and Range(A— A, ) C Unp, iy where U, = Un, SUn, .-

3. ||U;—UJ_||2, ||UTUn,k||2 < 2¢, where U and U | are orthonormal basis of Range(A)
and Null(A), respectively.

Proof. Propertles 1 and 2 are 0bv10usly true by the definition of ¥V and A. For property 3, note
that both U U ||, and [|[UTU,,_||» are equal to sin Z(4, ;). Hence it suffices to show that
HU _.Ull2 < 2¢. Invoking Lemmas 3.1 and 3.2 we have that |[U]_, Ully < [[U]_, Uy, |2 +

HUnikW”Q <e+e=2e O

Decompose || Ay, — Al|p as
IAx = Allr <||A = Allr +[|Ag — Allr < [|A = Allp + V2k| Ay — All.  (12)

Here the last inequality holds because both Ak and A have rank at most k. Lemmas 3.3 and 3.4 give
separate upper bounds for ||A — A||r and ||A; — Al|2.

Lemma A4. If||A— Ay < €20441(A)2 fore € (0,1/4] then |A—Al|p < (1432€)||A— Ayl

Proof. Let Uy, .m, be the (my — my)-dimensional linear subspace such that U,,,, = Uy, ® Unnyimsy -
Define A, .my = Uy Sy oms U where 2, .m, = diag(oym, +1(A), -, 0m,(A)) and

my:msa?
U, :m, 18 an orthonormal basis associated with U, .m,. We then have

1A~ All% = [Anm, —~ WWTAWW ||

(a)

= ||An—mz ||% + ||Am1:m2 - WWTAWWT”%
(b)

||A Amz HF + ||Am1 mg T WWTAWI:WZWWTH%

: HA - Am2||F + ”Aml:mz ”F - ”WWTAml:szWT”%'

Here in (a) we apply Range(./i — A,.,) € Up,.m, and the Pythagorean theorem (Lemma C.2)
with P = U, .. in (b) we apply W C Uy, .m,» and in (¢) we apply the Pythagorean theorem
again with P = W. Note that [WWTA,, .., WWT[% = |[WTA,, . m2W||F Applying
Poincaré separation theorem (Lemma C.3) where X = X, .., and P = Um1 ma2 W, we have

HWTAmlzmzwnF > Z;nzm;mk-i-l (Am1:m2)2 = Z;n2m1+m2 k+10. (A)Q- Subsequently,

mi+mo—k
IA - AR < A=Az 4+ Y 0;(A)° <A = Apyllf + (m2 — k)om, 41(A)?
j=mi+1

(a’)
< A = A [l + (m2 = B)(1+ 26)% 0011 (A)?

1+2\?2
- ) O (A)?

1—2¢

(®")
<A =A%+ (m2 — k) (

(<)
< 1A = Ay [T+ (m2 = k)om, (A)? + 32(mz — k)eom, (A)

’

(d)
< (14 320)]|A — Agl%.

Here in (a’) we apply the definition of m; that o,,, 11 < (1 4 2¢)or4+1(A), in (V') we apply the
definition of my that 0,,,(A) > ok (A) — 260541 (A) > (1 — 2¢)og41(A), and (') is due to the

2
fact that (}f—26> <1+ 32¢forall e € (0,1/4]. Finally, (d') holds because (ma — k)0, (A)? <
Ytk 05 (A)? and |A — Ap[lf = [[A — Ay, 15+ 32720 05(A)2. O
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Lemma A.5. If||[A — Ally < 20441(A) for e € (0,1/4] then | Ay, — Al < 102¢2[|A — Ay]fa.

Proof. Recall the definition that /{ = Range(A) and U, = Null(A) Consider ||v||2 = 1 such that
vT(Ay — Ao = |A, — A||2 Because v maximizes v (A — A)v over all unit-length vectors,

it must lie in the range of Ak — A) because otherwise the component outside the range will not

contribute. Therefore, we can choose v that v = v; + vy where v; € Range(Ak) = L{k and
Vg € Range(A) u. Subsequently, we have that

v = U, UJv+U0U'U,_, U] v (13)
= UUv+U,U/U, U w. (14)
Consider the following decomposition:
"UT(./&;C - fA)v‘ < "UT(K - A)v‘ + ‘vT(f&k - K)v‘ + ”UT(A — A
The first term |v T (A — A)v| is trivially upper bounded by ||A — A |2 < €20441(A). For the second
term, we have
’v—r(;&k - A)'v‘ = ’vTﬁn,kin,kﬁI_ka

(a) TU kﬁzikﬁﬂ—rﬁn,kin,kﬁzikﬁﬁ—rﬁn,kﬁlikv

~ ~ 14~ (b) ~ (9
< ”UI_kU“Q HUn_kH2 < 16€l4s1(A) < 1661 (1 + €2)apsr (A).
Here in (a) we apply Eq. (10); in (b) we apply Property 3 of Lemma A.3, and (¢) is due to Weyl’s
inequality (Lemma C.4) that o441 (A) < 04 41(A) + [|A — Alls < (1+ 2)opp1(A).

For the third term, note that A = UUTAUUT because Range(A) C U,,, C Range(A) by
Lemma A.3. Subsequently,

A-A=U,U/AU, U] +UU'AU,U] +U,U]AUU".

B: B B,

It then suffices to upper bound |v " Byv| and |v " Bow| separately. For B; we have
|'UTB1'U| (a:) "UTijﬁiﬁkﬁ;—ﬁlijAﬁLﬁIﬁkﬁ;—ﬁLﬁIU
o A [~ ~
< [OI0, [o1aT.

O @ @
< 16€ < 16€ 0y, +1(A) < 16€™(1 + 2€)op41(A).

’INJIAfJl .

Here in (a’) we apply Eq. (11); in (b') we apply Property 3 of Lemma A.3; (¢’) follows the
property that U, € Uy, —m,, and finally (d’) follows from the definition of m; that 6., +1(A) <
(1+2€)op11(A).

For By, we have that
"UTBQU|: ‘UTﬁﬁTAﬁLﬁlﬁkﬂgﬁLﬁIU
- 2
< HAULH HUIUkH < (1 +86)o11(A).
2 2
Combining all inequalities and noting that € € (0, 1/4], we obtain

|Ag — Alls < 0511 (A) + 16€* (1 + 2¢ + €2)op 41 (A) + 326%(1 + 8€) g4 1 (A)
< 102?054 1(A).

14



Proof. of Theorem 2.2 The proof of Theorem 2.2 is similar and even simpler than that of Theorem 2.1.
First observing that with the large spectral gap, A = Aj. Next we replace by replacing the assumption
|A — All2 < €®0k41(A) in Lemma 3.4 with ||A — Az < € (0 (A) — 0k4+1(A)) using the exactly
the same arguments we have

|A) — Agll2 < 102¢ (04 (A) — 01 41(A)).

Therefore, we have R
||Ak - AkHF § 102V 2ke (O’k(A) - O—k»Jrl(A)) .
Lastly, apply triangle inequality:
1Ak — Allr < A = Axllr + Ak — Axllr
< ||A — AkHF + 102V 2ke (Uk(A) — Jk+1(A)) .

B Proof of corollaries

Proof. of Corollary 2.1. We first verify the condition that § < €204, 1(A) for € = 1/4 and the
particular choice of k. Because k < LClé’l/ﬁj — 1, we have that o1 (A) > (Clé’l/ﬁ)’ﬁ. By
carefully chosen C (depending on ) the inequality oj41(A) > ¢/16 holds.

If k = n — 1 then by Theorem 2.1, || A, — Al|p < O(y/n-nP) = O(n_%). In the rest of the
proof we assume k = |C16~'/# ] — 1. We then have

n n o0 _(2B_1) 28—1
IA-Aulr = | 3 a2 = | 3 js \/ | e - \/ <)
j=k+1 j=k+1 k -

Here C'(5) > 0 is a constant that only depends on 3. In addition,

VEIA = Aplls < VE - k8 = k-2 < &(3)575
Applying Theorem 2.1 we complete the proof of Corollary 2.1. 0

Proof. of Corollary 2.2 We first verify the condition that § < €20y41(A) for € = 1/4 and the
particular choice of k. Because k < [¢~11og(1/d) —c 1 loglog(1/8)] —1, we have that o111 (A) >
§1og(1/6). Hence, for § € (0,e~1¢) it holds that o1 (A) > §/16.

If k = n — 1 then by Theorem 2.1, | A}, — A|lr < O(y/n - exp{—cn}). In the rest of the proof we
assume k = |C3log(1/d)] — 1. We then have

IA-Aule= | S o2 = | > w2} </ P2 oois1001/9)

j=k+1 j=k+1

where C(c) > 0 is a constant that only depends on c¢. In addition,

VEIA = Agllz < VE- exp{—ck} < §log(1/) - /e T1og(1/8) < C(c)d+/log(1/5)P.
Applying Theorem 2.1 we complete the proof of Corollary 2.2. O

C Technical lemmas

Lemma C.1 (Asymmetric Davis-Kahan inequality). Fixi < j < n and suppose X, Y are symmetric
n X n matrices, with eigen-decomposition X = PiAZ—PZT + Pn,iAn,iPZ_i and Y = Q,;E; Q;r +

anjEnijI_j- IfO'i(X) > (Tj+1(Y) then

X Y|,
T Pill2 < I )
1QusPilk = 550 =, (¥)
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Proof. Consider
1Qn_;(X = Y)Pi[|, = [[Q,_;PiAi — B Q,;Pil[, > [[Qu_Pi, (0:(X) — 0541 (Y)).
Because 0;(X) > 0;41(Y), we have that

1Q,_;(X =Y)Pl; o IX=Ys

T p.
1Q.—;Pill, < 0i(X) = 041(Y) = 0i(X) —0j11(Y)

O
Lemma C.2 (Pythagorean theorem). Fix n > m. Suppose X is a symmetric n X n matrix and P is

ann x m matrix satisfying PP = L Then | X|% = | X — PPTXPP |2 + |[PPTXPP 2.

Proof. Expanding | X||%. we have that
[X|%2 = (X -PP'XPP") + PP'XPP'|%
=|X-PP'XPP'|% + |PP'XPP'|} +2tr (X - PPTXPP )PP 'XPP'].
It suffices to prove that the trace term is zero:
tr [(X —PP'XPP")PP'XPP'] = tr (XPP'XPP') — tr (PP'XPP PP 'XPP")
“ ¢ (PTXPPTXP) — tr (PTXPP ' XP)
=0.
Here () isdueto PTP =1 O

Lemma C.3 (Poincaré separation theorem). Fix n > m. Suppose X is a symmetric n X n matrix,
P is an n x m matrix that satisfies P'P =1, and Y = P'XP. Let 01(X) > - -+ > 0,(X) and
01(Y) > -+ > o, (Y) be the eigenvalues of X and Y in descending order. Then

0:(X) > 0,(Y) > 0pem+i(X), i=1,---,m.

Lemma C.4 (Weyl’s monotonicity theorem). Suppose X,Y are n x n symmetric matrices, and let
o1(X) > > 0,(X),01(Y) > - >0,(Y)and 01(X+Y) > -+ > 0,(X +Y) denote the
eigenvalues of X, Y and X +Y in descending order. Then

Oirj1(X+Y) <0i(X) +0;(Y), 1<4,j<ni+j—1<n.

In particular, setting i = 1 one obtains the commonly used Weyl’s inequality: |o;(X+Y)—0;(X)| <
1Y ]2-
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