
Appendix A Implementation Details

In this section, we describe two important architecture design choices for training PixelGAN autoen-
coders.

A.1 Input noise

In all the semi-supervised experiments, we found it crucial to use the universal approximator posterior
discussed in Section 2, as opposed to a deterministic posterior. Specifically, the input noise that we use
is an additive Gaussian noise, which results in a posterior distribution q(z|x) that is more expressive
than that of a model without the input corruption. This is similar to the denoising criterion idea
proposed in [34]. We believe this additive noise is also playing an important role in preventing the
mode-missing behavior of the GAN when imposing a degenerate distribution such as the categorical
distribution. Similar related ideas have been used to stabilize GAN training such as instance noise [35]
or one-sided label noise [28].

A.2 Conditioning of PixelCNN

There are three methods to implement how the PixelCNN conditions on the latent vector.

Location-Invariant Bias. This is the method that was proposed in the conditional PixelCNN
model [13]. Suppose the size of the convolutional layer of the decoder is (batch, width, height,
channels). Then the PixelCNN can use a linear mapping to convert the conditioning tensor of
size (batch, condition_size) to generate a tensor of size (batch, channels) that is then
broadcasted and added to the feature maps of all the layers of the PixelCNN decoder as an adaptive
bias. In this method, the hidden code is encouraged to learn the global information that is location-
invariant (the what information and not the where information) such as the class label information.
We use this method in all the clustering and semi-supervised learning experiments.

Location-Dependent Bias. Suppose the size of the convolutional layer of the PixelCNN decoder is
(batch, width, height, channels). Then the PixelCNN can use a one layer neural network
to convert the conditioning tensor of size (batch, condition_size) to generate a spatial tensor
of size (batch, width, height, k) followed by a 1× 1 convolutional layer to construct a tensor
of size (batch, width, height, channels) that is then added only to the feature maps of the
first layer of the decoder as an adaptive bias (similar to the VPN model [36]). When k = 1, we
can simply broadcast the tensor of size (batch, width, height, k=1) to get a tensor of size
(batch, width, height, channels) instead of using the 1 × 1 convolution. In this method,
the latent vector has spatial and location-dependent information within the feature map. This is the
method that we used in experiments of Figure 2a.

Input Channel. Another method for conditioning is proposed in the PixelVAE [20] and the
variational lossy autoencoder (VLAE) [18]. In this method, first a tensor of size (batch, width,
height, k) is constructed using the conditioning tensor similar to the location-dependent bias.
This tensor is then concatenated to the input of the PixelCNN. The performance and computational
complexity of this method is very similar to that of the location-dependent bias method.

Appendix B Experiment Details

We used TensorFlow [37] in all of our experiments.

B.1 MNIST Dataset

The MNIST dataset has 50K training points, 10K validation points and 10K test points. We perform
experiments on both the binary MNIST and the real-valued MNIST. In the real valued MNIST
experiments, we subtract 127.5 from the data points and then divide them by 127.5 and use the
discretized logistic mixture likelihood [38] as the cost function for the PixelCNN. In the case of
binary MNIST, the data points are binarized by setting pixel values larger than 0.5 to 1, and values
smaller than 0.5 to 0.

12



B.1.1 PixelGAN Autoencoders with Gaussian Prior on MNIST

Here we describe the model architecture used for training the PixelGAN autoencoder with a Gaussian
prior on the binary MNIST dataset in Figure 2a. The PixelCNN decoder uses both the vertical
and horizontal stacks similar to [13]. The cost function of the PixelCNN is the cross-entropy cost
function. The PixelCNN uses the location-dependent bias as described in Appendix A.2. Specifically,
a tensor of size (batch, width, height, 1) is constructed from the conditioning vector by using
a one-layer neural network with 1000 hidden units, ReLU activation and linear output. This tensor is
then broadcasted and added only to the feature maps of the first layer of the PixelCNN decoder. The
PixelCNN is designed to have a local receptive field by having 3 residual blocks (filter size of 3x5, 32
feature maps, ReLU non-linearity as in [13]). The adversarial discriminator has two layers of 2000
hidden units with ReLU activation function. The encoder architecture has two fully-connected layers
of size 2000 with ReLU non-linearity. The last layer of the encoder q(z|x) has a linear activation
function. On the latent representation of size 2, we impose a Gaussian distribution with standard
deviation of 5. We used the gradient descent with momentum algorithm for optimizing all the cost
functions of the network. For the PixelCNN reconstruction cost, we used the learning rate of 0.001
and the momentum value of 0.9. After 25 epochs we reduce the learning rate to 0.0001. For both of
the generator and the discriminator costs, the learning rates and the momentum values were set to 0.1.

B.1.2 Unsupervised Clustering of MNIST

Here we describe the model architecture used for clustering the binary MNIST dataset in Figure 6
and Section 3. The PixelCNN decoder uses both the vertical and horizontal stacks similar to [13].
The cost function of the PixelCNN is the cross-entropy cost function. The PixelCNN uses the
location-invariant bias as described in Appendix A.2 and has 15 residual blocks (filter size of 3x5, 32
feature maps, ReLU non-linearity as in [13]). The adversarial discriminator has two layers of 3000
hidden units with ReLU activation function. The encoder architecture has a convolutional layer (filter
size of 7, 32 feature maps, ReLU activation) and a max-pooling layer (pooling size 2), followed by
another convolutional layer (filter size of 7, 32 feature maps, ReLU activation) and a max-pooling
layer (pooling size 2) with no fully-connected layer. The last layer of the encoder q(z|x) has the
softmax activation function. We found it important to use batch-normalization [39] for all the layers
of the encoder including the softmax layer. The number of clusters is chosen to be 30. The clusters
are represented by a discrete one-hot variable of size 30. On the continuous probability output of
the softmax, we impose a categorical distribution with uniform probabilities. We use Adam [40]
optimizer with learning rate of 0.001 for optimizing the PixelCNN reconstruction cost function,
but we found it important to use the gradient descent with momentum algorithm for optimizing the
generator and the discriminator costs of the adversarial network. For both of the generator and the
discriminator costs, the momentum values were set to 0.1 and the learning rates were set to 0.01. We
use an input dropout noise with the keep probability of 0.8 at the input layer and only at the training
time.

The model architecture used for Figure 5 is the same as this architecture except that the number of
clusters is chosen to be 3.

B.1.3 Semi-Supervised MNIST

We performed semi-supervised learning experiments on both binary and real-valued MNIST dataset.
We found that the semi-supervised error-rate of the real-valued MNIST is roughly the same as the
binary MNIST (about 1.10% with 100 labels), but it takes longer to train due to the logistic mixture
likelihood cost function [38]. So in Table 1, we only report the performance with the binary MNIST,
but in Figure 7b we are showing the samples of the real-valued MNIST with 100 labels.

Binary MNIST. Here we describe the model architecture used for the semi-supervised learning
experiments on the binary MNIST in Section 3 and Table 1. The PixelCNN decoder uses both the
vertical and horizontal stacks similar to [13] and uses the cross-entropy cost function. The PixelCNN
uses the location-invariant bias as described in Appendix A.2. The PixelCNN has 6 residual blocks
(filter size of 3x5, 32 feature maps, ReLU non-linearity as in [13]). The adversarial discriminator
has two layers of 1000 hidden units with ReLU activation function. The encoder architecture has
three convolutional layers (filter size of 5, 32 feature maps, ReLU activation) and a max-pooling
layer (pooling size 2), followed by another three convolutional layers (filter size of 5, 32 feature
maps, ReLU activation) and a max-pooling layer (pooling size 2) with no fully-connected layer. The

13



last layer of the encoder q(z|x) has the softmax activation function. All the convolutional layers
of the encoder except the softmax layer use batch-normalization [39]. On the latent representation,
we impose a categorical distribution with uniform probabilities. The semi-supervised cost is the
cross-entropy cost function at the output of q(z|x). We use Adam [40] optimizer with learning rate of
0.001 for optimizing the PixelCNN cost and the cross-entropy cost, but we found it important to use
the gradient descent with momentum algorithm for optimizing the generator and the discriminator
costs of the adversarial network. For both of the generator and the discriminator costs, the momentum
values were set to 0.1 and the learning rates were set to 0.1. We add a Gaussian noise with standard
deviation of 0.3 to the input layer as described in Appendix A.1. The labeled examples were chosen
at random but evenly distributed across the classes.

Real-valued MNIST. Here we describe the model architecture used for the semi-supervised learning
experiments on the real-valued MNIST in Figure 7b. The PixelCNN decoder uses both the vertical
and horizontal stacks similar to [13] and uses a discretized logistic mixture likelihood cost function
with 10 logistic distribution as proposed in [38]. The PixelCNN uses the location-invariant bias as
described in Appendix A.2. The PixelCNN has 20 residual blocks (filter size of 2x3, 64 feature
maps, gated sigmoid-tanh non-linearity as in [13]). The adversarial discriminator has two layers of
1000 hidden units with ReLU activation function. The encoder architecture has three convolutional
layers (filter size of 5, 32 feature maps, ReLU activation) and a max-pooling layer (pooling size 2),
followed by another three convolutional layers (filter size of 5, 32 feature maps, ReLU activation) and
a max-pooling layer (pooling size 2) with no fully-connected layer. The last layer of the encoder
q(z|x) has the softmax activation function. All the convolutional layers of the encoder except the
softmax layer use batch-normalization [39]. On the latent representation, we impose a categorical
distribution with uniform probabilities. The semi-supervised cost is the cross-entropy cost function
at the output of q(z|x). We use Adam [40] optimizer with learning rate of 0.001 for optimizing the
PixelCNN cost and the cross-entropy cost, but we found it important to use the gradient descent
with momentum algorithm for optimizing the generator and the discriminator costs of the adversarial
network. For both of the generator and the discriminator costs, the momentum values were set to 0.1
and the learning rates were set to 0.1. After 150 epochs, we divide all the learning rates by 10. We
add a Gaussian noise with standard deviation of 0.3 to the input layer as described in Appendix A.1.
The labeled examples were chosen at random but evenly distributed across the classes.

B.2 SVHN Dataset

The SVHN dataset has about 530K training points and 26K test points. We use 10K points for the
validation set. Similar to [25], we downsample the images from 32× 32× 3 to 16× 16× 3 and then
subtracte 127.5 from the data points and then divide them by 127.5.

B.2.1 Semi-Supervised SVHN

Here we describe the model architecture used for the semi-supervised learning experiments on the
SVHN dataset in Section 3. The PixelCNN decoder uses both the vertical and horizontal stacks
similar to [13]. The cost function of the PixelCNN is a discretized logistic mixture likelihood cost
function with 10 logistic distribution as proposed in [38]. The PixelCNN uses the location-invariant
bias as described in Appendix A.2 and has 20 residual blocks (filter size of 3x5, 32 feature maps,
gated sigmoid-tanh non-linearity as in [13]). The adversarial discriminator has two layers of
1000 hidden units with ReLU activation function. The encoder architecture has two convolutional
layers (filter size of 5, 32 feature maps, ReLU activation) and a max-pooling layer (pooling size 2),
followed by another two convolutional layers (filter size of 5, 32 feature maps, ReLU activation) and
a max-pooling layer (pooling size 2) with no fully-connected layer. The last layer of the encoder
q(z|x) has the softmax activation function. All the convolutional layers of the encoder except the
softmax layer use batch-normalization [39]. On the latent representation, we impose a categorical
distribution with uniform probabilities. The semi-supervised cost is the cross-entropy cost function
at the output of q(z|x). We use Adam [40] optimizer for optimizing all the cost function. For the
PixelCNN cost and the cross-entropy cost we use the learning rate of 0.001 and for the generator
and the discriminator costs of the adversarial network we use the learning rate of 0.0001. We add a
Gaussian noise with standard deviation of 0.2 to the input layer as described in Appendix A.1.

14



B.3 NORB Dataset

The NORB dataset has about 24K training points and 24K test points. We use 4K points for the
validation set. This dataset has 5 object categories: animals, human figures, airplanes, trucks and cars.
We downsample the images to have the size of 32× 32× 1, subtract 127.5 from the data points and
then divide them by 127.5.

B.3.1 Semi-Supervised NORB

The PixelCNN decoder uses both the vertical and horizontal stacks similar to [13]. The cost function
of the PixelCNN is a discretized logistic mixture likelihood cost function with 10 logistic distribution
as proposed in [38]. The PixelCNN uses the location-invariant bias as described in Appendix A.2
and has 15 residual blocks (filter size of 3x5, 32 feature maps, gated sigmoid-tanh non-linearity
as in [13]). The adversarial discriminator has two layers of 1000 hidden units with ReLU activation
function. The encoder architecture has a convolutional layer (filter size of 7, 32 feature maps, ReLU
activation) and a max-pooling layer (pooling size 2), followed by another convolutional layer (filter
size of 7, 32 feature maps, ReLU activation) and a max-pooling layer (pooling size 2), followed by
another convolutional layer (filter size of 7, 32 feature maps, ReLU activation) and a max-pooling
layer (pooling size 2) with no fully-connected layer. The last layer of the encoder q(z|x) has the
softmax activation function. All the convolutional layers of the encoder except the softmax layer use
batch-normalization [39]. On the latent representation, we impose a categorical distribution with
uniform probabilities. The semi-supervised cost is the cross-entropy cost function at the output of
q(z|x). We use Adam [40] optimizer for optimizing all the cost function. For the PixelCNN cost and
the cross-entropy cost we use the learning rate of 0.001 and for the generator and the discriminator
costs of the adversarial network we use the learning rate of 0.0001. We add a Gaussian noise with
standard deviation of 0.3 to the input layer as described in Appendix A.1. The labeled examples were
chosen at random but evenly distributed across the classes. In the case of NORB with 1000 labels,
the test error after 10 epochs is 12.97%, after 100 epochs is 11.63% and after 500 epochs is 8.17%.

15


