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1 Proofs of Main Theorems

We copy the bi-convex problem from the main paper:

minimize E(p, w;A, b) + λpPp(p) + λwPw(w) (1)
subject to p ∈ ∆n, w ∈ ∆m,

where

E(p, w;A, b) = (Ap− b)> diag(w)(Ap− b),

Pp(p) =

K′∑
r′=1

‖pg′
r′
‖21,

Pw(w) = α

K∑
r=1

√
mr‖wgr‖2 + (1− α)‖w‖22.

Introduce e = (Ap− b)2 where (·)2 is taken element-wise, then the weighted error is written as:

E(p, w;A, b) = e>w =

K∑
r=1

e>grwgr .

Recall that w ∈ ∆m is group selective if for every rule in the rule set, w either drops it or selects it
entirely, i.e. either wgr = 0 or wgr > 0 element-wise, for all r = 1, . . . ,K.

Recall that for a group selective w, we introduce suppg(w) to be the set of the selected rule indices,
i.e. suppg(w) = {r | wgr > 0 element-wise} ⊂ {1, . . . ,K}.
We start with a lemma which will be used in the proof of Thm. 1 part (1).
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Lemma 1. Fix any p ∈ Rn, the bi-convex problem (1) is reduced to a convex problem w.r.t. w:

minimize
K∑
r=1

e>grwgr + λw(α

K∑
r=1

√
mr‖wgr‖2 + (1− α)‖w‖22) (2)

subject to 0 � w � 1, 1>w = 1.

Let w? be a solution to problem (2), then w? is group selective if

λw > α−1‖e‖∞.

Proof of Lemma 1. (Proof by contradiction) Assumew? is not group selective when λm > α−1‖e‖∞,
i.e. there exists r ∈ {1, . . . ,K} such that

‖w?
gr‖2 6= 0, but (w?

gr )i = 0, for some i.

Let L(w) be problem (2)’s objective function whose partial derivative ∂L/∂(wgk)j for any group k
such that ‖w?

gk
‖2 6= 0 is

∂L

∂(wgk)j
(w?) = (egk)j + λw

(
α
√
mr

(w?
gk

)j

‖w?
gk
‖2

+ 2(1− α)(w?
gk

)j

)
.

For r, i in particular, we have

∂L

∂(wgr )i
(w?) = (egr )i.

Within group r, let j? = arg maxj(w
?
gr )j . Since

∑mr

j=1(w?
gr )2j = ‖w?

gr‖
2
2 > 0, we must have

(w?
gr )j? ≥

1
√
mr
‖w?

gr‖2. (3)

Take the direction vector δt ∈ Rm such that

(δtgk)j =


t if k = r, j = i

−t if k = r, j = j?

0 otherwise ,

where t > 0 is sufficiently small such that w? + δt ∈ ∆m. However,〈
∂L

∂w?
, δt
〉

= t · (egr )i − t(egr )j? − tλw
(
α
√
mr

(w?
gr )j?

‖w?
gr‖2

+ 2(1− α)(w?
gr )j?

)
≤ t · (egr )i − tλwα

√
mr

(w?
gr )j?

‖w?
gr‖2

(4)

≤ t ((egr )i − λwα) (5)
< 0 (6)

where inequality (4) holds since (egr )j? ≥ 0, α ≤ 1, (w?
gk

)j? ≥ 0; inequality (5) holds because of
the lower bound (3); inequality (6) holds because of the condition λw > α−1‖e‖∞. The negative
inner product in the above implies that δt is a descent direction, which gives

L(w? + δt) < L(w?).

This contradicts the fact that w? is a minimizer, therefore, nullifies the assumption that w? is not
group selective and completes the proof.

Theorem 1. Fix any λp > 0, α ∈ [0, 1]. Let (p?(λw), w?(λw)) be a solution path to problem (1).
(1) w?(λw) is group selective, if λw > 1/α.
(2) ‖w?

gr (λw)‖2 →
√
mr/m as λw →∞, for r = 1, . . . ,K.
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Proof of Theorem 1. For part (1), recall that A(r)p, b(r) ∈ ∆mr are both probability distributions
regarding the rth rule. Hence, every element of egr = (A(r)p − b(r))2 is bounded in [−1, 1], for
any r = 1, . . . ,K. That is, ei ∈ [−1, 1] for all i, or equivalently ‖e‖∞ ≤ 1. Notice that w?(λw)
is the solution to problem (2) for p?(λw). Then by Lemma 1, w?(λw) is group selective since
λw > 1/α ≥ ‖e‖∞/α.

For part (2), when λw →∞, the first two terms in the objective vanish, problem (1) is equivalent to

minimize α

K∑
r=1

√
mr‖wgr‖2 + (1− α)‖w‖22 (7)

subject to 0 � w � 1, 1>w = 1.

Notice that the solution w? to problem (7) must have uniform mass within each group, i.e.
(w?

gr )i = ‖w?
gr‖1/mr, for all i = 1, . . . ,mr, and for all r = 1, . . . ,K. (8)

As a consequence, the group lasso penalty is always constant:
K∑
r=1

√
mr‖w?

gr‖2 =

K∑
r=1

√
mr

‖w?
gr‖1√
mr

= ‖w?‖1 = 1.

Under the uniformity condition (8), the ridge penalty

‖w‖22 =
∑
r

‖wgr‖22 =
∑
r

‖wgr‖21
mr

≥
(
∑

r ‖wgr‖1)2∑
rmr

=
1

m
,

by the Cauchy-Schwarz inequality. The equality holds when
‖w?

gr‖1√
mr

= γ
√
mr, for some constant γ.

That is ‖w?
gr‖1 = γmr. Then

∑
r ‖w?

gr‖1 = 1 gives γ = 1/m, which further yields

‖w?
gr‖2 =

‖w?
gr‖1√
mr

= γ
√
mr =

√
mr

m
.

This completes the proof and further shows that w? is actually the uniform distribution on ∆m, since
applying the uniformity condition (8) to ‖w?

gr‖1 = γmr = mr/m gives w?
i = 1/m for all i.

Theorem 2. For λp = 0 and any λw > 0, α ∈ [0, 1], let (p?, w?) be a solution to problem (1). We
define C ⊂ 2{1,...,K} such that any C ∈ C is a consistent (error-free) subset of the given rule set. If
suppg(w

?) ∈ C, then
∑

r∈suppg(w?)mr = max
{∑

r∈C mr | C ∈ C
}

.

Proof of Theorem 2. When λp = 0, problem (1) becomes

minimize E(p, w;A, b) + λw(α

K∑
r=1

√
mr‖wgr‖2 + (1− α)‖w‖22) (9)

subject to 0 � p � 1, 1>p = 1,

0 � w � 1, 1>w = 1.

Under the error-free condition, it is clear that (p?, w?) is also the solution to the following problem

minimize λwα

K∑
r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖22 (10)

subject to suppg(w) ∈ C
E(p, w;A, b) = 0

0 � p � 1, 1>p = 1.

0 � w � 1, 1>w = 1.
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which can be further rewritten as the following problem by the definition of C:

minimize λwα

K∑
r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖22 (11)

subject to suppg(w) ∈ C
0 � w � 1, 1>w = 1.

The above problem is further equivalent to the following problem

minimizeC,w λwα

K∑
r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖22 (12)

subject to suppg(w) = C, C ∈ C,
0 � w � 1, 1>w = 1.

Consider a class of problems {Q(C) | C ∈ C} such that each problem Q(C) is formulated as

minimizew λwα

K∑
r=1

√
mr‖wgr‖2 + λw(1− α)‖w‖22 (13)

subject to suppg(w) = C

0 � w � 1, 1>w = 1.

The solution w? to problem (12) is then the solution to problem (13) with the minimum objective
among all the problems from {Q(C) | C ∈ C}, and further the corresponding p? is probability
distribution that gives E(p?, w?;A, b) = 0.

Given any C ∈ C, let (p?,C , w?,C) be the solution to the corresponding problem (13). This problem
is a reduced problem (7) introduced in the proof of Thm. 1. The only difference is that here we
constrain the nonzero groups to be C. Same argument for problem (7) gives

w?,C
gr =

1∑
r∈C mr

1mr , for any r ∈ C.

Thus, the optimal objective of Q(C) for a given C is

λwα+ λw(1− α)
1∑

r∈C mr
.

Finally, as w? is the w?,C that achieves the minimum Q(C) objective among all C ∈ C, we have∑
r∈suppg(w?)

mr = max

{∑
r∈C

mr | C ∈ C

}
.

2 Theoretical Justification for Screening

The screening procedure is needed when we solve for p after fixing w. In this section, we give
detailed justifications about the procedure in its general form: a simplex constrained least-squares:

minimize
1

2
‖Ap− b‖22 (14)

subject to 0 � p � 1, 1>p = 1,

We start from the observation that the solution p? to the problem is expected to be sparse in most
situations. To see this, we first introduce an relaxation problem for later discussions. Note that we
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can relax (14) to the following L1-constrained problem:

minimize
1

2
‖Ap− b‖22 (15)

subject to p � 0

‖p‖1 ≤ 1

which is further is equivalent to the following problem:

minimize
1

2
‖Ap− b‖22 + ρ‖p‖1 (16)

subject to p � 0

for some positive (unknown) ρ = ρ?.

Denote the solution of (16) with ρ to be p̂(ρ). We have the following result:

Proposition 1. Any solution of (16) satisfying

‖p̂(ρ)‖1 = 1. (17)

is a solution of (14).

Proof of Proposition 1. See the proof of Proposition 2.

It is well known that the lasso problem tends to encourage a sparse solution, so we may expect a
sparse solution for p? in (14). In practice, we observe that the solution of (14) is indeed very sparse in
most experiments. This motivates us to screen out the positions of p that must be zeros according to
the nonnegative lasso solution before solving the least square problem. Since negative lasso screening
and solving can be done efficiently [1] in many situations, such strategy can sometimes reduce the
problem scale dramatically.

The difference between (16) and (14) comes from the fact that we are relaxing the equality of L1

norm ‖p‖1 = 1 by the inequality ‖p‖1 ≤ 1. Actually, in general they are not guaranteed to be
equivalent. There are situations where the lasso solution path can never touch the L1 unit ball and in
such circumstances, the lasso solution cannot be used. However, we can make a small modification
on (16) to achieve an exact equivalence between the simplex constrained least square problem and
a nonnegative lasso problem. Specifically, we attach a row, c1T to A and 2c to b, and denote
the resulting matrices by Ã and b̃, where c is some constant that will be given soon.The modified
nonnegative lasso problem is

minimize
1

2
‖Ãp− b̃‖22 + ρ‖p‖1 (18)

subject to p � 0

The following proposition shows that the (18) is equivalent to (14).

Proposition 2. Let T = minj ‖A·j‖2. If c2 > 4T 2 +m, then

1. There exists a ρ, such that the solution of problem (18), p̂(ρ), satisfies (17).

2. In addition, such p̂(ρ) must be a solution of problem (14).

Proof of Proposition 2. We first check the least square problem

minimize
1

2
‖Ãp− b̃‖22 (19)

subject to p � 0

For any p such that ‖p‖1 < 1, the last term in the squared error:

(c1T p− 2c)2 > c2.
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So ‖Ãp− b̃‖22 > c2. On the other hand, let j∗ = arg minj ‖A·j‖2, and set p̃ to be the vector with all
zeros except at j∗ coordinate that is 2 so ‖p̃‖1 = 2. Then

‖Ãp̃− b̃‖22 = ‖2A·j − b‖2 ≤ 4‖A·j‖2 + ‖b‖22 ≤ 4T 2 +m < c2,

since bi ≤ 1 for any i. That means, for any ‖p‖ < 1, p̃ has a smaller objective, thus the solution of
the problem (19) must not lie in the interior of the unit L1 ball. Define the problem

minimize
1

2
‖Ap− b‖22 (20)

subject to p � 0

‖p‖1 ≤ 1

Let the solution of (20) be p? and the solution of (19) be p∗. We have shown ‖p∗‖1 ≥ 1. Now
we prove ‖p?‖1 = 1 by contradiction. Assume ‖p?‖1 < 1 so we know p? 6= p∗. Then due to the
continuity of L1 norm, there must exist t ∈ (0, 1) such that the convex combination of p? and p∗:
pt = tp? + (1− t)p∗ satisfies

‖pt‖1 = 1.

Due to the strict convexity, we have

‖Ãpt − b̃‖22 ≤ t‖Ãp? − b̃‖22 + (1− t)‖Ãp∗ − b̃‖22 < ‖Ãp? − b̃‖22
This contradicts the definition of p?. Thereafter, the solution of problem (20) must be on the unit L1

ball. Finally, (18) has a solution to satisfy (17) for some ρ due to its equivalence with (20).

For the second part, given any solution p̂(ρ) of (18) satisfying (17), it is a feasible point of (14). The
last term of the modified least square problem makes fixed contribution in the objective of (14) and
does not change within the feasible region. Moreover, for any solution p? of (14), assume

‖Ap? − b‖22 < ‖Ap̂(ρ)− b‖22,

then we must have
1

2
‖Ap? − b‖22 + ρ‖p?‖1 <

1

2
‖Ap̂(ρ)− b‖22 + ρ‖p̂(ρ)‖1.

This contradicts the definition of p̂(ρ), thus we have

‖Ap? − b‖22 = ‖Ap̂(ρ)− b‖22
and p̂(ρ) is a solution of (14).

In practice, we prefer to use Proposition 1 (or correspondingly, problem (16)) as the basis for screening
whenever it is possible, even though Proposition 2 (or correspondingly, problem (18)) is always
guaranteed to success in theory. This is because the modified problem (18) has very imbalanced
design as the last row is much larger than the others. This often makes the screening less effective in
the sense that many zeros positions cannot be detected. It will be interesting to investigate if there is
alternative screening strategy that always works in theory with better practical efficiency. We leave
this for future work.
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