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Abstract
We propose a new randomized coordinate descent method for a convex optimization
template with broad applications. Our analysis relies on a novel combination
of four ideas applied to the primal-dual gap function: smoothing, acceleration,
homotopy, and coordinate descent with non-uniform sampling. As a result, our
method features the first convergence rate guarantees among the coordinate descent
methods, that are the best-known under a variety of common structure assumptions
on the template. We provide numerical evidence to support the theoretical results
with a comparison to state-of-the-art algorithms.

1 Introduction
We develop randomized coordinate descent methods to solve the following composite convex problem:

F ? = min
x∈Rp

{F (x) = f(x) + g(x) + h(Ax)} , (1)

where f : Rp → R, g : Rp → R ∪ {+∞}, and h : Rm → R ∪ {+∞} are proper, closed and
convex functions, A ∈ Rm×p is a given matrix. The optimization template (1) covers many important
applications including support vector machines, sparse model selection, logistic regression, etc. It is
also convenient to formulate generic constrained convex problems by choosing an appropriate h.
Within convex optimization, coordinate descent methods have recently become increasingly popular
in the literature [1–6]. These methods are particularly well-suited to solve huge-scale problems
arising from machine learning applications where matrix-vector operations are prohibitive [1].
To our knowledge, there is no coordinate descent method for the general three-composite form (1)
within our structure assumptions studied here that has rigorous convergence guarantees. Our paper
specifically fills this gap. For such a theoretical development, coordinate descent algorithms require
specific assumptions on the convex optimization problems [1, 4, 6]. As a result, to rigorously handle
the three-composite case, we assume that (i) f is smooth, (ii) g is non-smooth but decomposable
(each component has an “efficiently computable” proximal operator), and (iii) h is non-smooth.
Our approach: In a nutshell, we generalize [4, 7] to the three composite case (1). For this purpose,
we combine several classical and contemporary ideas: We exploit the smoothing technique in [8],
the efficient implementation technique in [4, 14], the homotopy strategy in [9], and the nonuniform
coordinate selection rule in [7] in our algorithm, to achieve the best known complexity estimate for
the template.

Surprisingly, the combination of these ideas is achieved in a very natural and elementary primal-dual
gap-based framework. However, the extension is indeed not trivial since it requires to deal with the
composition of a non-smooth function h and a linear operator A.
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While our work has connections to the methods developed in [7, 10, 11], it is rather distinct. First,
we consider a more general problem (1) than the one in [4, 7, 10]. Second, our method relies on
Nesterov’s accelerated scheme rather than a primal-dual method as in [11]. Moreover, we obtain
the first rigorous convergence rate guarantees as opposed to [11]. In addition, we allow using any
sampling distribution for choosing the coordinates.

Our contributions: We propose a new smooth primal-dual randomized coordinate descent method
for solving (1) where f is smooth, g is nonsmooth, separable and has a block-wise proximal operator,
and h is a general nonsmooth function. Under such a structure, we show that our algorithm achieves
the best known O(n/k) convergence rate, where k is the iteration count and to our knowledge, this is
the first time that this convergence rate is proven for a coordinate descent algorithm.

We instantiate our algorithm to solve special cases of (1) including the case g = 0 and constrained
problems. We analyze the convergence rate guarantees of these variants individually and discuss the
choices of sampling distributions.

Exploiting the strategy in [4, 14], our algorithm can be implemented in parallel by breaking up the
full vector updates. We also provide a restart strategy to enhance practical performance.
Paper organization: We review some preliminary results in Section 2. The main contribution of
this paper is in Section 3 with the main algorithm and its convergence guarantee. We also present
special cases of the proposed algorithm. Section 4 provides numerical evidence to illustrate the
performance of our algorithms in comparison to existing methods. The proofs are deferred to the
supplementary document.

2 Preliminaries
Notation: Let [n] := {1, 2, · · · , n} be the set of n positive integer indices. Let us decompose
the variable vector x into n-blocks denoted by xi as x = [x1;x2; · · · ;xn] such that each block xi
has the size pi ≥ 1 with

∑n
i=1 pi = p. We also decompose the identity matrix Ip of Rp into n

block as Ip = [U1, U2, · · · , Un], where Ui ∈ Rp×pi has pi unit vectors. In this case, any vector
x ∈ Rp can be written as x =

∑n
i=1 Uixi, and each block becomes xi = U>i x for i ∈ [n]. We

define the partial gradients as ∇if(x) = U>i ∇f(x) for i ∈ [n]. For a convex function f , we use
dom (f) to denote its domain, f∗(x) := supu

{
u>x− f(u)

}
to denote its Fenchel conjugate, and

proxf (x) := arg minu
{
f(u) + (1/2)‖u− x‖2

}
to denote its proximal operator. For a convex set

X , δX (·) denotes its indicator function. We also need the following weighted norms:
‖xi‖2(i) = 〈Hixi, xi〉, (‖yi‖∗(i))

2 = 〈H−1
i yi, yi〉,

‖x‖2[α] =
∑n
i=1 L

α
i ‖xi‖2(i), (‖y‖∗[α])

2 =
∑n
i=1 L

−α
i (‖yi‖∗(i))

2.
(2)

Here, Hi ∈ Rpi×pi is a symmetric positive definite matrix, and Li ∈ (0,∞) for i ∈ [n] and α > 0.
In addition, we use ‖ · ‖ to denote ‖ · ‖2.
Formal assumptions on the template: We require the following assumptions to tackle (1):
Assumption 1. The functions f , g and h are all proper, closed and convex. Moreover, they satisfy

(a) The partial derivative ∇if(·) of f is Lipschitz continuous with the Lipschitz constant
L̂i ∈ [0,+∞), i.e., ‖∇if(x+ Uidi)−∇if(x)‖∗(i) ≤ L̂i‖di‖(i) for all x ∈ Rp, di ∈ Rpi .

(b) The function g is separable, which has the following form g(x) =
∑n
i=1 gi(xi).

(c) One of the following assumptions for h holds for Subsections 3.3 and 3.4, respectively:
i. h is Lipschitz continuous which is equivalent to the boundedness of dom (h∗).

ii. h is the indicator function for an equality constraint, i.e., h(Ax) := δ{c}(Ax).

Now, we briefly describe the main techniques used in this paper.
Acceleration: Acceleration techniques in convex optimization date back to the seminal work of
Nesterov in [13], and is one of standard techniques in convex optimization. We exploit such a scheme
to achieve the best known O(1/k) rate for the nonsmooth template (1).
Nonuniform distribution: We assume that ξ is a random index on [n] associated with a probability
distribution q = (q1, · · · , qn)> such that

P {ξ = i} = qi > 0, i ∈ [n], and
n∑
i=1

qi = 1. (3)
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When qi = 1
n for all i ∈ [n], we obtain the uniform distribution. Let i0, i1, · · · , ik be i.i.d. realizations

of the random index ξ after k iteration. We define Fk+1 = σ(i0, i1, · · · , ik) as the σ-field generated
by these realizations.
Smoothing techniques: We can write the convex function h(u) = supy {〈u, y〉 − h∗(y)} using
its Fenchel conjugate h∗. Since h in (1) is convex but possibly nonsmooth, we smooth h as

hβ(u) := max
y∈Rm

{
〈u, y〉 − h∗(y)− β

2 ‖y − ẏ‖
2
}
, (4)

where ẏ ∈ Rm is given and β > 0 is the smoothness parameter. Moreover, the quadratic function
b(y, ẏ) = 1

2‖y − ẏ‖
2 is defined based on a given norm in Rm. Let us denote by y∗β(u), the unique

solution of this concave maximization problem in (4), i.e.:

y∗β(u) := arg max
y∈Rm

{
〈u, y〉 − h∗(y)− β

2 ‖y − ẏ‖
2
}

= proxβ−1h∗

(
ẏ + β−1u

)
, (5)

where proxh∗ is the proximal operator of h∗. If we assume that h is Lipschitz continuous, or
equivalently that dom (h∗) is bounded, then it holds that

hβ(u) ≤ h(u) ≤ hβ(u) +
βD2

h∗
2 , where Dh∗ := max

y∈dom(h∗)
‖y − ẏ‖ < +∞. (6)

Let us define a new smoothed function ψβ(x) := f(x) + hβ(Ax). Then, ψβ is differentiable, and its
block partial gradient

∇iψβ(x) = ∇if(x) +A>i y
∗
β(Ax) (7)

is also Lipschitz continuous with the Lipschitz constant Li(β) := L̂i + ‖Ai‖2
β , where L̂i is given in

Assumption 1, and Ai ∈ Rm×pi is the i-th block of A.
Homotopy: In smoothing-based methods, the choice of the smoothness parameter is critical. This
choice may require the knowledge of the desired accuracy, number of maximum iterations or the
diameters of the primal and/or dual domains as in [8]. In order to make this choice flexible and our
method applicable to the constrained problems, we employ a homotopy strategy developed in [9] for
deterministic algorithms, to gradually update the smoothness parameter while making sure that it
converges to 0.

3 Smooth primal-dual randomized coordinate descent
In this section, we develop a smoothing primal-dual method to solve (1). Or approach is to combine
the four key techniques mentioned above: smoothing, acceleration, homotopy, and randomized
coordinate descent. Similar to [7] we allow to use arbitrary nonuniform distribution, which may allow
to design a good distribution that captures the underlying structure of specific problems.
3.1 The algorithm
Algorithm 1 below smooths, accelerates, and randomizes the coordinate descent method.

Algorithm 1. SMooth, Accelerate, Randomize The Coordinate Descent (SMART-CD)

Input: Choose β1 > 0 and α ∈ [0, 1] as two input parameters. Choose x0 ∈ Rp.
1 Set B0

i := L̂i + ‖Ai‖2
β1

for i ∈ [n]. Compute Sα :=
∑n
i=1(B0

i )α and qi :=
(B0
i )α

Sα
for all i ∈ [n].

2 Set τ0 := min {qi | 1 ≤ i ≤ n} ∈ (0, 1] for i ∈ [n]. Set x̄0 = x̃0 := x0.

3 for k ← 0, 1, · · · , kmax do
4 Update x̂k := (1− τk)x̄k + τkx̃

k and compute ûk := Ax̂k.
5 Compute the dual step y∗k := y∗βk+1

(ûk) = proxβ−1
k+1h

∗

(
ẏ + β−1

k+1û
k
)
.

6 Select a block coordinate ik ∈ [n] according to the probability distribution q.
7 Set x̃k+1 := x̃k, and compute the primal ik-block coordinate:

x̃k+1
ik

:= argmin
xik∈R

pik

{
〈∇ikf(x̂k) +A>iky

∗
k, xik − x̂kik〉+ gik(xik) +

τkB
k
ik

2τ0
‖xik − x̃kik‖

2
(ik)

}
.

8 Update x̄k+1 := x̂k + τk
τ0

(x̃k+1 − x̃k).
9 Compute τk+1 ∈ (0, 1) as the unique positive root of τ3 + τ2 + τ2

k τ − τ2
k = 0.

10 Update βk+2 := βk+1

1+τk+1
and Bk+1

i := L̂i + ‖Ai‖2
βk+2

for i ∈ [n].
11 end for
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From the update x̄k := x̂k−1 + τk−1

τ0
(x̃k − x̃k−1) and x̂k := (1− τk)x̄k + τkx̃

k, it directly follows
that x̂k := (1− τk)

(
x̂k−1 + τk−1

τ0
(x̃k − x̃k−1)

)
+ τkx̃

k. Therefore, it is possible to implement the
algorithm without forming x̄k.

3.2 Efficient implementation
While the basic variant in Algorithm 1 requires full vector updates at each iteration, we exploit the
idea in [4, 14] and show that we can partially update these vectors in a more efficient manner.

Algorithm 2. Efficient SMART-CD

Input: Choose a parameter β1 > 0 and α ∈ [0, 1] as two input parameters. Choose x0 ∈ Rp.
1 Set B0

i := L̂i + ‖Ai‖2
β1

for i ∈ [n]. Compute Sα :=
∑n
i=1(B0

i )α and qi :=
(B0
i )α

Sα
for all i ∈ [n].

2 Set τ0 := min {qi | 1 ≤ i ≤ n} ∈ (0, 1] for i ∈ [n] and c0 = (1− τ0). Set u0 = z̃0 := x0.

3 for k ← 0, 1, · · · , kmax do
4 Compute the dual step y∗βk+1

(ckAu
k +Az̃k) := proxβ−1

k+1h
∗

(
ẏ + β−1

k+1(ckAu
k +Az̃k)

)
.

5 Select a block coordinate ik ∈ [n] according to the probability distribution q.
6 Let ∇ki := ∇ikf(cku

k + z̃k) +A>iky
∗
βk+1

(ckAu
k +Az̃k). Compute

tk+1
ik

:= arg min
t∈Rpik

{
〈∇ki , t〉+ gik(t+ z̃kik) +

τkB
k
ik

2τ0
‖t‖2(ik)

}
.

7 Update z̃k+1
ik

:= z̃kik + tk+1
ik

.
8 Update uk+1

ik
:= ukik −

1−τk/τ0
ck

tk+1
ik

.
9 Compute τk+1 ∈ (0, 1) as the unique positive root of τ3 + τ2 + τ2

k τ − τ2
k = 0.

10 Update βk+2 := βk+1

1+τk+1
and Bk+1

i := L̂i + ‖Ai‖2
βk+2

for i ∈ [n].
11 end for

We present the following result which shows the equivalence between Algorithm 1 and Algorithm 2,
the proof of which can be found in the supplementary document.

Proposition 3.1. Let ck =
∏k
l=0(1− τl), ẑk = cku

k + z̃k and z̄k = ck−1u
k + z̃k. Then, x̃k = z̃k,

x̂k = ẑk and x̄k = z̄k, for all k ≥ 0, where x̃k, x̂k, and x̄k are defined in Algorithm 1.

According to Algorithm 2, we never need to form or update full-dimensional vectors. Only times
that we need x̂k are when computing the gradient and the dual variable y∗βk+1

. We present two special
cases which are common in machine learning, in which we can compute these steps efficiently.

Remark 3.2. Under the following assumptions, we can characterize the per-iteration complexity
explicitly. Let A,M ∈ Rm×p, and

(a) f has the form f(x) =
∑m
j=1 φj(e

>
j Mx), where ej is the jth standard unit vector.

(b) h is separable as in h(Ax) = δ{c}(Ax) or h(Ax) = ‖Ax‖1.

Assuming that we store and maintain the residuals rku,f = Muk, rkz̃,f = Mz̃k, rku,h = Auk,
rkz̃,h = Az̃k, then we have the per-iteration cost as O(max{|{j | Aji 6= 0}|, |{j | Mji 6= 0}|})
arithmetic operations. If h is partially separable as in [3], then the complexity of each iteration will
remain moderate.

3.3 Case 1: Convergence analysis of SMART-CD for Lipschitz continuous h
We provide the following main theorem, which characterizes the convergence rate of Algorithm 1.

Theorem 3.3. Let x? be an optimal solution of (1) and let β1 > 0 be given. In addition, let
τ0 := min {qi | i ∈ [n]} ∈ (0, 1] and β0 := (1 + τ0)β1 be given parameters. For all k ≥ 1, the
sequence

{
x̄k
}

generated by Algorithm 1 satisfies:

E
[
F (x̄k)− F ?

]
≤ C∗(x0)

τ0(k − 1) + 1
+
β1(1 + τ0)D2

h∗

2(τ0k + 1)
, (8)

where C∗(x0) := (1− τ0)(Fβ0
(x0)− F ?) +

∑n
i=1

τ0B
0
i

2qi
‖x?i − x0

i ‖2(i) and Dh∗ is as defined by (6).
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In the special case when we use uniform distribution, τ0 = qi = 1/n, the convergence rate reduces to

E
[
F (x̄k)− F ?

]
≤ nC∗(x0)

k + n− 1
+

(n+ 1)β0D
2
h∗

2k + 2n
,

where C∗(x0) := (1 − 1
n )(Fβ0(x0) − F ?) +

∑n
i=1

B0
i

2 ‖x
?
i − x0

i ‖2(i). This estimate shows that the
convergence rate of Algorithm 1 is

O
(n
k

)
,

which is the best known so far to the best of our knowledge.

3.4 Case 2: Convergence analysis of SMART-CD for non-smooth constrained optimization
In this section, we instantiate Algorithm 1 to solve constrained convex optimization problem with
possibly non-smooth terms in the objective. Clearly, if we choose h(·) = δ{c}(·) in (1) as the indicator
function of the set {c} for a given vector c ∈ Rm, then we obtain a constrained problem:

F ? := min
x∈Rp

{F (x) = f(x) + g(x) | Ax = c} , (9)

where f and g are defined as in (1), A ∈ Rm×p, and c ∈ Rm.

We can specify Algorithm 1 to solve this constrained problem by modifying the following two steps:
(a) The update of y∗βk+1

(Ax̂k) at Step 5 is changed to

y∗βk+1
(Ax̂k) := ẏ + 1

βk+1
(Ax̂k − c), (10)

which requires one matrix-vector multiplication in Ax̂k.
(b) The update of τk at Step 9 and βk+1 at Step 10 are changed to

τk+1 := τk
1+τk

and βk+2 := (1− τk+1)βk+1. (11)

Now, we analyze the convergence of this algorithm by providing the following theorem.
Theorem 3.4. Let

{
x̄k
}

be the sequence generated by Algorithm 1 for solving (9) using the updates
(10) and (11) and let y? be an arbitrary optimal solution of the dual problem of (9). In addition,
let τ0 := min {qi | i ∈ [n]} ∈ (0, 1] and β0 := (1 + τ0)β1 be given parameters. Then, we have the
following estimates:

E
[
F (x̄k)− F ?

]
≤ C∗(x0)

τ0(k−1)+1 + β1‖y?−ẏ‖2
2(τ0(k−1)+1) + ‖y?‖E

[
‖Ax̄k − b‖

]
,

E
[
‖Ax̄k − b‖

]
≤ β1

τ0(k−1)+1

[
‖y? − ẏ‖+

(
‖y? − ẏ‖2 + 2β−1

1 C∗(x0)
)1/2]

,
(12)

where C∗(x0) := (1 − τ0)(Fβ0(x0) − F ?) +
∑n
i=1

τ0B
0
i

2qi
‖x?i − x0

i ‖2(i). We note that the following
lower bound always holds −‖y?‖E

[
‖Ax̄k − b‖

]
≤ E

[
F (x̄k)− F ?

]
.

3.5 Other special cases
We consider the following special cases of Algorithm 1:
The case h = 0: In this case, we obtain an algorithm similar to the one studied in [7] except that
we have non-uniform sampling instead of importance sampling. If the distribution is uniform, then
we obtain the method in [4].
The case g = 0: In this case, we have F (x) = f(x) + h(Ax), which can handle the linearly
constrained problems with smooth objective function. In this case, we can choose τ0 = 1, and the
coordinate proximal gradient step, Step 7 in Algorithm 1, is simplified as

x̃k+1
ik

:= x̃kik −
qik
τkBkik

H−1
ik

(
∇ikf(x̂k) +A>iky

∗
βk+1

(ûk)
)
. (13)

In addition, we replace Step 8 with

x̄k+1
i = x̂ki +

τk
qi

(x̃k+1
i − x̃ki ), ∀i ∈ [n]. (14)

We then obtain the following results:
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Corollary 3.5. Assume that Assumption 1 holds. Let τ0 = 1, β1 > 0 and Step 7 and 8 of Algorithm 1
be updated by (13) and (14), respectively. If, in addition, h is Lipschitz continuous, then we have

E
[
F (x̄k)− F ?

]
≤ 1

k

n∑
i=1

B0
i

2q2
i

‖x?i − x0
i ‖2(i) +

β1D
2
h∗

k + 1
, (15)

where Dh∗ is defined by (6).

If, instead of Lipschitz continuous h, we have h(·) = δ{c}(·) to solve the constrained problem (9)
with g = 0, then we have E

[
F (x̄k)− F ?

]
≤ C∗(x0)

k + β1‖y?−ẏ‖2
2k + ‖y?‖E

[
‖Ax̄k − b‖

]
,

E
[
‖Ax̄k − b‖

]
≤ β1

k

[
‖y? − ẏ‖+

(
‖y? − ẏ‖2 + 2β−1

1 C∗(x0)
)1/2]

,
(16)

where C∗(x0) :=
n∑
i=1

B0
i

2q2i
‖x?i − x0

i ‖2(i).

3.6 Restarting SMART-CD
It is known that restarting an accelerated method significantly enhances its practical performance
when the underlying problem admits a (restricted) strong convexity condition. As a result, we describe
below how to restart (i.e., the momentum term) in Efficient SMART-CD. If the restart is injected in
the k-th iteration, then we restart the algorithm with the following steps:

uk+1 ← 0,
rk+1
u,f ← 0,

rk+1
u,h ← 0,

ẏ ← y∗βk+1
(ckr

k
u,h + rkz̃,h),

βk+1 ← β1,
τk+1 ← τ0,
ck ← 1.

The first three steps of the restart procedure is for restarting the primal variable which is classical
[15]. Restarting ẏ is also suggested in [9]. The cost of this procedure is essentially equal to the cost
of one iteration as described in Remark 3.2, therefore even restarting once every epoch will not cause
a significant difference in terms of per-iteration cost.

4 Numerical evidence
We illustrate the performance of Efficient SMART-CD in brain imaging and support vector machines
applications. We also include one representative example of a degenerate linear program to illustrate
why the convergence rate guarantees of our algorithm matter. We compare SMART-CD with Vu-
Condat-CD [11], which is a coordinate descent variant of Vu-Condat’s algorithm [16], FISTA [17],
ASGARD [9], Chambolle-Pock’s primal-dual algorithm [18], L-BFGS [19] and SDCA [5].

4.1 A degenerate linear program: Why do convergence rate guarantees matter?
We consider the following degenerate linear program studied in [9]:

min
x∈Rp

2xp

s.t.
∑p−1
k=1 xk = 1,

xp −
∑p−1
k=1 xk = 0, (2 ≤ j ≤ d),

xp ≥ 0.

(17)

Here, the constraint xp −
∑p−1
k=1 xk = 0 is repeated d times. This problem satisfies the linear

constraint qualification condition, which guarantees the primal-dual optimality. If we define

f(x) = 2xp, g(x) = δ{xp≥0}(xp), h(Ax) = δ{c}(Ax),

where

Ax =

[
p−1∑
k=1

xk, xp −
p−1∑
k=1

xk, . . . , xp −
p−1∑
k=1

xk

]>
, c = [1, 0, . . . , 0]>,

we can fit this problem and its dual form into our template (1).
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Figure 1: The convergence behavior of 3 algorithms on a degenerate linear program.

For this experiment, we select the dimensions p = 10 and d = 200. We implement our algorithm and
compare it with Vu-Condat-CD. We also combine our method with the restarting strategy proposed
above. We use the same mapping to fit the problem into the template of Vu-Condat-CD.

Figure 1 illustrates the convergence behavior of Vu-Condat-CD and SMART-CD. We compare
primal suboptimality and feasibility in the plots. The explicit solution of the problem is used to
generate the plot with primal suboptimality. We observe that degeneracy of the problem prevents
Vu-Condat-CD from making any progress towards the solution, where SMART-CD preservesO(1/k)
rate as predicted by theory. We emphasize that the authors in [11] proved almost sure convergence
for Vu-Condat-CD but they did not provide a convergence rate guarantee for this method. Since the
problem is certainly non-strongly convex, restarting does not significantly improve performance of
SMART-CD.

4.2 Total Variation and `1-regularized least squares regression with functional MRI data
In this experiment, we consider a computational neuroscience application where prediction is done
based on a sequence of functional MRI images. Since the images are high dimensional and the number
of samples that can be taken is limited, TV-`1 regularization is used to get stable and predictive
estimation results [20]. The convex optimization problem we solve is of the form:

min
x∈Rp

1
2‖Mx− b‖2 + λr‖x‖1 + λ(1− r)‖x‖TV. (18)

This problem fits to our template with

f(x) = 1
2‖Mx− b‖2, g(x) = λr‖x‖1, h(u) = λ(1− r)‖u‖1,

where D is the 3D finite difference operator to define a total variation norm ‖ · ‖TV and u = Dx.

We use an fMRI dataset where the primal variable x is 3D image of the brain that contains 33177
voxels. Feature matrix M has 768 rows, each representing the brain activity for the corresponding
example [20]. We compare our algorithm with Vu-Condat’s algorithm, FISTA, ASGARD, Chambolle-
Pock’s primal-dual algorithm, L-BFGS and Vu-Condat-CD.

0 20 40 60 80 100
time (s)

8000

8500

9000

9500

F
(x

)

Chambolle-Pock
Vu-Condat
FISTA
ASGARD
L-BFGS
Vu-Condat-CD
SMART-CD

0 20 40 60 80 100
time (s)

8000
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9000

9500
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)

0 20 40 60 80 100
time (s)

8000

8500

9000

9500

F
(x

)

Figure 2: The convergence of 7 algorithms for problem (18). The regularization parameters for the
first plot are λ = 0.001, r = 0.5, for the second plot are λ = 0.001, r = 0.9, for the third plot are
λ = 0.01, r = 0.5 .

Figure 2 illustrates the convergence behaviour of the algorithms for different values of the regu-
larization parameters. Per-iteration cost of SMART-CD and Vu-Condat-CD is similar, therefore
the behavior of these two algorithms are quite similar in this experiment. Since Vu-Condat’s,
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Chambolle-Pock’s, FISTA and ASGARD methods work with full dimensional variables, they have
slow convergence in time. L-BFGS has a close performance to coordinate descent methods.

The simulation in Figure 2 is performed using benchmarking tool of [20]. The algorithms are tuned
for the best parameters in practice.

4.3 Linear support vector machines problem with bias
In this section, we consider an application of our algorithm to support vector machines (SVM)
problem for binary classification. Given a training set with m examples {a1, a2, . . . , am} such that
ai ∈ Rp and class labels {b1, b2, . . . bm} such that bi ∈ {−1,+1}, we define the soft margin primal
support vector machines problem with bias as

min
w∈Rp

m∑
i=1

Ci max
(

0, 1− bi(〈ai, w〉+ w0)
)

+ λ
2 ‖w‖

2. (19)

As it is a common practice, we solve its dual formulation, which is a constrained problem: min
x∈Rm

{
1

2λ‖MD(b)x‖2 −
∑m
i=1 xi

}
s.t. 0 ≤ xi ≤ Ci, i = 1, · · · ,m, b>x = 0,

(20)

where D(b) represents a diagonal matrix that has the class labels bi in its diagonal and M ∈ Rp×m is
formed by the example vectors. If we define

f(x) =
1

2λ
‖MD(b)x‖2 −

m∑
i=1

xi, gi(xi) = δ{0≤xi≤Ci}, c = 0, A = b>,

then, we can fit this problem into our template in (9).
We apply the specific version of SMART-CD for constrained setting from Section 3.4 and compare
with Vu-Condat-CD and SDCA. Even though SDCA is a state-of-the-art method for SVMs, we are
not able to handle the bias term using SDCA. Hence, it only applies to (20) when b>x = 0 constraint
is removed. This causes SDCA not to converge to the optimal solution when there is bias term in the
problem (19). The following table summarizes the properties of the classification datasets we used.

Data Set Training Size Number of Features Convergence Plot
rcv1.binary [21, 22] 20,242 47,236 Figure 3, plot 1
a8a [21, 23] 22,696 123 Figure 3, plot 2
gisette [21, 24] 6,000 5,000 Figure 3, plot 3

Figure 3 illustrates the performance of the algorithms for solving the dual formulation of SVM in (20).
We compute the duality gap for each algorithm and present the results with epochs in the horizontal
axis since per-iteration complexity of the algorithms is similar. As expected, SDCA gets stuck at
a low accuracy since it ignores one of the constraints in the problem. We demonstrate this fact in
the first experiment and then limit the comparison to SMART-CD and Vu-Condat-CD. Equipped
with restart strategy, SMART-CD shows the fastest convergence behavior due to the restricted strong
convexity of (20).
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Figure 3: The convergence of 4 algorithms on the dual SVM (20) with bias. We only used SDCA in
the first dataset since it stagnates at a very low accuracy.

5 Conclusions
Coordinate descent methods have been increasingly deployed to tackle huge scale machine learning
problems in recent years. The most notable works include [1–6]. Our method relates to several works
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in the literature including [1, 4, 7, 9, 10, 12]. The algorithms developed in [2–4] only considered
a special case of (1) with h = 0, and cannot be trivially extended to apply to general setting (1).
Here, our algorithm can be viewed as an adaptive variant of the method developed in [4] extended to
the sum of three functions. The idea of homotopy strategies relate to [9] for first-order primal-dual
methods. This paper further extends such an idea to randomized coordinate descent methods for
solving (1). We note that a naive application of the method developed in [4] to the smoothed problem
with a carefully chosen fixed smoothness parameter would result in the complexityO(n2/k), whereas
using our homotopy strategy on the smoothness parameter, we reduced this complexity to O(n/k).

With additional strong convexity assumption on problem template (1), it is possible to obtainO(1/k2)
rate by using deterministic first-order primal-dual algorithms [9, 18]. It remains as future work to
incorporate strong convexity to coordinate descent methods for solving nonsmooth optimization
problems with a faster convergence rate.
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[3] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for big data optimization,”
Mathematical Programming, vol. 156, no. 1-2, pp. 433–484, 2016.

[4] O. Fercoq and P. Richtárik, “Accelerated, parallel, and proximal coordinate descent,” SIAM
Journal on Optimization, vol. 25, no. 4, pp. 1997–2023, 2015.

[5] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent methods for regularized
loss minimization,” Journal of Machine Learning Research, vol. 14, pp. 567–599, 2013.

[6] I. Necoara and D. Clipici, “Parallel random coordinate descent method for composite mini-
mization: Convergence analysis and error bounds,” SIAM J. on Optimization, vol. 26, no. 1,
pp. 197–226, 2016.

[7] Z. Qu and P. Richtárik, “Coordinate descent with arbitrary sampling i: Algorithms and com-
plexity,” Optimization Methods and Software, vol. 31, no. 5, pp. 829–857, 2016.

[8] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math. Prog., vol. 103, no. 1,
pp. 127–152, 2005.

[9] Q. Tran-Dinh, O. Fercoq, and V. Cevher, “A smooth primal-dual optimization framework for
nonsmooth composite convex minimization,” arXiv preprint arXiv:1507.06243, 2015.

[10] O. Fercoq and P. Richtárik, “Smooth minimization of nonsmooth functions with parallel
coordinate descent methods,” arXiv preprint arXiv:1309.5885, 2013.

[11] O. Fercoq and P. Bianchi, “A coordinate descent primal-dual algorithm with large step size and
possibly non separable functions,” arXiv preprint arXiv:1508.04625, 2015.

[12] Y. Nesterov and S.U. Stich, “Efficiency of the accelerated coordinate descent method on
structured optimization problems,” SIAM J. on Optimization, vol. 27, no. 1, pp. 110–123, 2017.

[13] Y. Nesterov, “A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2),” Doklady AN SSSR, vol. 269, translated as Soviet Math. Dokl., pp. 543–
547, 1983.

[14] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate descent methods and faster algorithms
for solving linear systems,” in Foundations of Computer Science (FOCS), 2013 IEEE Annual
Symp. on, pp. 147–156, IEEE, 2013.

9



[15] B. O’Donoghue and E. Candes, “Adaptive restart for accelerated gradient schemes,” Foundations
of computational mathematics, vol. 15, no. 3, pp. 715–732, 2015.
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Supplementary document
Smooth Primal-Dual Coordinate Descent Algorithms for

Nonsmooth Convex Optimization

A Key lemmas
The following properties are key to design the algorithm, whose proofs are very similar to the proof of
[9, Lemma 10] by using a different norm, and we omit the proof here. The proof of the last property
directly follows by using the explicit form of hβ(u) in the special case when h∗(y) = 〈c, y〉.
Lemma A.1. For any u, û ∈ Rm, the function hβ defined by (4) satisfies the following properties:

(a) hβ(·) is convex and smooth. Its gradient ∇hβ(u) = y∗β(u) is Lipschitz continuous with the
Lipschitz constant Lhβ = 1

β .

(b) hβ(u) + 〈∇hβ(u), û− u〉+ β
2 ‖y
∗
β(u)− y∗β(û)‖2 ≤ hβ(û).

(c) h(û) ≥ hβ(u) + 〈∇hβ(u), û− u〉+ β
2 ‖y
∗
β(u)− ẏ‖2.

(d) hβ(u) ≤ hβ̄(u) +
(
β̄−β

2

)
‖y∗β(u)− ẏ‖2.

(e) If h∗(y) = 〈c, y〉, a linear function, then hβ(u) = hβ̄(u) + (β̄−β)β

2β̄
‖y∗β(u)− ẏ‖2.

Lemma A.2. The parameters {τk}k≥0 and {βk}k≥1 updated by Steps 9 and 10, respectively, satisfy
the following bounds:

1

k + τ−1
0

≤ τk ≤
2

k + τ−1
0 + 1

, βk ≤
β1(1 + τ0)

τ0k + 1
. (21)

Proof. We proceed by induction. By Step 9, we have τ2
k−1 =

τ3
k+τ2

k

1−τk . For k = 0, the bounds trivially
hold since τ0 ≤ 1

n . By the inductive assumption, we have 1
k−1+τ−1

0

≤ τk−1 ≤ 2
k+τ−1

0

. Assume

toward condtradiction that τk < 1
k+τ−1

0

. Then 1
(k−1+τ−1

0 )2
≤ τ2

k−1 =
τ3
k+τ2

k

1−τk <
k+1+τ−1

0

(k+τ−1
0 )2(k−1+τ−1

0 )
,

which is a contradiction. Therefore τk ≥ 1
k+τ−1

0

. For the other side of the inequality, assume toward

contradiction that τk > 2
k+1+τ−1

0

. Then 4(k+3+τ−1
0 )

(k+1+τ−1
0 )2(k−1+τ−1

0 )
<

τ3
k+τ2

k

1−τk = τ2
k−1 ≤ 4

(k+τ−1
0 )2

, which

is a contradiction. Therefore, τk ≤ 2
k+1+τ−1

0

.

For {βk}, we note that βk = βk−1

1+τk−1
= β1

∏k−1
i=1

1
1+τi

≤ β1

∏k−1
i=1

i+τ−1
0

i+1+τ−1
0

= β1(1+τ0)
τ0k+1 .

The following lemma is motivated by [4].
Lemma A.3. Consider the iterates {x̄k, x̃k}k≥0 of Algorithm 1. Then, for k ≥ 0 and i ∈ [n], we
can write {x̄ki } as a convex combination of {x̃li}kl=0:

x̄ki =

k∑
l=0

γk,li x̃li, (22)

where γk,li ≥ 0 and
∑k
l=0 γ

k,l
i = 1. Moreover, the coefficients γk,li can explicitly be computed as

γk+1,l
i =


(1− τk)γk,li , for l = 0, · · · , k − 1,

(1− τk)γk,ki + τk − τk
τ0
, for l = k,

τk
τ0
, for l = k + 1.

(23)

Proof. Now, from the definition of x̄k+1 and x̂k, for i ∈ [n], we can write

x̄k+1
i = (1− τk)x̄ki + τkx̃

k
i +

τk
τ0

(x̃k+1
i − x̃ki ) = (1− τk)x̄ki + (τk −

τk
τ0

)x̃ki +
τk
τ0
x̃k+1
i . (24)
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We prove that x̄ki =
∑k
l=0 γ

k,l
i x̃li for i ∈ [n] such that γk,li ≥ 0 and

∑k
l=0 γ

k,l
i = 1. Indeed, for

k = 0, we have x̄0 = x̃0, which trivially holds if we choose γ0,0
i = 1. Now, assume that this

expression holds for k ≥ 1, we prove it holds for k + 1. Indeed, from (24), using this induction
assumption, we can write

x̄k+1
i = (1− τk)

k−1∑
l=0

γk,li x̃li +

[
(1− τk)γk,ki + τk −

τk
τ0

]
x̃ki +

τk
τ0
x̃k+1
i =

k+1∑
l=0

γk+1,l
i x̃li,

where constants γk+1,l
i are as given in (23). It is trivial to check that

∑k+1
l=0 γ

k+1,l
i = (1 −

τk)
∑k
l=0 γ

k,l
i + τk − τk

τ0
+ τk

τ0
= (1− τk) + τk = 1. In addition, since {τk}k≥0 is a non-increasing

sequence, γk,li ≥ 0.

B Convergence analysis of SMART-CD

B.1 The proof of Theorem 3.3
First, let us define the full primal proximal-gradient step as

¯̃xk+1 := arg min
x∈Rp

{
〈∇ψβk+1

(x̂k), x− x̂k〉+ g(x) + τk

n∑
i=1

Bki
2τ0
‖xi − x̃ki ‖2(i)

}
, (25)

where∇ψβk+1
(x̂k) = ∇f(x̂k) +A>y∗βk+1

(Ax̂k). The primal coordinate step (Step 7) and Step 8 in
Algorithm 1 can be written as

x̃k+1
i =

{
¯̃xk+1
i , if i = ik,

x̃ki , otherwise.
(26)

Moreover, using [25, Property 2], we know that for all x ∈ Rp and for all i ∈ [n],

gi(¯̃xk+1
i ) ≤ gi(xi) + 〈∇iψβk+1

(x̂k), xi − ¯̃xk+1
i 〉+

τkB
k
i

2τ0

(
‖xi − x̃ki ‖2(i) − ‖xi − ¯̃xk+1

i ‖2(i)
)

− τkB
k
i

2τ0
‖¯̃xk+1

i − x̃ki ‖2(i). (27)

Now, since the partial gradient∇ikf is L̂ik -Lipschitz continuous, using x̄k+1
ik

= x̂kik+ τk
τ0

(x̃k+1
ik
−x̃kik)

and x̄k+1
i = x̂ki for i 6= ik, we have

f(x̄k+1) ≤ f(x̂k) + 〈∇ikf(x̂k), x̄k+1
ik
− x̂kik〉+

L̂ik
2
‖x̄k+1

ik
− x̂kik‖

2
(ik)

= f(x̂k) +
τk
τ0
〈∇ikf(x̂k), x̃k+1

ik
− x̃kik〉+

τ2
k L̂ik
2τ2

0

‖x̃k+1
ik
− x̃kik‖

2
(ik). (28)

Taking the Fk-conditional expectation with respect to ik and noting (26), we obtain

Eik
[
f(x̄k+1) | Fk

]
≤ f(x̂k) +

τk
τ0

n∑
i=1

qi〈∇if(x̂k), ¯̃xk+1
i − x̃ki 〉

+
τ2
k

τ2
0

n∑
i=1

qi
L̂i
2
‖¯̃xk+1

i − x̃ki ‖2(i). (29)

Next, let us denote by ϕβ(x) := hβ(Ax). Then, by Lemma A.1, we can see that ϕβk+1
has block-

coordinate Lipschitz gradient with the Lipschitz constant ‖Ai‖
2

βk+1
, where Ai is the i-th column block

of A. Moreover, ∇iϕβk+1
(x) = A>i y

∗
βk+1

(Ax). Hence, using x̄k+1
ik

= x̂kik + τk
τ0

(x̃k+1
ik
− x̃kik) and

x̄k+1
i = x̂ki for i 6= ik, we can write

ϕβk+1
(x̄k+1) ≤ ϕβk+1

(x̂k) + 〈∇ikϕβk+1
(x̂k), x̄k+1

ik
− x̂kik〉+

‖Ai‖2

2βk+1
‖x̄k+1

ik
− x̂kik‖

2
(ik)

= ϕβk+1
(x̂k) +

τk
τ0
〈∇ikϕβk+1

(x̂k), x̃k+1
ik
− x̃kik〉+

τ2
k‖Ai‖2

2τ2
0βk+1

‖x̃k+1
ik
− x̃kik‖

2
(ik).
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Taking the Fk-conditional expectation with respect to ik given Fk and noting (26), we get

Eik
[
ϕβk+1

(x̄k+1) | Fk
]
≤ ϕβk+1

(x̂k) +
τk
τ0

n∑
i=1

qi〈∇iϕβk+1
(x̂k), ¯̃xk+1

i − x̃ki 〉

+
τ2
k

τ2
0

n∑
i=1

qi
‖Ai‖2

2βk+1
‖¯̃xk+1

i − x̃ki ‖2(i). (30)

Now, we define

ĝki :=

k∑
l=0

γk,li gi(x̃
l
i) and ĝk :=

n∑
i=1

ĝki . (31)

Using Lemma A.3, we can write

ĝk+1
i =

k+1∑
l=0

γk+1,l
i gi(x̃

l
i)

=

k−1∑
l=0

(1− τk)γk,li gi(x̃
l
i) +

[
(1− τk)γk,ki + τk − τk

τ0

]
gi(x̃

k
i ) +

τk
τ0
gi(x̃

k+1
i )

= (1− τk)

k∑
l=0

γk,li gi(x̃
l
i) + τkgi(x̃

k
i ) +

τk
τ0

(
gi(x̃

k+1
i )− gi(x̃ki )

)
= (1− τk)ĝki + τkgi(x̃

k
i ) +

τk
τ0

(
gi(x̃

k+1
i )− gi(x̃ki )

)
.

Using the definition (31) of ĝk, this estimate implies

ĝk+1 = (1− τk)ĝk +

n∑
i=1

[
τkgi(x̃

k
i ) +

τk
τ0

(
gi(x̃

k+1
i )− gi(x̃ki )

)]
.

Now, by the expression (26), we can show that

Eik
[
gi(x̃

k+1
i ) | Fk

]
= qigi(¯̃xk+1

i ) + (1− qi)gi(x̃ki ).

Combining the two last expressions, we can derive

Eik
[
ĝk+1 | Fk

]
= (1− τk)ĝk +

n∑
i=1

[
τkgi(x̃

k
i ) +

τk
τ0

(
Eik

[
gi(x̃

k+1
i ) | Fk

]
− gi(x̃ki )

)]

= (1− τk)ĝk + τk

n∑
i=1

gi(x̃
k
i ) +

τk
τ0

n∑
i=1

qi
(
gi(¯̃xk+1

i )− gi(x̃ki )
)
. (32)

Let us define F̂ kβk := f(x̄k) + ĝk + hβk(Ax̄k) ≡ f(x̄k) + ĝk + ϕβk(x̄k). Then, from (29), (30) and
(32), we have that

Eik
[
F̂ k+1
βk+1

| Fk
]

= Eik
[
f(x̄k+1) | Fk

]
+ Eik

[
ĝk+1 | Fk

]
+ Eik

[
ϕβk+1

(x̄k+1) | Fk
]

≤

[
f(x̂k) +

τk
τ0

n∑
i=1

qi〈∇if(x̂k), ¯̃xk+1
i − x̃ki 〉

]

+

[
ϕβk+1

(x̂k) +
τk
τ0

n∑
i=1

qi〈∇iϕβk+1
(x̂k), ¯̃xk+1

i − x̃ki 〉

]

+

[
(1− τk)ĝk + τk

n∑
i=1

gi(x̃
k
i ) +

τk
τ0

n∑
i=1

qi
(
gi(¯̃xk+1

i )− gi(x̃ki )
)]

+
τ2
k

2τ2
0

n∑
i=1

qi

(
L̂i +

‖Ai‖2

βk+1

)
‖¯̃xk+1

i − x̃ki ‖2(i), (33)
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since ∇ψβk+1
(x̂k) = ∇f(x̂k) +∇ϕβk+1

(x̂k). Now, using the estimate (27) into the last expression

and noting that Bki = L̂i + ‖Ai‖2
βk+1

, we can further derive that for all x,

Eik
[
F̂ k+1
βk+1

| Fk
]
≤

[
f(x̂k) +

τk
τ0

n∑
i=1

qi〈∇if(x̂k), xi − x̃ki 〉

]

+

[
ϕβk+1

(x̂k) +
τk
τ0

n∑
i=1

qi〈∇iϕβk+1
(x̂k), xi − x̃ki 〉

]

+

[
(1− τk)ĝk + τk

n∑
i=1

gi(x̃
k
i ) +

τk
τ0

n∑
i=1

qi
(
gi(xi)− gi(x̃ki )

)]

+

n∑
i=1

qi
τ2
kB

k
i

2τ2
0

(
‖xi − x̃ki ‖2(i) − ‖xi − ¯̃xk+1

i ‖2(i)
)
. (34)

Let us choose x such that for all i ∈ [n], xi =
(

1− τ0
qi

)
x̃ki + τ0

qi
x?i . Note that as τ0 ≤ qi for all i, xi

is a convex combination of x̃ki and x?i . We obtain

Eik
[
F̂ k+1
βk+1

|Fk
]
≤
[
f(x̂k) + τk〈∇f(x̂k), x? − x̃k〉

]
+
[
ϕβk+1

(x̂k) + τk〈∇ϕβk+1
(x̂k), x? − x̃k〉

]
+
[
(1− τk)ĝk + τkg(x?)

]
+

n∑
i=1

qi
τ2
kB

k
i

2τ2
0

(∥∥∥∥τ0qi (x?i − x̃ki )

∥∥∥∥2

(i)

−
∥∥∥∥(1− τ0

qi

)
x̃ki +

τ0
qi
x?i − ¯̃xk+1

i

∥∥∥∥2

(i)

)
. (35)

We simplify the norm difference using the fact that ‖ax + (1 − a)y − z‖2 = a‖x − z‖2 + (1 −
a)‖y − z‖2 − a(1− a)‖x− y‖2.∥∥∥∥(1− τ0

qi

)
x̃ki +

τ0
qi
x?i − ¯̃xk+1

i

∥∥∥∥2

(i)

=

(
1− τ0

qi

)
‖x̃ki − ¯̃xk+1

i ‖2(i) +
τ0
qi
‖x?i − ¯̃xk+1

i ‖2(i) −
(

1− τ0
qi

)
τ0
qi
‖x̃ki − x?i ‖2(i)

≥ τ0
qi
‖x?i − ¯̃xk+1

i ‖2(i) −
(

1− τ0
qi

)
τ0
qi
‖x̃ki − x?i ‖2(i).

and we get

Eik
[
F̂ k+1
βk+1

|Fk
]
≤
[
f(x̂k) + τk〈∇f(x̂k), x? − x̃k〉

]
+
[
ϕβk+1

(x̂k) + τk〈∇ϕβk+1
(x̂k), x? − x̃k〉

]
+
[
(1− τk)ĝk + τkg(x?)

]
+

n∑
i=1

τ2
kB

k
i

2τ0

(
‖x?i − x̃ki ‖2(i) − ‖¯̃x

k+1
i − x?i ‖2(i)

)
. (36)

Using the convexity of f , we have f(x̂k)+ 〈∇f(x̂k), x?− x̂k〉 ≤ f(x?) and f(x̂k)+ 〈∇f(x̂k), x̄k−
x̂k〉 ≤ f(x̄k). Moreover, since x̂k = (1 − τk)x̄k + τkx̃

k, we have τk(x? − x̃k) = (1 − τk)(x̄k −
x̂k) + τk(x? − x̂k). Combining these expressions, we obtain

f(x̂k) + τk〈∇f(x̂k), x? − x̃k〉 ≤ (1− τk)f(x̄k) + τkf(x?). (37)

On the one hand, by the Lipschitz gradient and convexity of ϕβk+1
in Lemma A.1(b), we have

ϕβk+1
(x̂k) + 〈∇ϕβk+1

(x̂k), x̄k − x̂k〉 ≤ ϕβk+1
(x̄k)− βk+1

2
‖y∗βk+1

(Ax̂k)− y∗βk+1
(Ax̄k)‖2.

On the other hand, by Lemma A.1(c), we also have

ϕβk+1
(x̂k) + 〈∇ϕβk+1

(x̂k), x? − x̂k〉 ≤ h(Ax?)− βk+1

2
‖y∗βk+1

(Ax̂k)− ẏ‖2
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Combining these two inequalities and using τk(x?− x̃k) = (1− τk)(x̄k− x̂k) + τk(x?− x̂k), we get

ϕβk+1
(x̂k) + τk〈∇ϕβk+1

(x̂k), x? − x̃k〉 ≤ (1− τk)ϕβk+1
(x̄k) + τkh(Ax?)

− (1− τk)βk+1

2
‖y∗βk+1

(Ax̂k)− y∗βk+1
(Ax̄k)‖2 − τkβk+1

2
‖y∗βk+1

(Ax̂k)− ẏ‖2.

Next, using Lemma A.1(d), we can further estimate

ϕβk+1
(x̂k) + τk〈∇ϕβk+1

(x̂k), x? − x̃k〉 ≤ (1− τk)ϕβk(x̄k) + τkh(Ax?)

− (1− τk)βk+1

2
‖y∗βk+1

(Ax̂k)− y∗βk+1
(Ax̄k)‖2 − τkβk+1

2
‖y∗βk+1

(Ax̂k)− ẏ‖2

+
(1− τk)(βk − βk+1)

2
‖y∗βk+1

(Ax̄k)− ẏ‖2

≤ (1− τk)ϕβk(x̄k) + τkh(Ax?)

− 1

2
(βk+1τk(1− τk)− (1− τk)(βk − βk+1)) ‖y∗βk+1

(Ax̄k)− ẏ‖2. (38)

Here, in the last inequality, we use the fact that (1 − τ)‖a − b‖2 + τ‖a‖2 − τ(1 − τ)‖b‖2 =
‖a− (1− τ)b‖2 ≥ 0 for any a, b, and τ ∈ [0, 1]. Substituting (37) and (38) into (36), we obtain

Eik
[
F̂ k+1
βk+1

| Fk
]
≤ (1− τk)

[
f(x̄k) + ĝk + ϕβk(x̄k)

]
+ τk [f(x?) + g(x?) + h(Ax?)]

+

n∑
i=1

τ2
kB

k
i

2τ0

(
‖x?i − x̃ki ‖2(i) − ‖x

?
i − ¯̃xk+1

i ‖2(i)
)

− (1− τk)

2
[βk+1(1 + τk)− βk] ‖y∗βk+1

(Ax̄k)− ẏ‖2. (39)

Next, let us denote by Qk :=
∑n
i=1

τ2
kB

k
i

2τ0

[
‖x?i − x̃ki ‖2(i) − ‖x

?
i − ¯̃xk+1

i ‖2(i)
]
. We can further express

Qk as

Qk =

n∑
i=1

τ2
kB

k
i

2τ0

[
‖x?i − x̃ki ‖2(i) − ‖x

?
i − ¯̃xk+1

i ‖2(i)
]

= Eik

[
τ2
kB

k
ik

2qikτ0

(
‖x?ik − x̃

k
ik
‖2(ik) − ‖x

?
ik
− x̃k+1

ik
‖2(ik)

)
| Fk

]

= Eik

[
n∑
i=1

τ2
kB

k
i

2qiτ0

(
‖x?i − x̃ki ‖2(i) − ‖x

?
i − x̃k+1

i ‖2(i)
)
| Fk

]
, (40)

where the last equality follows from the fact that x̃k+1
i = x̃ki for i 6= ik.

Substituting this expression into (39) and using the definition of F̂ kβk and F ? := F (x?) = f(x?) +

g(x?) + h(Ax?), we get

Eik

[
F̂ k+1
βk+1

+

n∑
i=1

τ2
kB

k
i

2qiτ0
‖x?i − x̃k+1

i ‖2(i) | Fk

]
≤ (1− τk)F̂ kβk + τkF (x?)

+

n∑
i=1

τ2
kB

k
i

2qiτ0
‖x?i − x̃ki ‖2(i) −Rk,

where Rk := (1−τk)
2 [βk+1(1 + τk)− βk] ‖y∗βk+1

(Ax̄k) − ẏ‖2. Assume that we choose βk and τk
such that βk+1(1 + τk)− βk ≥ 0, thenRk ≥ 0. Taking the expected value of the last estimate over
the σ-field Fk, we obtain

E
[
F̂ k+1
βk+1
−F ?

]
+ E

[
n∑
i=1

τ2
kB

k
i

2qiτ0
‖x?i−x̃k+1

i ‖
2
(i)

]
≤ (1− τk)E

[
F̂ kβk − F

?
]

+ E

[
n∑
i=1

τ2
kB

k
i

2qiτ0
‖x?i − x̃ki ‖2(i)

]
. (41)
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In order to telescope this inequality we assume that τ2
kB

k
i ≤ (1 − τk)

(
τ2
k−1B

k−1
i

)
, which is

equivalent to

τ2
k

(
L̂i +

‖Ai‖2

βk+1

)
≤ (1− τk)

[
τ2
k−1

(
L̂i +

‖Ai‖2

βk

)]
. (42)

Let us update βk+1 = βk
1+τk

. Then, this condition becomes

τ2
k

(
βkL̂i+(1+τk)‖Ai‖2

)
≤ (1−τk)τ2

k−1

(
βkL̂i + ‖Ai‖2

)
. (43)

The condition (43) holds if τ2
k (1 + τk) = (1 − τk)τ2

k−1. Hence, we can compute τk as the unique
positive root of τ3 + τ2 + τ2

k−1τ − τ2
k−1 = 0. By Lemma A.2, the root of this cubic satisfies

1
k+τ−1

0

≤ τk ≤ 2
k+τ−1

0 +1
. Let us define Sk =

∑n
i=1

τ2
kB

k
i

2qiτ0
‖x?i − x̃

k+1
i ‖2(i). Then, we can recursively

show that

E
[
F̂ k+1
βk+1

− F ? + Sk

]
≤

k∏
i=1

(1− τi)E

[
F̂ 1
β1
− F ? +

n∑
i=1

τ2
0B

0
i

2qiτ0
‖x?i − x̃1

i ‖2(i)

]

≤
k∏
i=1

(1− τi)

(
(1− τ0)(F̂ 0

β0
− F ?) +

n∑
i=1

τ2
0B

0
i

2qiτ0
‖x?i − x̃0

i ‖2(i)

)
,

where the second inequality follows from (41). Since τk ≥ 1
k+τ−1

0

, it is trivial to show that ωk+1 :=∏k
i=1(1− τi) ≤

∏k
i=1

i+τ−1
0 −1

i+τ−1
0

= 1
τ0k+1 . Now, we have Fβ0

(x0) = f(x0) + g(x0) + hβ0
(Ax0) =

F̂ 0
β0

, and x̃0 = x0. In addition, by the convexity of g and Lemma A.3, we also have g(x̄k) =

g
(∑k

l=0 γ
k,lx̃l

)
≤
∑k
l=0 γ

k,lg(x̃l) = ĝk. Hence, we can write the above estimate as

E
[
Fβk(x̄k)− F ?

]
≤ 1

τ0(k − 1) + 1

[
(1− τ0)(Fβ0

(x0)− F ?) +

n∑
i=1

τ0B
0
i

2qi
‖x?i − x0

i ‖2(i)

]
. (44)

Now, using the bound (6), we have 0 ≤ F (x̄k)− F ? ≤ Fβk(x̄k)− F ? + βk
D2
h∗
2 . Combining this

estimate and the above inequality, and noting that βk ≤ β1(1+τ0)
τ0k+1 by Lemma A.2, we obtain the

bound in (8). �

B.2 The proof of Theorem 3.4
Since h(u) = δ{c}(u), we can smooth this function as hβ(u) = maxy

{
〈u− c, y〉 − β

2 ‖y − ẏ‖
2
}

.
Let us first define Sβ(x) := E [F (x) + hβ(Ax)− F ?]. Since h∗(y) = 〈c, y〉, we use Lemma A.1(e)
to estimate (38) in the proof of Theorem 3.3 instead of Lemma A.1(d) to obtain

ϕβk+1
(x̂k) + τk〈∇ϕβk+1

(x̂k), x? − x̃k〉 ≤ (1− τk)ϕβk(x̄k) + τkh(Ax?)

− (1− τk)βk+1

2βk
[βk+1 − (1− τk)βk] ‖y∗βk+1

(Ax̄k)− ẏ‖2. (45)

Hence, if βk+1 = (1− τk)βk, then ϕβk+1
(x̂k) + τk〈∇ϕβk+1

(x̂k), x? − x̃k〉 ≤ (1− τk)ϕβk(x̄k) +
τkh(Ax?). Now, we combine the condition βk+1 = (1− τk)βk and (42), we can show that

τ2
k

(
(1− τk)βkL̂i + ‖Ai‖2

)
≤ (1− τk)2τ2

k−1

(
βkL̂i + ‖Ai‖2

)
.

This condition holds if τ2
k = (1− τk)2τ2

k−1, which leads to τk = τk−1

τk−1+1 . This is the update rule (11)

of the algorithm. It is trivial to show that τk = 1
k+τ−1

0

and βk = β1

τ0(k−1)+1 . Now, we apply (44) to
obtain the bound

Sβk(x̄k) ≤ C∗

τ0(k − 1) + 1
, where C∗ := (1− τ0)(Fβ0

(x0)− F ?) +

n∑
i=1

τ0B
0
i

2qi
‖x?i − x0

i ‖2(i).
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Now, let us define the dual problem of (1) as

max
y∈Rm

{
min
x∈Rp

F (x) + 〈Ax, y〉 − h∗(y)

}
, (46)

and denote an optimal point of (46) as y?. We define Dβk(x) := F (x) + hβk(Ax)− F ? and apply
[9, Lemma 1] to obtain algorithm-independent duality bounds F (x̄k)− F ? ≤ Dβk(x̄k) + ‖y?‖

∥∥Ax̄k − b∥∥+ βk
2 ‖y

? − ẏ‖2 ,

‖Ax̄k − b‖ ≤ βk
[
‖y? − ẏ‖+

(
‖y? − ẏ‖2 + 2β−1

k Dβk(x̄k)
)1/2]

.
(47)

The result in (12) follows by taking the expectation and using the concavity of the square-root and
Jensen’s inequality. �

B.3 The proof of Corollary 3.5
From the update in (13), we get the trivial inequality, similar to (27), that

τkB
k
i

2qi
‖¯̃xk+1

i − x̃ki ‖2(i) ≤ 〈∇iψβk+1
(x̂k), x?i − ¯̃xk+1

i 〉

+
τkB

k
i

2qi

(
‖¯̃xk+1

i − x?i ‖2(i) − ‖x̃
k
i − x?i ‖2(i)

)
. (48)

Due to the specific Step 8 in Section 3.5, instead of (33), we get

Eik
[
F̂ k+1
βk+1

| Fk
]

= Eik
[
f(x̄k+1) | Fk

]
+ Eik

[
ĝk+1 | Fk

]
+ Eik

[
ϕβk+1

(x̄k+1) | Fk
]

≤

[
f(x̂k) + τk

n∑
i=1

〈∇if(x̂k), ¯̃xk+1
i − x̃ki 〉

]

+

[
ϕβk+1

(x̂k) + τk

n∑
i=1

〈∇iϕβk+1
(x̂k), ¯̃xk+1

i − x̃ki 〉

]

+

n∑
i=1

τ2
k

2qi

(
L̂i +

‖Ai‖2

βk+1

)
‖¯̃xk+1

i − x̃ki ‖2(i). (49)

Plugging(48) into the last inequality gives us

Eik
[
F̂ k+1
βk+1

| Fk
]

= Eik
[
f(x̄k+1) | Fk

]
+ Eik

[
ĝk+1 | Fk

]
+ Eik

[
ϕβk+1

(x̄k+1) | Fk
]

≤
[
f(x̂k) + τk〈∇f(x̂k), x? − x̃k〉

]
+
[
ϕβk+1

(x̂k) + τk〈∇ϕβk+1
(x̂k), x? − x̃k〉

]
+

n∑
i=1

τ2
kB

k
i

2qi

(
‖x?i − x̃ki ‖2(i) − ‖x

?
i − ¯̃xk+1

i ‖2(i)
)
. (50)

If we let Qk :=
∑n
i=1

τ2
kB

k
i

2qi

(
‖x?i − x̃ki ‖2(i) − ‖x

?
i − ¯̃xk+1

i ‖2(i)
)

, then similar to (40), we get

Qk = Eik

[
n∑
i=1

τ2
kB

k
i

2q2
i

(
‖x?i − x̃ki ‖2(i) − ‖x

?
i − x̃k+1

i ‖2(i)
)
| Fk

]
. (51)

Consequently, by using the same updates for τk and βk, the recursion in (41) becomes

E
[
F̂ k+1
βk+1
−F ?

]
+ E

[
n∑
i=1

τ2
kB

k
i

2q2
i

‖x?i−x̃k+1
i ‖

2
(i)

]
≤ (1− τk)E

[
F̂ kβk − F

?
]

+ E

[
n∑
i=1

τ2
kB

k
i

2q2
i

‖x?i − x̃ki ‖2(i)

]
. (52)
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Hence, we finally get

E
[
Fβk(x̄k)− F ?

]
≤ 1

τ0(k − 1) + 1

[
(1− τ0)(Fβ0

(x0)− F ?) +

n∑
i=1

τ2
0B

0
i

2q2
i

‖x?i − x0
i ‖2(i)

]
.

Noting that τ0 = 1, we get

Sβk(x̄k) ≤ C∗

k
, where C∗ :=

n∑
i=1

B0
i

2q2
i

‖x?i − x0
i ‖2(i). (53)

By using the bound of {βk}k≥1 as in Lemma A.2, we obtain the bound (15). For the constrained case,
we use (53) on (47), with the specific update rule of {βk} for the constrained case, to obtain (16)
using the same arguments as in the Proof of Theorem 3.4. �

C Equivalence of SMART-CD and Efficient SMART-CD

In this appendix, we give a proof by induction for the equivalence of Algorithm 1 and Algorithm 2
motivated by [4].

C.1 The proof of Proposition 3.1
The claim trivially holds for k = 0 using the initialization of the parameters. Assume that the relations
hold for some k. Using Step 7 of Algorithm 2, we have

z̃k+1
ik

= z̃kik + tk+1
ik

. (54)

We can write from Step 6 of Algorithm 2 that

tk+1
ik

= argmin
t∈Rpik

{
〈∇ikf(cku

k + z̃k) +A>iky
∗
βk+1

(
ckAu

k +Az̃k
)
, t〉+ gik(t+ z̃kik)

+
τkB

k
ik

2τ0
‖t‖2(ik)

}
= argmin

t∈Rpik

{
〈∇ikf(ẑk) +A>iky

∗
βk+1

(
Aẑk

)
, t〉+ gik(t+ z̃kik) +

τkB
k
ik

2τ0
‖t‖2(ik)

}
= argmin

t∈Rpik

{
〈∇ikf(x̂k) +A>iky

∗
βk+1

(
Ax̂k

)
, t〉+ gik(t+ x̃kik) +

τkB
k
ik

2τ0
‖t‖2(ik)

}
= −x̃kik + arg min

x∈Rpik

{
〈∇ikf(x̂k) +A>iky

∗
βk+1

(
Ax̂k

)
, x− x̂kik〉+ gik(x)

+
τkB

k
ik

2τ0
‖x− x̃kik‖

2
(ik)

}
= −x̃kik + x̃k+1

ik
.

By (54) and the inductive assumption on x̃k, we obtain

z̃k+1 = x̃k+1.

Next, using the definition of z̄k+1 and Step 8, we can derive

z̄k+1 = cku
k+1 + z̃k+1 = ck

(
uk −

1− τk/τ0
ck

(z̃k+1 − z̃k)

)
+ z̃k+1

= cku
k + z̃k +

τk
τ0

(z̃k+1 − z̃k)

= ẑk +
τk
τ0

(z̃k+1 − z̃k)

= x̂k +
τk
τ0

(x̃k+1 − x̃k)

= x̄k+1.
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Finally, we use the definition of ẑk+1, ck and Step 9 of Algorithm 1, we arrive at

ẑk+1 = ck+1u
k+1 + z̃k+1

=
ck+1

ck
(x̄k+1 − z̃k+1) + z̃k+1

= (1− τk+1)(z̄k+1 − z̃k+1) + z̃k+1

= (1− τk+1)(x̄k+1 − x̃k+1) + x̃k+1

= (1− τk+1)x̄k+1 + τk+1x̃
k+1

= x̂k+1.

Hence, we can conclude that Algorithm 1 and Algorithm 2 are equivalent. �
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