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Abstract

Online sparse linear regression is the task of applying linear regression analysis
to examples arriving sequentially subject to a resource constraint that a limited
number of features of examples can be observed. Despite its importance in many
practical applications, it has been recently shown that there is no polynomial-
time sublinear-regret algorithm unless NPCBPP, and only an exponential-time
sublinear-regret algorithm has been found. In this paper, we introduce mild as-
sumptions to solve the problem. Under these assumptions, we present polynomial-
time sublinear-regret algorithms for the online sparse linear regression. In addi-
tion, thorough experiments with publicly available data demonstrate that our al-
gorithms outperform other known algorithms.

1 Introduction

In online regression, a learner receives examples one by one, and aims to make a good prediction
from the features of arriving examples, learning a model in the process. Online regression has
attracted attention recently in the research community in managing massive learning data.In real-
world scenarios, however, with resource constraints, it is desired to make a prediction with only a
limited number of features per example. Such scenarios arise in the context of medical diagnosis of
a disease [3]] and in generating a ranking of web pages in a search engine, in which it costs to obtain
features or only partial features are available in each round. In both these examples, predictions need
to be made sequentially because a patient or a search query arrives online.

To resolve the above issue of limited access to features, Kale [8]] proposed online sparse regression.
In this problem, a learner makes a prediction for the labels of examples arriving sequentially over
a number of rounds. Each example has d features that can be potentially accessed by the learner.
However, in each round, the learner can acquire the values of at most &’ features out of the d features,
where k' is a parameter set in advance. The learner then makes a prediction for the label of the
example. After the prediction, the true label is revealed to the learner, and the learner suffers a
loss for making an incorrect prediction. The performance of the prediction is measured here by the
standard notion of regret, which is the difference between the total loss of the learner and the total
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Table 1: Computational complexity of online sparse linear regression.

Assumptions Time complexity

@ @) (@ (b

v v Hard [6]

v v Hard (Theorem

v v v Polynomial time (Algorithms|1] 2)
v v v' | Polynomial time (Algorithm

loss of the best predictor. In [8]], the best predictor is defined as the best k-sparse linear predictor,
i.e., the label is defined as a linear combination of at most k features.

Online sparse regression is a natural online variant of sparse regression; however, its computational
complexity was not well known until recently, as Kale [8] raised a question of whether it is possible
to achieve sublinear regret in polynomial time for online sparse linear regression. Foster et al. [6]
answered the question by proving that no polynomial-time algorithm achieves sublinear regret unless
NPCBPP. Indeed, this hardness result holds even when observing Q2(k log d) features per example.
On the positive side, they also proposed an exponential-time algorithm with sublinear regret, when
we can observe at least k£ + 2 features in each round. However, their algorithm is not expected to
work efficiently in practice. In fact, the algorithm enumerates all the ( g,) possibilities to determine
k' features in each round, which requires exponential time for any instance.

Our contributions. In this paper, we show that online sparse linear regression admits a
polynomial-time algorithm with sublinear regret, under mild practical assumptions. First, we as-
sume that the features of examples arriving online are determined by a hidden distribution (Assump-
tion (1)), and the labels of the examples are determined by a weighted average of k features, where
the weights are fixed through all rounds (Assumption (2)). These are natural assumptions in the
online linear regression. However, Foster et al. [6] showed that no polynomial-time algorithm can
achieve sublinear regret unless NPCBPP even under these two assumptions

Owing to this hardness, we introduce two types of conditions on the distribution of features, both
of which are closely related to the restricted isometry property (RIP) that has been studied in the
literature of sparse recovery. The first condition, which we call linear independence of features
(Assumption (a)), is stronger than RIP. This condition roughly says that all the features are lin-
early independent. The second condition, which we call compatibility (Assumption (b)), is weaker
than RIP. Thus, an instance having RIP always satisfies the compatibility condition. Under these
assumptions, we propose the following three algorithms. Here, T is the number of rounds.

e Algorithm 1: A polynomial-time algorithm that achieves O(k%k\/f ) regret, under As-
sumptions (1), (2), and (a), which requires at least k£ + 2 features to be observed per exam-
ple.

e Algorithm 2: A polynomial-time algorithm that achieves O(v/dT + ,‘j,%) regret, under
Assumptions (1), (2), and (a), which requires at least k features to be observed per example.

e Algorithm 3: A polynomial-time algorithm that achieves O(v/dT + ,‘j%) regret, under
Assumptions (1), (2), and (b), which requires at least k features to be observed per example.

We can also construct an algorithm achieving O(ﬁ \/T) regret under Assumption (b) for the case
where k' > k + 2, analogous to Algorithm 1, but we omit it due to space limitations.

Assumptions (1)+(2)+(a) or (1)4+(2)+(b) seem to be minimal assumptions needed to achieve sub-
linear regret in polynomial time. Indeed, as listed in Table |1} the problem is hard if any one of the
assumptions is violated, where hard means that no polynomial-time algorithm can achieve sublinear
regret unless NPCBPP. Note that Assumption (a) is stronger than (b).

In addition to proving theoretical regret bounds of our algorithms, we perform thorough experi-
ments to evaluate the algorithms. We verified that our algorithms outperform the exponential-time
algorithm [6] in terms of computational complexity as well as performance of the prediction. Our
algorithms also outperform (baseline) heuristic-based algorithms and algorithms proposed in [12} [7]]

! Although the statement in [6]] does not mention the assumptions, its proof indicates that the hardness holds
even with these assumptions.



for online learning based on limited observation. Moreover, we observe that our algorithms perform
well even for a real dataset, which may not satisfy our assumptions (deciding whether the model
satisfies our assumptions is difficult; for example, the RIP parameter cannot be approximated within
any constant factor under a reasonable complexity assumption [10]). Thus, we can conclude that
our algorithm is applicable in practice.

Overview of our techniques. One naive strategy for choosing a limited number of features is to
choose “large-weight” features in terms of estimated ground-truth regression weights. This strategy,
however, does not achieve sublinear regret, as it ignores small-weight features. When we have
Assumption (a), we show that if we observe two more features chosen uniformly at random, together
with the largest k features, we can make a good prediction. More precisely, using the observed
features, we output the label that minimizes the least-square loss function, based on the technique
using an unbiased estimator of the gradient [2, [7]] and the regularized dual averaging (RDA) method
(see, e.g., [12L 4]). This idea gives Algorithm[I] and the details are given in Section 4] The reason
why we use RDA is that it is efficient in terms of computational time and memory space as pointed
out in [12] and, more importantly, we will combine this with the ¢; regularization later. However,
this requires at least k£ + 2 features to be observed in each round.

To avoid the requirement of two extra observations, the main idea is to employ Algorithm [T] with
a partial dataset. As a by-product of Algorithm [I] we can estimate the ground-truth regression
weight vector with high probability, even without observing extra features in each round. We use
the ground-truth weight vector estimated by Algorithm [1|to choose k features. Combining this idea
with RDA adapted for the sparse regression gives Algorithm 2 (Section[5.1)) under Assumption (a).

The compatibility condition (Assumption (b)) is often used in LASSO (Least Absolute Shrinkage
and Selection Operator), and it is known that minimization with an ¢; regularizer converges to the
sparse solution under the compatibility condition [[1]]. We introduce ¢; regularization into Algo-
rithm|[T]to estimate the ground-truth regression weight vector when we have Assumption (b) instead
of Assumption (a). This gives Algorithm 3 (Section[5.2).

Related work. In the online learning problem, a learner aims to predict a model based on the
arriving examples. Specifically, in the linear function case, a learner predicts the coefficient w; of

a linear function W;'— x; whenever an example with features x; arrives in round ¢. The learner then

suffers a loss £;(w;) = (y: — w, x¢)?. The aim is to minimize the total loss Zthl (b (wy) — L (w))
for an arbitrary w. It is known that both the gradient descent method [13] and the dual averaging
method [[12] attain an O(\/T ) regret even for the more general convex function case. However, these
methods require access to all features of the examples.

In linear regression with limited observation, the limited access to features in regression has been
considered [22,[7]. In this problem, a learner can acquire only the values of at most &’ features among
d features. The purpose here is to estimate a good weight vector, e.g., minimize the loss function
£(w) or the loss function with ¢; regularizer ¢(w) + ||w||;. Let us note that, even if we obtain a
good weight vector w with small £(w), we cannot always compute w ' x; from limited observation
of x; and, hence, in our setting the prediction error might not be as small as ¢(w). Thus, our setting
uses a different loss function, defined in Section E], to minimize the prediction error.

Another problem incorporating the limited access is proposed by Zolghadr et al. [14]. Here, instead
of observing k' features, one considers the situation where obtaining a feature has an associated cost.
In each round, one chooses a set of features to pay some amount of money, and the purpose is to
minimize the sum of the regret and the total cost. They designed an exponential-time algorithm for
the problem.

Online sparse linear regression has been studied in [6, (8], but only an exponential-time algorithm
has been proposed so far. In fact, Foster et al. [[6] suggested designing an efficient algorithm for a
special class of the problem as future work. The present paper aims to follow this suggestion.

Recently, Kale et al. [9ﬂ presented computationally efficient algorithms to achieve sublinear regret
under the assumption that input features satisfy RIP. Though this study includes similar results to
ours, we can realize some differences. Our paper considers the assumption of the compatibility
condition without extra observation (i.e., the case of k' = k), whereas Kale et al. [9] studies a

>The paper [9] was published after our manuscript was submitted.



stronger assumption with extra observation (k' > k + 2) that yields a smaller regret bound than
ours. They also studies the agnostic (adversarial) setting.

2 Problem setting

Online sparse linear regression. We suppose that there are T" rounds, and an example arrives
online in each round. Each example is represented by d features and is associated with a label,
where features and labels are all real numbers. We denote the features of the example arriving in
round ¢ by x; = (241,...,2¢q) " € {x € R?| ||x|| < 1}, where the norm || - || without subscripts
denotes the /5 norm. The label of each example is denoted by y; € [—1,1].

The purpose of the online sparse regression is to predict the label y; € R from a partial observation
of x; ineachround t = 1,...,T. The prediction is made through the following four steps: (i) we
choose a set S; C [d] := {1,...,d} of features to observe, where |S;| is restricted to be at most £’;
(ii) observe the selected features {zy; }ics,; (iil) on the basis of observation {z¢; };es,, estimate a
predictor g; of y,;; and (iv) observe the true value of ;.

From S;, we define D; € R?*9 to be the diagonal matrix such that its (i, 4)th entries are 1 fori € S;
and the other entries are 0. Then, observing the selected features {x¢; }ics, in (ii) is equivalent to
observing D,;x;. The predictor g, is computed by ¢, = WtT D;xy in (iii).

Throughout the paper, we assume the following conditions, corresponding to Assumptions (1) and
(2) in Section [I] respectively.

Assumption (1) There exists a weight vector w* € R? such that [|[w| < 1and y; = w*Tx; + ¢
forallt = 1,...,T, where ¢, ~ D,, independent and identically distributed (i.i.d.), and
Ele;] = 0, E[e;%] = 2. There exists a distribution Dy on R¢ such that x; ~ Dy, i.i.d. and
independent of {¢; }.

Assumption (2) The true weight vector w* is k-sparse, i.e., S* = supp(w*) = {i € [d] | w] # 0}
satisfies |S*| < k.

Regret. The performance of the prediction is evaluated based on the regretr Rr(w) defined by

T T
= =) =Y (wix — ) (1)
t=1

t=1

Our goal is to achieve smaller regret Ry (w) for an arbitrary w € R< such that |[w|| < 1 and
lwllo < k. For random inputs and randomized algorithms, we consider the expected regret
MaXy:w o <k lwl <1 EIRT(W)).

Define the loss function ;(w) = (W' x; — y;)2. If we compute a predictor §; = w, D;x; using

a weight vector w; = (wy1, ..., wyq) | € R in each step, we can rewrite the regret Rz (w) in (T)
using D, and wy as

T
= > (l(Dywy) — ty(w)) )
t=1

because (9 — y:)? = (w, Dyx¢ — y¢)? = £;(Dywy). Tt is worth noting that if our goal is only to
construct w, that minimizes the loss function ¢;(w), then the definition of the regret should be

T
= (le(wr) = l(w)). 3)
t=1

However, the goal of online sparse regression involves predicting y; from the limited observation.
Hence, we use (2) to evaluate the performance. In terms of the regret defined by (3)), several algo-
rithms based on limited observation have been developed. For example, the algorithms proposed by

Cesa-Bianchi et al. [3]] and Hazan and Koren [7]] achieve O(\/T ) regret of (3).



3 Extra assumptions on features of examples

Foster et al. [6]] showed that Assumptions (1) and (2) are not sufficient to achieve sublinear regret.
Owing to this observation, we impose extra assumptions.

Let V := E[x/ x;] € R?*? and let L be the Cholesky decomposition of V' (i.e., V = LT L). Denote
the largest and the smallest singular values of L by o} and o, respectively. Under Assumption (1)
in Section [2| we have 0; < 1 because, for arbitrary unit vector u € R<, it holds that u' Vu =
E[(u'x)?] < 1. For a vector w € R[4 and S C [d], we let wg denote the restriction of w onto S.
For S C [d], S¢ denotes [d] \ S. We assume either one of the following conditions holds.

(a) Linear independence of features: o; > 0.

(b) Compatibility: There exists a constant ¢y > 0 that satisfies ¢3||ws- || < kw T Vw for all

w € R with [|[w(ge)e |1 < 2wsg-

1-

We assume the linear independence of features in Sections @ and [5.1} and the compatibility in Sec-
tion[5.2]to develop efficient algorithms.

Note that condition (a) means that L is non-singular, and so is V. In other words, condition (a)
indicates that the features in x; are linearly independent. This is the reason why we call condition
(a) the “linear independence of features” assumption. Note that the linear independence of features
does not imply the stochastic independence of features.

Conditions (a) and (b) are closely related to RIP. Indeed, condition (b) is a weaker assumption than
RIP, and RIP is weaker than condition (a), i.e., (a) linear independence of features =—> RIP —
(b) compatibility (see, e.g., [[1]). We now clarify how the above two assumptions are connected to
the regret. The expectation of the loss function ¢;(w) is equal to

Ex, .y, [0t(W)] = Ex,nppc,op, (W x¢ — W x50 — )]
= Ex,op, (W= W) 'x)?] + E,op,[6] €] = (W — W) V(W — w*) + 07

for all ¢, where the second equality comes from E[e;] = 0 and that x; and ¢; are independent. Denote
this function by ¢(w), and then ¢(w) is minimized when w = w*. If D; and w; are determined
independently of x; and y;, the expectation of the regret Ry (w) satisfies

E[Ry(w)] = E[>_(U(Dewi) — (w))] <E[Y_(U(Dewy) — ((w*))]
t=1 t=1
=E) _(Dyw; — w*) T V(Dyw, — w*)] = E[Y _ | L(Dywe — w*)[|]. (4)

We bound (@) in the analysis.

Hardness result. Similarly to [6], we can show that it remains hard under Assumptions (1), (2),
and (a). Refer to Appendix A for the proof.

Theorem 1. Let D be any positive constant, and let cp € (0,1) be a constant dependent on D.
Suppose that Assumptions (1) and (2) hold with k = O(d°?) and k' = |kDInd|. If an algorithm
for the online sparse regression problem runs in poly(d, T') time per iteration and achieves a regret
at most poly(d, 1/c4)T~° in expectation for some constant § > 0, then NPCBPP.

4 Algorithm with extra observations and linear independence of features

In this section, we present Algorithm Here we assume Kk’ > k + 2, in addition to the linear
independence of features (Assumption (a)). The additional assumption will be removed in Section@

As noted in Section [2| our algorithm first computes a weight vector w;, chooses a set S; of k'
features to be observed, and computes a label g, by y; = th D;x; in each round ¢. In addition,
our algorithm constructs an unbiased estimator g; of the gradient g; of the loss function ¢, (w) at
W = Wy, ie, g = Vwli(w;) = 2x4(x] w; — y;) at the end of the round. In the following, we
describe how to compute w;, Sy, and g; in round ¢, respectively, assuming that wy/, Sy, and g,/ are
computed in the previous rounds ¢’ = 1,...,¢— 1. The entire algorithm is described in Algorithm



Algorithm 1

Input: {x;,y:} CR? xR, {\;} CRog, k' >2and k; > 0suchthat by <k’ — 2.
1: Set flo =0.
2: fort=1,...,T do

3:  Define w; by (3) and define S; by Observe(wy, k', k7).

4:  Observe Dyx; and output §; := W, D;x;.

5

6

Observe y; and define g; by (6) and set flt = flt,l + 8
: end for

Computing w;. We use g;,...,8;—1 to estimate w; by the dual averaging method as follows.
Define h;_; = Zz;ll §;, which is the average of all estimators of gradients computed in the pre-
vious rounds. Moreover, let (A, ..., A7) be a monotonically non-decreasing sequence of positive

numbers. From these, we define w; by

~ A 1 R
wi= agmin {B] w5l | = - R )
weR? ||w| <1 2 max{ A, |[hy—1]|}

Computing S;. Let &y be an integer such that k; < k' — 2. We define U; C [d] as the set of the k;
largest features with respect to wy, i.e., choose Uy so that |U;| = k; and all i € Uy and j € [d] \ Uy
satisfy |wy;| > |wy;|. Let V; be the set of (k' — k1) elements chosen from [d] \ U; uniformly at
random. Then our algorithm observes the set S; = U, UV} of the k' features. We call this procedure
to obtain S; Observe(wy, k', k).

Observation 1. We observe that Uy C S and Prob[i,j € Si] > % =: Cap k-
Thus, Prob[i,j € St] > 0foralli,j € [d] if k' > ki + 2.

For simplicity, we use the notation pgt) = Prob[i € S¢] and pg) = Probli,j € S| fori,j € [d].

Computing ;. Define X; = (71;) € R¥*? by X; = Dyx/ x;D; and let X; € R¥*? be a matrix
whose (¢, j)-th entry is Zy;;/ pgé). It follows that X; is an unbiased estimator of x;x, . Similarly,
defining z; = (2¢) € R by 2y = xti/pgt) fori € S; and z;; = 0 for @ ¢ S;, we see that z; is an
unbiased estimator of x;. Using X; and z;, we define g; to be

& = 2Xywy — 2y24. (6)

Regret bound of Algorithm [T, Let us show that the regret achieved by Algorithm [] is
O(7% VT) in expectation.

Theorem 2. Suppose that the linear independence of features is satisfied and k < k' — 2. Let k1
be an arbitrary integer such that k < ki < k' — 2. Then, for arbitrary w € R with ||w|| < 1,

Algorithmachieves E[Rr(w)] < U% ( 16 Zthl )\% + ’\T;]) . By setting \y = 8/t/Cu s 1y

Ca kg

foreacht =1,...,T, we obtain

E[Rr(w)] < 3%\/0@’ - k?g?k’—l)kl gy VTAL (7)

The rest of this section is devoted to proving Theorem [2] By (@), it suffices to evaluate

E[Zthl |L(Dyw; — w*)||?] instead of E[Rr(w)]. The following lemma asserts that each term
of (4) can be bounded, assuming the linear independence of features. Proofs of all lemmas are given
in the supplementary material.

Lemma 3. Suppose that the linear independence of features is satisfied. If Sy 2 U,

. 3 "
IL(Dewe — w)|* < lL(we —w )% ®)
d



Proof. We have

IL(Dew: = w*)|? < oF[Dewy —wi [P =0f | D (wu—w))+ Y wit+ Y w

i€S*NS, i€S*\ S, i€S\S*
2 2 2
<ot [we—w P+ D wi®], )

1€S*\ St

where the second inequality holds since w; = 0 for i € [d] \ S*. It holds that

Z wi? < Z wi? < Z 2wn—|—2wm—w)2)

1€S5*\ St i€S*\Uy i€S*\Uy
<2 > wi+2 Y (wy—w))? < 2llwy — w2, (10)
i€U\S* 1€S*\Uy

The first and third inequalities come from U; C S; and the definition of U;. Putting (I0) into (),
we have

| L(Dywy — w*)||* < 307 ||wy — w*||> < 7021 | L(w: — w™)|>.
d
O

It follows from the above lemma that, if w; converges to w*, we have D;w, = w*, and hence S
includes the support of w*. Moreover, it holds that Zthl E[||L(w; —w")|?] = E[Z,ET:1 (L (wy) —
l(w*))] = E[R-(w*)], since w; is independent of x; and y;. Thus, to bound Zthl E[||L(w; —
w*)||?], we shall evaluate E[R/.(w™)].

Lemma 4 ([12]). Suppose that w; is defined by () for eacht = 1,...,T, and w € R? satisfies
lw| < 1. Let Gy = E[||g:||?] fort = 1,...,T. Then,

/ a 1 /\T+1
w)] SZYG“LT' (11)
t=1 "t

If G; = O(1) and \; = O(v/1), the right-hand side of (TT)) is O(v/T'). The following lemma shows
that this is true if p( ) = =Q(1).

Lemma 5. Suppose that the linear independence of features is satisfied. Let t € [T, and let q be a
positive number such that q¢ < min{pl(-t) , pg)} Then we have Gy < 16/q.

We are now ready to prove Theorem 2]

Proof of Theorem 2] The expectation E[Rp(w)] of the regret is bounded as E[Rp(w)] <
S Bl L(Dewe = w)|P] < 2% 30 Bl L(we — w)|?] = ZE[Ry(w")], where the first
inequality comes from (@) and the second comes from Lemma [3| From Lemma {4 E[R/(w*)]
is bounded by E[R.(w*)] < Hyp := ZtT 1 /\1t Gy + ’\T“ . Lemma [5| and Observation yield
G, < 16/Cd K.k, - Hence, for \y = 8\/Cax k,t, Hr satlsﬁes Hp < Zt Een ,56,9 5+ 5t =
Zt 1 \/Cd ot \/C;kakl VI+1< SW\/T + 1. Combining the above three inequali-

ties, we obtain (7). O

5 Algorithms without extra observations

5.1 Algorithm 2: Assuming (a) the linear independence of features

In Section@ Lemma showed a connection between Ry and RY: E[Ryp(w)] < %E[R’T (w*)]

under U; C S;. Then, Lemmasandgave an upper bound of E[R-(w*)]: B[Ry (w*)] = O(VT)



under pz(-;-) = Q(1). In the case of ¥’ = k, however, the conditions U; C S; and pl(-;-) = Q(1) may

not be satisfied simultaneously, since, if Uy C Sy and |S;| = k' = k > k; = |Uy|, then we have

U; = S, which means pg) = 0for¢ ¢ Uy or j ¢ Uy. Thus, we cannot use both relationships for the
analysis. In Algorithm 2, we bound Ry (w) without bounding R’-(w).

Let us describe an idea of Algorithm 2. To achieve the claimed regret, we first define a subset .J
of {1,2,...,T} by the set of squares, i.e., J = {s> | s = 1,...,|[VT]}. Let t, denote the s-th
smallest number in J for each s = 1, ..., |J|. In each round ¢, the algorithm computes S;, a weight
vector Wy, and a vector D;g;, where g; is the gradient of ¢;(w) at w = D;Wy. In addition, if t = ¢,
the algorithm computes other weight vectors w, and w := % 2;21 w;, and an unbiased estimator
g, of the gradient of the loss function ¢;(w) at w.

At the beginning of round ¢, if ¢ = t;, the algorithm first computes w,, and w is defined as the
average of wi,...,w,. Roughly speaking, w, is the weight vector computed with Algorithm [I]
applied to the examples (x¢,,4t,),-- ., (®1., ye. ), setting k1 to be at most k& — 2. Then, we can
show that W is a consistent estimator of w*. This step is only performed if ¢ € J. Then S; is
defined from w, where s is the largest number such that t; < ¢. Thus, S; does not change for any
t € [ts,ts+1 — 1]. After this, the algorithm computes W, from D1 g1, ..., D;_18:_1, and predicts
the label of x; as ; := vNV;r Dyx;. At the end of the round, the true label y; is observed, and D;g;
is computed from w; and (D;x;, y;). In addition, if ¢ = ¢, g is computed as in Algorithm We
need g for computing w with s’ > s in the subsequent rounds ¢,.

The following theorem bounds the regret of Algorithm 2. See the supplementary material for details
of the algorithm and the proof of the theorem.

Theorem 6. Suppose that (a), the linear independence of features, is satisfied and k < k'. Then,
there exists a polynomial-time algorithm such that E[ Ry (w)] is at most

. C3 1 o(TT = 1)|wi[?03 /| 4096
8(1-+Vd)VT + 1+12T Y w]| exp(——4* YRS +4> ]| WH)?,
i€S* icS* !

for arbitrary w € R with ||w|| < 1, where Cy s o = % = O(’fi;2 ).2

5.2 Algorithm 3: Assuming (b) the compatibility condition

Algorithm 3 adopts the same strategy as Algorithm 2 except for the procedure for determining w
and w,. In the analysis of Algorithm 2, we show that, to achieve the claimed regret, it suffices to
generate {S;} that satisfies Zthl Prob[i ¢ S;] = O(V/T) fori € S*. The condition was satisfied
by defining S; as the set of k largest features with respect to a weight vector wy = Z‘;:l w;/s.
The linear independence of features guarantees that ws computed in Algorithm 2 converges to w*,
and hence {S;} defined as above possesses the required property. Unfortunately, if the assumption
of the independence of features is not satisfied, e.g., if we have almost same features, then w does
not converge to w*. However, if we introduce an ¢;-regularization to the minimization problem in
the definition of w, and change the definition of W, to a weighted average of the modified vectors
w1, ..., Ws, then we can generate a required set {.S;} under the compatibility assumption. See the
supplementary material for details and the proof of the following theorem.

Theorem 7. Suppose that (b), the compatibility assumption, is satisfied and k < k'. Then, there
exists a polynomial-time algorithm such that E[Ry(w)] is at most

Cur oV TT—1|w?|? 64 - 364k2
B(L+VAVTHL + 12T ] exp(— 20V il % )+ 4w L+1)2,

5 5832k 5 C’ﬁ k. oWi g
for arbitrary w € R% with ||w|| < 1, where Cy o = k(;gsl_j) = klz II

3 The asymptotic regret bound mentioned in Section l can be yielded by bounding the second term with

the aid of the following: maxr>o T exp(—aT?) = (af)” B exp(—1/p) for arbitrary o > 0, 8 > 0.
*Note that ¢y is the constant appearing in Assumption (b) in Section



6 Experiments

In this section, we compare our algorithms with the following four baseline algorithms: (i) a greedy
method that chooses the &’ largest features with respect to w; computed as in Algorithm 1; (ii)
a uniform-random method that chooses k' features uniformly at random; (iii) the algorithm of [7]]
(called AELR); and (iv) the algorithm of [[6] (called FKK). Owing to space limitations, we only
present typical results here. Other results and the detailed descriptions on experiment settings are
provided in the supplementary material.

Synthetic data. First we show results on two kinds of synthetic datasets: instances with (d, k, k')
and instances with (d, k1, k). We set k; = k in the setting of (d, k, k') and &’ = k in the setting of
(d, k1, k). The instances with (d, k, k') assume that Algorithm [I| can use the ground truth k, while
Algorithm I| cannot use k in the instances with (d, k1, k). For each (d,k,k’) and (d, k1, k), we
executed all algorithms on five instances with 7' = 5000 and computed the averages of regrets and
run time, respectively. When (d, k, k') = (20,5, 7), FKK spent 1176 s on average, while AELR
spent 6 s, and the others spent at most 1 s.

Figures [T] and [2] plot the regrets given by (I)) over the number of rounds on a typical instance with
(d,k, k") = (20,5,7). Tables 2] and 3| summarize the average regrets at 7' = 5000, where Al, A2,
A3, G, and U denote Algorithm 1, 2, 3, greedy, and uniform random, respectively. We observe that
Algorithm |1| achieves smallest regrets in the setting of (d, k, k'), whereas Algorithms 2 and 3 are
better than Algorithm 1 in the setting of (d, k1, k). The results match our theoretical results.
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Figure 1: Plot of regrets with  Figure 2: Plot of regrets with

(d, k, k') = (20,5,7) (d, k1, k) = (20,5,7) Figure 3: CT-slice datasets
Table 2: Values of Rr/10> when changing Table 3: Values of R7/10?> when changing
(d, k. k"). (d, k1, k).

(dk,k) | Al A2 A3 G U AELR FKK (d,k1,k) [ Al A2 A3 G U  AELR FKK

(10,2;4) | 153 238 3.60 3328 2573 60.76 24.05 (1024) 2688 2059 17.19 43.03 60.02 6475 5871

Real data. We next conducted experiments using a CT-slice dataset, which is available online [[11].
Each data consists of 384 features retrieved from 53500 CT images associated with a label that
denotes the relative position of an image on the axial axis.

We executed all algorithms except FKK, which does not work due to its expensive run time. Since
we do not know the ground-truth regression weights, we measure the performance by the first term
of (I, i.e., square loss of predictions. Figure [3| plots the losses over the number of rounds. The
parameters are k; = 60 and &’ = 70. For this instance, the run times of Algorithms 1 and 2, greedy,
uniform random, and AELR were 195, 35, 147, 382, and 477 s, respectively.

We observe that Algorithms 2 and 3 are superior to the others, which implies that Algorithm 2 and 3
are suitable for instances where the ground truth k is not known, such as real data-based instances.
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Appendix

A Proof of Theorem /(1]

As is the case for Theorem 2 in [[6], our reduction starts from the work of Dinur and Steurer [5].

Theorem 8 ([3]). For any given constant D > 0, there is a constant cp € (0,1) and a poly(n?)-
time algorithm that takes a 3CNF formula ¢ of size n as input and constructs a Set Cover instance
over a ground set of size m = poly(n) with d = poly(n) sets, with the following properties:

1. if ¢ € SAT, then there is a collection of k = O(d°P) sets, which covers each element
exactly once; and

2. if ¢ ¢ SAT, then no collection of k' = | DIn(d)k] < d sets covers all elements; i.e., at
least one element is left uncovered.

The Set Cover instance generated from ¢ can be encoded as a binary matrix M, € {0, 1}™*< with
the rows corresponding to the elements of the ground set, and the columns corresponding to the
sets such that each column is the indicator vector of the corresponding set. From the definition of
My and the above theorem, if ¢ € SAT, then there exists a k-sparse binary vector z € {0,1}™
Myz = 1, where 1 is the all-ones vector, and if ¢ ¢ SAT, then for arbitrary S C [d] such that
|S] < k', there exists at least one row of My that is 0 in all the coordinates in S.

Using this reduction, we show that an algorithm Alg for online sparse algorithm with properties of
Theorem || can be used to give a BPP algorithm for SAT. Algorithm |4{is a randomized algorithm
for deciding satisfiability of a given 3CNF formula ¢ using the algorithm Alg. Since Step 3 runs
in polynomial time and since 7" is a polynomial in n and Alg runs in poly(d, T") time per iteration,
Algorithm [@]is a polynomial-time algorithm.

We now claim that this algorithm correctly decides satisfiability of ¢ with probability at least 3/4,
and is hence a BPP algorithm for SAT.

Suppose that ¢ € SAT. Then there exists a k-sparse vector z € {0,1}% such that Myz = 1,,.
Hence, for X and y defined in Algorithm@ we have

= min [|[Xw—y|? < min Xw —yl?

T I yllz < weRd Jwllo <k’ I yllz

1 1 1
<||l-—=Xz-y|2 = 722<7, (13)

which means that Step 5 is not executed. Since the ¢ norm of each row of X and each entry
of y are at most 1, it holds that ||x;|| < 1 and |y;] < 1. Next, let us see that x;,y, satisfies
Assumptions (1), (2), and (a). Since y = XW, it holds for all ¢ that 35, = W " z;, which means that
Assumption (1) holds, where ¢; = 0. From the definition of x;, x1, .. ., x follows a distribution on
R4 independently, and independent of ¢; because ¢; are constant, and, hence, Assumption (2) holds.
Moreover, V = E[x;x/] = ﬁX T X is non-singular (i.e., Assumption (a) holds) and has the

smallest singular value at least m. Indeed, for an arbitrary d-dimensional unit vector u € R¢, the

{3 norm of Xu = [—J= Myu; grtossul is at least gt and, hence, u" X TXu > ooy,
which means that o4, the smallest singular value of V' = #HX T X, is at least m. Let us

now show that E[ZtT:o (ye —1¢)?] < W. From the assumption on Alg, it holds for all k-sparse
vectors w that

E[Rr(w)] < pa(d, 16(m + d)")T"° < r

= T6(m+ (o

11



Algorithm 4 An algorithm for deciding satisfiability of 3CNF formula
Input: A constant D > 0, and an algorithm Alg for the (k, k', d)-online sparse regression problem,
where k, k', d and cp are the constants from Theorem [8] that runs in p;(d, T") time per itera-
tion, with expected regret bounded by po(d, 1/04)T"~° under Assumptions (1), (2), and (4) in
Section[2]and Assumption (a) in Section[3] A 3CNF formula ¢.
1: Compute the matrix M, and the associated parameters k, k', d, m from Theorem
2: Define X € R(m+dxd and y € R+ by

LM, 1
x=| y=[d01’”] (12)
Tomrae 1 d

3: Compute W € arg min || Xw — y||3 and define y = Xw, v = | Xw — y||3.
wER™
if ¥ > iz then
Return “unsatisfiable.”
end if
Run Alg with the parameters k,k'.d for T := [max{(16(m + d)°p1(d,16(m +
d)™))/? 256(m + d)'°}] iterations.
fort=1,...,7do
9:  Sample ¢ from [m + d] uniformly at random and set x; and y; to be the i-th row of X and the
i-th entry of y, respectively.
10:  Obtain a set of coordinates S; of size at most k&’ by running Alg, and provide it with the
coordinates x;(S).
11:  Obtain the prediction g; from Alg, and provide it with the true label y;.
12: end f%)r
13: if Zt:].(yt — th)2 < 2(7”%(05 then
14:  Return “satisfiable.”
15: else
16:  Return “unsatisfiable.”
17: end if

A A

o0

where the second inequality comes from 7' > (16(m + d)®p(d, 16(m + d)7))s. Since z is a
k-sparse binary vector, we have

1 - L 1
E[Rr(—=2z) =E]Y (1 —9)°] - ED (3 — —=2z'x)’]
7 ; Yr — 9 ; v s
) T 1
=E (4 — )] — ——ly - —=Xzlf3.

[; Ye — Ue)°] mrd 74

Since we have ||y — %Xz“% <ly- %XZH% < W, we obtain

T T T

E[) (y:— ?]t)Q] < 16(m + d)® + 16(m +d)7 = 8(m +d)5"

15)

B

t=1

Since Zthl(yt — @) is a non-negative random variable, by Markov’s inequality we conclude that
with probability at least 3/4, the total loss Zthl (ys — 9¢)? is bounded by Q(m%d)g, from above, and
hence Algorithm 4| correctly outputs “satisfiable.”

1642°
suffices to consider the case of v < ﬁ. Fix any round ¢ and let S; be the set of coordinates of size
at most k&’ selected by Alg to query. Since ¢ ¢ SAT, there is at least one element in the ground set
that is not covered by any set among these &’ sets. This implies that there is at least one row of My
that is O in all the coordinates in S;. Let d; denote the number of such rows. Further, the number d»

of rows of I that are 0 in all the coordinates in .S; is equal to d — k. Since x; is a uniformly random

Next, suppose ¢ ¢ SAT. If v > —L then Algorithmcorrectly outputs “unsatisfiable.” Hence, it

12



row of X chosen independently of S;, we have

di + da S 2

Prob[x:(S;) = 0] = mad S mad

(16)

The conditional probability that given x;(S;) = 0, ¢ in Step 9 is at most m is equal to T + o

Now, we claim that E[(y; — 9:)? | x¢(S:) = 0] > W
independent given x;(S;), we have E[( — )% | x¢(S¢) = 0] > var[y; | xt(St) = 0] Let us recall
that Prob[i <m | x(St) = 0] = - +d for 7 in Step 9. If i < m, then 3 > - and otherwise
Yy < 7 since the difference between y and y is bounded in absolute value by [ly—y|> < /7 < 1/3
and the ith element of ¥ is 1 if ¢ < m and 0 otherwise. Hence, given x:(S;) = 0, y; > 3 with
probability il B and y; < 1 with probability .Since dy,dy > land d; +dy <m + d, we
have E[(y: y,g)2 | x¢(St) = 0} Further, from (T6)), we obtain

Since y; and g; are conditionally

do
di+d2

1 1
(m,+d) " (2d)2 2 2(m+d)*-

E[(y — Z)t)Q] > E[(y: — Z?t)Q | x¢(S¢) = 0] - Prob[x;(S;) = 0] > 2(m:—d) mi— d = (m 41_ )5
(17)

Let E¢ denote the expectation of a random variable conditioned on all randomness prior to round .
Since the choices of x; and y; are independent of previous choices in each round, the same argument

also implies that E; [(y; —9¢)?] > m. Applying Azuma’s inequality to the martingale difference

sequence E¢[(y; — 9¢)?] — (y; — 9¢)? fort = 1,..., T, since each term is bounded in absolute value
by 4, we obtain

PTOb[Z Ee[(ye — 90)%] — (ye — 9¢)* = 8VT] < exp(—

t=1

64T
2-16T

(18)

1
< -
)_4

Thus, with probability at least 3/4, the total loss Z?Zl(yt — §¢)? is greater than Zle E[(y: —
91)%] —8VT > Gy VT > sGrrays sinee T > 256(m + d)'°. Thus, in the case of ¢ ¢ SAT,
AlgorithmE]correctly outputs “unsatisfiable” with probability at least 3/4.

B Preliminary lemmas

Before presenting the statement, let us introduce some notation. In the following, we use the fol-
lowing facts without notice:

o gl = 2||x¢(x] w; — y;)|| is bounded from above by 4; and

o |{;(w) — £(w)] is bounded from above by 8;

which come from w < 1, ||x¢]| < 1 and |y;| < 1. Further, we define the following numbers for
notational convenience:

o G =4/Cq r,,an upper bound of ||g; —
o C=128/C3,,,, =8G

The following lemma is used for bounding R/-(w).

Lemma9. Let (A1, ..., A1) be a monotonically non-decreasing sequence of positive numbers, and
let (¢1, .- .,C(T) be a sequence of non-negative numbers. If w; is defined by

we= argmin {(Bw+ 2w+ 3 gllwlh}
weRd [w<1 =
forallt =1,....T, then, for any w € R? satisfying ||w|| < 1, it holds that

T T

1. ATl
> (& (wi = w) + Gl well = [[wllh)) < Z)ft||gt||2+T-
t=1 t=1

13



Proof. See, e.g., [12]]. O

The following lemma is used for bounding the gap between Z?:l |L(w; — w*)||?> and
S, &7 (Wi — w), with high probability.
Lemma 10. For arbitrary 6 > 0, we have

T 2
Prob[) || L(w; — Z ) 4 30] < 3exp ( gt> . (19)

t=1

Proof. We have Z§:1 |L(w; —w*)|* = Z§ 1(U(w;) — £(w*)), and this can be expanded as

(Elw;) = 6w")) = Y (w;) = Li(w))) + Y (G(W") = (w™)) + Y (4;(w;) = £(w")).

j=1 j=1 j=1

M-

<
Il
—

From the convexity of ¢;, the term 27 1(j(w;) — £;(w*)) can be bounded as

(4(w;) —£;(w")) < Zng(Wj —w') = ZQJ-T(WJ' -w) + Z(g]— — ) (w; —w").

Jj=1

M-

<
I
—

Summarizing the above inequalities, Zj.:l |L(w; —w*)||? — Zthl g (w; — w) is bounded

from above by the sum of (i) Z§'=1(gj — &) (w; —w*), (i) Z§=1(£(Wj) —4;(w;)), and (iii)

Z§'=1 (£;(w*) — €(w*)). Let us construct bounds for each term.

First, consider (i). Denote the j-th input data (x;, y,) by z;. Since we have
E[(gj - gj)(wj - W*)|Z13 ceey Ri—1, Sla (R Sj—l} =0
and |(g; — &;) " (w; — w*)| < 2G, we can apply the Azuma-Hoeffding inequality to (i) to obtain
that
52

8tG2)

Prob[Z(gj - é;j)T( w*) > d] < exp(

The value of (ii) also can be bounded by using the Azuma—Hoeffding inequality, since we have
E[K(WJ) — Ej(Wj)|Zl7 ceey %51, Sl, chey ijl] = 0,
and |¢(w;) — ¢;(w;)| < 8. Accordingly, we obtain

t 2

Prob[z t(wj) — £(w;) = 0] < exp( 1_28t

)-
Similarly, since {£;(w*)— ( *)} are independent random variables such that E[¢; (w*)—{(w*)] =
0 and |£;(w*) — £(w*)| < 8, the value of (iii) can be bounded by using Hoeffding’s inequality, as
follows:

t 52

Prob[ 3" £;(w*) — £(w*) > 6] < exp(——

)-
= 128t

Summarizing the above inequalities, we have

t T 2 2 _52
25
Prob | D 1L(w; =Wl 2 3T (we = w)+ 35| < 2expliz) + explgzs) < Besplp).
By substituting this for \; = 2G\/j, we obtain (19). O
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C Proofs of the lemmas in Section 4]

C.1 Proof of Lemma4]

Since /;(w) is a convex function, it holds for arbitrary w € R? that £;(w;) — (W) < g, (w; —w).
By taking the expectation, we have E[l;(w;) — li(w)] < E[g/ (w; —w)] = E[g;( w)] since
g: is an unbiased estimator of g;. By taking the sum of this inequality for t = 1,. T we obtain
that

T
B[Ry (w*)] < B[S & (wi — w*)].

From Lemma([9} the right-hand side of this can be bounded as

T

1 A 1 L
N T l T+1
th Wi — ]<E[z:>ft||gt||2 + Zy + ;

t=1
where we used E[||g:||?] = G in the second inequality.
C.2 Proof of Lemmal[3

Proof. First, &; defined by (6) satisfies
I&elI” = (12X W, — 2y2]|* < 2]2Xwi||* + 2/12y,z]|* < 8[| X (1B wel? + 8Jyel|z]|*.

The expectation of || X ||2 is bounded as

21 _ (t) (TtiLtj \2 1 N2 1
E[|X][[f] = E Z Dij ( 0) )| <E q Z (ziz;)”| < 7
1<ij<d Pij 1<ij<d
Similarly, we have E[||z||?] < 1/¢. By combining these inequalities, we obtain Lemmal[5] O

D Details of Algorithm 2

Estimating w*  Although we assumed &’ > k + 2 in the analysis of the regret bound, Algorithm
can be defined even if & = k by setting k1 to a number at most k. At the end of round ¢, Algorithm

keeps weight vectors wq,...,w;. From these weight vectors, define w; as % 22:1 w;. In the

following, we prove that w; is a consistent estimator of w* even if k' = k and k; < k — 2. We use
this fact in the next section.

Proposition 11. Let w; be the average of w1, ..., W; computed by Algorithm with setting Ay =
SVifort=1,.. (Wi — w*)[|2 < (&t + 1+ 30) holds with

probability at least 1 -3 exp( 198t ) Accordlngly, assuming the linear independence of features,

W —w*[]* < & ( V't + 1+ 39) holds with probability at least 1 — 3 exp( gsfz ).

Proof. From the convexity of the square loss and Jensen’s inequality, we have ||L(w; — w*)|| <
1 2221 | L(w; — w*)||. Hence, it suffices to show that

2

Prob Z |L(w; —w*)|| > 2GVE+1+ 36| < 3exp(—— ar) (20)
We have 23:1 | L(w; —w*)||? = Z;Zl(f(wj) — ¢(w*)) and this can be expanded as
t t t t
D (wy) = Lw™) = D (6(wy) = £i(wy) + D (G(wW*) = Ew)) + D (L (wy) — Li(w™)).
j=1 j=1 J=1 J=1
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From the convexity of ¢;, the term Z;Zl (¢j(w;) — £;(w*)) can be bounded as

t

> (i(wy) = ¢ ) < Z g (wi—w)=> gl (w;—w)+ ) (g — &) (w; —w").

j=1 j=1 j=1

Summarizing the above inequalities, Z;Zl |L(w; — w*)||* is bounded by the sum of (i)
Yo &) (wy = w), (D) X5 (g — &) (wy — w), (i) Y5 ((wy) — £;(w;)), and (iv)
Z;Zl(ﬂj (w*) — £(w™*)). Next, let us construct bounds for each term.

From Lemma@ ) 22:1 g, (w; — w*) can be bounded as

i NN
. * t+1
E g;r(wj—w)<§ T—i— 2+
j=1 j=1
with probability 1. Next, consider (ii). Denote the j-th input data (x;, y;) by z;. Since we have

El(g; — &j)(w; —w")|z1,...,2-1,51,...,5-1] =0

and |(g; — &;)(w; —w*)| < 2@, we can apply the Azuma-Hoeffding inequality to (ii) to obtain
that

t
. . -5
PrOb[;(gj —g) (w;—w") >4 < EXP(StGQ)'

The value of (iii) can also be bounded by using the Azuma—Hoeffding inequality, since we have
E[E(Wj) — gj(Wj)th e ,ijl, 517 ey ijl] = 0,
and |{(w;) — £;(w;)| < Q. Accordingly, we obtain
t 52

PI‘Ob[Z é(wj) — /1 (WJ) > (5} < exp(%RQ

j=1

)-

Similarly, since {¢,;(w*)—¢(w*)} are independent random variables such that E[/,;(w*)—{(w™*)] =
0 and |£;(w*) — £(w*)| < @ the value of (iv) can be bounded by using Hoeffding’s inequality, as
follows:

¢ g
PrOb[Zgj(W*) —U(w*) > 4] < eXP(TQQ
j=1

).

Summarizing the above inequalities, we have

¢
G /\t+1 2 2 _62

Prob ZHL i —w" Zz::/\— ?—1—3(5 <2exp(2 Q2)+ Xp(8tG2)§36xp(a).

By substituting this for \; = 2G\/j, we obtain (20). O

We note that the probability claimed in Proposition[T1]is over the randomness of both the examples
and Algorithm

Computing w,, w,, and g.. As noted above, w; is defined as the average of wy,..., w, com-
puted as in Algorithm 1| applied to the examples {(xt1 sty )s e oo (Xt Y, )}, setting By < k — 2.
Recall that Algorithm l computes wy from g1,...,8s-1 usmg (@), and computes g; from wy,

and {(Dy,X¢,,Yt,),- - (D, X¢;,y¢,;)} using (6) for any j € [s]. We use D, defined from S;; in
Algorithm [2]instead of Algorlthm 1

For convenience, we define w as the zero vector.
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Computing S;. Let s be the largest number such that ¢t; < ¢. Then S; is defined as the set of k
largest features with respect to w,. Note that S is the same for all ¢ with t; < ¢ < t,4;. In the
following, we show from Proposition[T1]that S; contains S* with high probability.

Lemma 12. Ifw;?c% — 8Gs~% >0, the following holds for any i € S* andt = ts, ... tsy1 — 1:

C? 32
Prob[i ¢ S;] < 3exp (— 4602 (wi?o? — s_§)2) .
Proof. If a feature i satisfies i € S* \ Sy, it holds that |[w, — w*||? > w}?/2, which can be
confirmed as follows. Since |S*| = |5, ¢ € S* \ S; means that there exist j € S; \ S* such that
|Wsi| < |Ws;|, which implies that || W, —w*||* > (0s; —w})* + (0s; —w})? = (0g —w})* +02; >
(Wg; — wi)? 4+ w2, > wi?/2, where the first equality comes from j ¢ S*, the second inequality
comes from |w vs; € R. Hence, we have

Prob[i ¢ S;] < Prob||w, — w*[|? > w}?/2]. Q1

From Proposition if 0 := §(so3w;? —4GY/s + 1) > 0, we have

Prob[i ¢ S;] < 3exp( 052)

for i € S2. From the inequality § > %(adw;‘ — SGs_%), we obtain Lemma
O

Computing w; and g;. We define w; = 0. If t > 2, w; is defined as follows. Recall that
Dyg;y,...,Dy;_18;1 are available at the beginning of round ¢. Let ht 1 = Zt L 1Djg;. We

prepare a sequence ()\1, R )\T) of non-negative numbers in advance, and \¢ is used in round ¢.
Then, w; is defined by

W, = arg min {Bj_lw+2tw|2}. (22)

weR?, ||wl[<1
We define g; as the gradient of the loss function ¢;(w) at w = DyWy, i.e.,
& = Vwle(DrWe) = 2x¢(x] DeWre — ). (23)
Note that we cannot compute g; because all features in x; cannot be observed. Nevertheless, we can

compute D, g, from available information D,;x, y;, and wy.

Regret bound of Algorithm We prove that Algorithm [2| achieves O(+/dT') regret under the
independence of features assumption.

Lemma 13. If w € R satisfies |w|| < 1, then we have

- [E2X: 2 H A
<> w'(D § ol 24
w) < > w (Dy — 5 24)
Proof. Since {;(w) is convex, we have ¢;(D;Ww;) — ¢;(w) < g (Dyw; — w). Hence, the regret

Ry (w) can be bounded as

T T T
Rr(w) <Y &/ (Dywi—w) =) &/ Diw, =) g/w
t=1 t=1

t=1

From a similar argument to the proof of Lemma@], we obtain

D 2 ) w]|?
thTtht < hlw+ Z [ D&l T1[|Wl*
t=1 t=1 )‘t 2
By combining the above two inequalities, we obtain (24)). O
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Algorithm 2

Input: {(xt,yt)} C RY x R, {)\S},{/N\t} C Ryg, k' >2and k; > Osuchthat0 < ky < k' — 2,
J C {1
1: Setho—O ho—o wo=0,5s=0.
2: fort=1,...,7Tdo
3 ift € Jthen
4: Sets =s+1.
5: Define wg by (3), and Wy = Wy_;1 + ws.
6:
7
8

end if
Define w; by (22).
. Define S; by Observe(ws, K/, k1).
9:  Observe D;x; and output §; := W, Dyx;.
10:  Observe y;.
11: ift € J then . .
12: Define g, by (6), and sethy = h,_; + §,.
13:  endif
14:  Compute D, g, (g, is defined by @23)).
15: Set ht = ht,1 + Dtgt~
16: end for

Because of (24), if ||g|| = O(1) holds and we set A\, = ©(v/%), we have

E[Rq(w (Zn (D, - *|+f>.

From Lemma we can prove that S, satisfies Zle > jes- Problj ¢ Si] = O(V/T). Combin-

ing these two facts, we obtain O(y/T)) regret. A more precise statement is given in the following
theorem.

Proof of Theorem

Proof. From Lemma and that || D;g;||? < 4 and \, = 8+/Z, we have

D )\
g, +z:” tgtH T2+1

N
i

Rp(w*) <

w
Il
_

w* T (Dy — g +8VT + 1.

Il
M=

t

Further, since ((D; — I)w*); = —w} if i € S*\ Sy and ((D; — I)w*); = 0 otherwise, the first
term can be bounded as

T T T
Zw*T(Dt—I)gtz—Z Z w;gti§4z Z lwil,
t=1

t=14e5*\S; t=14e5*\S,

Il
-

where the last inequality comes from ||g;|| < 4. From the above two inequalities, by taking the
expectation, we obtain

E[Rr(w*)] < 42 > |w;|Probli ¢ S| +8VT + 1 (25)

t=14€S5*

Next, we give a upper bound on E;‘F . Prob[i ¢ S for i € S* by using Lemma Define
v(s) = 303w;?—8Gs™ 3. If s is large enough so that y(s) > 0, i.e., if s > 256 — 2*4 =: Kk;, then we

dq

18



2, %2
have 02w} —8Gs~7 > Lo2w;?. From Lemma | then, we have Prob[i € S;] < 3exp(—2745i-).
Thus, we have

ZProb ¢ S = Z Prob[i ¢ S| + Z Prob[i ¢ S

teJN[T) te[T\J
< VT + Z Prob[i ¢ St
te[TI\J
=T+ Z Prob[i ¢ S| + Z Prob[i ¢ S
te[TI\J,VE—1<r; te[TN\JVE—1>k;
<VT 4 (ki +1)% + > Probli¢ Sy, (26)

te[TN\J,VEi—-1>k;
where the first inequality comes from |[7] U J|, and the second inequality comes from |{t > 1 |
Vit —1 < k;}| < (ki + 1)2. Note that, since s > \/ — 1 holds in each step ¢, v/t — 1 > r; implies
2, *2
that s > k; and, hence, Prob[i ¢ S| < 3exp(— Sﬁfc ) < 3exp(7%) holds. From this,
the last term of (26)) can be bounded as

Z Probli ¢ S| = Z Prob[i ¢ S| + Z Prob[i ¢ S;]
te[T\J,Vi—1>r; te[T\J,Vi—1>ri t<VT te[T\JVE—1>k,t>VT
t—1)o w*2
S D D T S el L
te[TN\J,VE—1>ki t>VT
—(T% — 1)02w;>
144C )

< VT + 3T exp(
By combining the above two inequalities, we obtain

1—1)o2w *2)
144C '

T —(T
> Probli ¢ 8] < 2VT + (s + 1)* + 3T exp(

t=1

By substituting this inequality into (23], we have

—(T7 —1)o2w;
] < VT 4 i+ 1)2 43T ( d
E[Rp(w 81625* |w VT + 8 1+ lezs* |wi]((k; +1)° + 3T exp( T30

2

~—
~—

IN

The first term of the right-hand side can be bounded as 4}, . wiNT = ||w*|.4T
V/d4+\/T + 1 because |[w*|| < 1. Further, substituting ; = 25604977;4, we obtain Theoremﬁ O
d™i

E Details of Algorithm 3

Computing w; and w,. Let {);}, {n;} C Ry be positive monotone 1ncreasmg sequences. De-
note (; =1 — n;j—1 for j > 1 and ¢; = 7. Then, we have (; > 0 and 7, = Z; 1 G-

Recall that hy_; = Z; }gj We define w, and W, by

1 .
- hy,
max{A¢, [[h—1]/1}

wo= argmin {B7 et w4 ol f = -
weR? [|w||<1

and w, = ijl ¢;W;/ns. Then, W gets close to w* with high probability.

Lemma 14. Let G and C be as defined in Section@ Set \j = &+/j and (; = ¢y 4/(C’k;)j_%.
Under the compatibility assumption, for arbitrary 6 > 0, 4(;50(3% — 1)\/%”\7\/3 — w1 <
144@ + 276 holds with probability at least 1 — 3exp(

the examples and the algorithm.

1985 ) over the randomness of both
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Proof. From the convexity of the triangle inequality of /; norm, we have

¢ t
el =Wl =) Gwe = w)ll <D Gllwe — w
j=1 j=1
Hence, it suffices to give a bound on 22:1 ¢illwe — w*[|1. Define v; = ||[L(w; — w*)|]? +
¢i(Jlwjll1 = |[w*[|1), and we shall show the following bound on (;||ws — w*||;:
Gllwy = w1 < 3kCF/95 + 37;
under the assumption of the compatibility condition, i.e., [[wg s+ |1 < 2[|[ws- |1 = ¢§llws-[]7 <
k|| Lw||?. In the following, we use the notation A = w; — w* for convenience. Then, we have
7 = ILAI? + G (llw;
> LA + Gl Als=cllr = [1A]s+]11)
> G(A 1= 1Als=[1)- 27
We will bound A by considering the following two cases: (i) v; < (;||A|s«[1 and (i) v; >
G
Case (i) 75 < Gl Als- ||
From 27) and v; < ¢;||A|g+/1, we have
GllAls=elly < GllAls+[lr + 75 < 26511 A]s- [la
From the compatibility condition, we have ¢2||A|s- |2 < k|| LA|/?. Hence, we have
GllAlL = GllALs-lln + ¢l Als+l
< 2G[1A]s Nl + 75 = IILA?
< 2G| A5 [l + 75 — opllAls-13/k
< KGE/0F + 5 < 3KGT /07 + 3,

where the first, second, and third inequalities come from (27), the compatibility condition, and
completing the square.

Case (i) v; > [|As+ |1
From @27) and y; < ;]| Al s+

GllAL = ¢llA

sell1 + [[wjls=ellr = [W*|s= 1)

Sxe S*

S*

1, we have
1+ GllAlgwe

1 <2G51A

5+ sl 475 < 375

From the argument on cases (i) and (ii), we have (A = (j||w; — w*|[; < 3k:(]2/¢% + 3r;. Taking
the sumover j = 1,2,...,t, we have

t s s

. 3k
Do Glws =Wl < 55 3 ¢F 3
j=1 0j=1 =1

Here, from Lemma for all § > 0, the value ijl «; can be bounded as

Z% Z (HE(wy =W + G Iw;lla = [[w*[l)
j=1

< Z(QI(W]' —w) + Gw;lh = [[w*l[1)) + 36

with probability at least 1—3 exp ( ) Further, from Lemma|§|the right-most side can be bounded

as
s

S @) (wy—w) 4+ G wyll — W) + 36

j=1

1 2, 1/\5+1 16 1/\s+1
Z/\—|J|| +35<Z S 30
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with probability one. Summarizing the above argument it holds that

16 3/\5
775||w5—w||_¢2z€2+3z 2AstL | g5

with probability at least 1 — 3 exp ( ) By assigning A\; = 2G/j and (; = o/G/kj~ T, we
obtain Lemma 4]
O

Regret bound of Algorithm 3 We prove that Algorithm 3 achieves O(v/dT') regret assuming the
compatibility condition. Recall that S; is the set of the k largest features with respect to w,, From
Lemma|[T4] S; contains S* with high probability as follows.

Lemma 15. Let G and C be constants defined as in Section [B Let {)\;} and {(;} be sequences
defined as inLemma Foranyi € S*andt =tg,...,ts41—1 if6 := 2%(4(;50(5%71”10;"“ [ &=

14/s+1) > 0, then we have Prob[i ¢ S;] < 3exp( _lg;‘zz ).

Proof. If a feature 4 satisfies ¢ € S* \ S, it holds that ||[wWs — w*||; > |w}|, which can be confirmed
as follows. Since |S*| = | S|, 7 € S*\ S, means that there exist j € S; \ S* such that |wy;| > |/,
which implies that || W —w*(|1 > [0s;—w]|+|0s;—w]| = [Wgi—w] |+[Ws;] > [Wsi—w]|+|wsi] >
|w?|, where the first equality comes from j ¢ S*, the second inequality comes from |ws;| > |Wg;],
and the third is the triangle inequality. Hence, we have

Prob[i ¢ S| < Prob[||ws — w*||; > |w]]].
From Lemma if§ := 2%(4%(5% —1)y/G/k|w}| —36G+v/s+ 1) > 0, we have
—52
Probe, — w1 > [uf ] < 3exp( o)
for i € S*. The above two inequalities yield Lemma[T3] O

Proof of Theorem 7]

Proof. The outline of the proof is similar to that of Theorem[6} From Lemma|[I3] we obtain

E[Rp(w*)] < 42 > |w;|Probli ¢ S| +8VT + 1 (28)
t=1ieS*
in a similar way to the proof of Theorem [6]

Next, we give a upper bound on Zthl Prob[i ¢ S| for i € S* by using Lemma Define v(s) =
2|w*|po/G/k — 4|w}|dor/G/ks™ 7 — 36Gs~7+/s + 1. If s is large enough so that (s) > 0,
w2620

from Lemma we have Prob[i € S;] < 3exp(—%) Note that if s > % = Ky,
it holds that y(s) > 0, from the definition of 7(s). Further, since s > Vt — 1 in each step t, if
Vt —1 > r;, we have Prob[i € ;] < 3exp(—4—W). From this property of Sy, by a
similar argument to the proof of Theorem|[6] we have

4V/TT 1P

272Ck )

> Probli ¢ 8] < 2VT + (k; + 1)* + 3T exp(—

By combining this inequality with (28), we obtain

E[Rr(w*)] <8 |[wi VT +8VT +1

icS*
WTT 1 PRG
* 2
# 3 s 4107 3 exp(- 2 R,
The first term of the right-hand side can be bounded as 4, q. [wi|VT = [w*[:4T <

V/d8+y/T + 1 because |[w*|| < 1. Further, substituting #; = %, we obtain Theorem@ O
i 0
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F More Experiments
In this section, we provide supplementary descriptions of our experiments.

Experimental environment. The experiments were performed on a server with Intel Xeon E5-
2680 v3 CPUs. All algorithms are implemented in Python.

The generation procedure of synthetic datasets. We first create the ground-truth weight vector
Wire DY choosing a set Sy, of k features from [d] uniformly at random, and setting wine,; € [—1, 1]
for i € Sy and wie,; = 0 otherwise. For each ¢ € T, we generate x; by sampling z;; (i € [d])
from A(0, 1) and set y; = w,),.x; + 0.5z, where z is sampled from N(0, 1).

Preprocessing of CT-slice datasets. We deal with features that are outside of an image as those
having a value of zero. The sequence of the dataset is randomly shuffled to avoid the effects of
biased sequences of images. The maximum number of positive features in one image is 165, the
minimum is 9, and the average is 73. Thus, we set k to be 60, 70, or 90 in this paper.

Results on synthetic datasets. Figures ] [5] show typical results for some instance with
(d,k, k") = (20,5,7). We remark that Figure in the main body plots the regrets for only the
first 5000 iterations. We observe that our algorithms achieve small regrets at the end of iterations.
Figure [3] indicates that the increase in the regrets of our algorithms is smaller than baseline algo-
rithms for large 7. We remark that FKK is executed for 5000 iterations because the run time is
too expensive compared with the others. However, Figure I} which plots regrets for the first 5000
iterations, shows that the increase in the regrets for FKK is similar to greedy and uniform-random.
Thus, we can expect that our algorithms perform much better than all baseline algorithms.

7000 A . . 44 i
= Algorithm 1 o 1079 = Algorithm 1
. 4 = Algorithm 2
— ="
6000 1 Algorithm 2 s%e” == Algorithm 3
= Algorithm 3 42
5000 ":‘, 1074 greedy g
greedy %% = = uniform random
= = uniform random LA = = AELR
4000 unifo ando o L
& == AELR o s .
30001 = = FKK 12 — VT

2000 -

1000 1 10! 4

0 1000 2000 3000 4000 5000 10° 10t 102 10° 104
T T

Figure 4: The regrets for a synthetic instance Figure 5: The log-log plots of the regrets for a
with (d, k, k") = (20,5, 7). synthetic instance with (d, k, k') = (20,5, 7).

We compute the averages of final regrets and execution times for each combination of d €
{10,20,50,100}, k € {2,5,10}, and &' € {k + 2,k + 5,k + 10}. For each combination of
(d, k, k"), we executed all algorithms on five instances with 7" = 5000. Tables [4] and [5| summarize
the average regrets and execution times. In the tables, “T” denotes that we do not execute FKK due
to the expensive run time. We observe that Algorithm 1 performs best for almost all cases. Our algo-
rithms, greedy, and uniform-random can all process each round about three times as fast as AELR.
Thus, we can say that our algorithms outperform the others in terms of both regrets and execution
times.

Results on CT-slice datasets. We present results with (k, k) = {(60, 70), (70, 80), (90,95)} in
Figures[6] [7} and [8] respectively. We observe that Algorithms 2 and 3 perform best. The increases
in the regrets of our algorithms are much smaller than those of uniform-random and AELR. Greedy
performs well at the beginning, but the performance degrades at the end.
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Table 4: Average regrets Ry /10% (A1 = Algorithm 1, A2 = Algorithm 2, A3 = Algorithm 3, G =
greedy, U = uniform random).

(d,k, K Al A2 A3 G U AELR FKK
(10,2,4) 1.53 2.38 3.60 3328 2573  60.76  24.05
(10,2,7) 1.45 4.73 1.84 39.62 1645 66.60 592
(10,5,7) 3.35 46.18 16.74 7938 4446 145.87 57.89
(20,2,4) 6.03 7.31 13.63 16.52 14.89  37.15 14.90
(20,2,7) 1.03 5.99 5.03 8.13 6.07 17.16  6.65
(20,2,12) 0.81 3.11 3.13 8.18 4.47 1649  6.46
(20,5,7) 1545 8353 4958 4937  80.55 138.05 83.50
(20,5,10) 6.10 43.15 1720  16.18  65.08 140.03
(20,5,15) 4.00 9.81 8.40 7.93 3423 140.12
(20,10,12) | 15.00 40.86 2476  21.38 104.63 254.52
(20,10,15) 6.79 5.14 9.97 10.08  71.74 283.76
(100,2,7) 41.09 4213  49.67 49.78 4742  83.70
(100,2,12) | 2590 5134 50.13 50.66 46.82 84.11
(100,5,7) 133.54 118.23 119.17 119.51 113.17 214.84
(100,5,10) | 74.06 11895 106.78 120.12 112.51 217.52
(100,5,15) | 62.45 10457 8452 122771 111.60 211.22
(100,10,12) | 295.95 225.06 203.04 227.81 214.09 366.71
(100,10,15) | 159.95 213.20 159.35 198.82 21239 423.73
(100,10,20) | 85.89 225.77 199.80 193.25 207.16 372.67

HEEAAAEEREE A

Table 5: Average run time [s] (Al = Algorithm 1, A2 = Algorithm 2, A3 = Algorithm 3, G = greedy,
U = uniform random).

A,k k) | Al A2 A3 G U AELR FKK
(102,4) | 0.54 048 049 049 057 4.90 3.30
(102,7) | 081 050 051 063 0.89 5.03 3.50
(10,57) | 0.69 050 051 062 087 509 1897
(202.4) | 0.60 053 052 055 064 619  13.11
(202,7) | 087 054 059 066 093 620  13.01
(202,12) | 1.63 057 0.66 1.10 1.76 631 14.03
(2057) | 071 048 047 061 087 546 1021.51
(20,5,10) | 1.08 0.52 052 081 131 5.93
(20,5,15) | 201 056 056 126 237 6.04
(20,10,12) | 1.13 056 0.54 100 1.73 636
(20,10,15) | 1.73 061 0.63 134 251 6.83
(1002,4) | 1.09 0.83 0.82 088 1.10 11.59
(100,2,7) | 136 092 0.89 106 146 1237
(100,2,12) | 2.12 095 090 135 221 12.06
(100,5,7) | 121 0.86 0.84 1.00 137 11.52
(100,5,10) | 1.58 0.88 0.86 1.18 1.80 11.62
(100,5,15) | 246 094 090 159 281 11.52
(100,10,12) | 1.61 0.89 0.88 133 2.16 11.98
(100,10,15) | 2.13 093 094 1.61 281 12.39
(100,10,20) | 3.29 1.00 1.00 2.16 424 12.66

HHEHEAAAEESEEE
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Figure 6: The square loss for CT-slice datasets Figure 7: The square loss for CT-slice datasets

(k = 60, ' = 70). (k = 70, k' = 80).
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Figure 8: The square loss for CT-slice datasets (k = 90, k' = 95).
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