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A Proofs

A.1 Proofs of Lemma 1 and 2

Proof of Lemma 1

Notice that
∑k
i=1 x[i] is the solution of the following linear programming problem

max
p

pTx, s.t. pT1 = k,0 ≤ p ≤ 1. (8)

The Lagrangian of this linear programming problem is

L(p,u,v, λ) = −pTx− vTp + uT (p− 1) + λ(pT1− k), (9)

where u ≥ 0, v ≥ 0 and t are Lagrangian multipliers. Taking its derivative w.r.t p and set it to be
0, we have v = u − x + λ1. Substituting this back into the Lagrangian to eliminate the primal
variable, we obtain the dual problem of (8) as

min
u,λ

uT1 + kλ, s.t. u ≥ 0,u + λ1− x ≥ 0. (10)

This further means that
k∑

i=1

x[i] = min
λ

{
kλ+

n∑

i=1

[xi − λ]+

}
. (11)

The convexity of
∑k
i=1 x[i] follows directly from (11) and the fact that the partial minimum of a

jointly convex function is convex. Furthermore, it is easy to see that λ = x[k] is always one optimal
solution for (11), hence, for xi ≥ 0, i = 1, · · · , n, there holds

k∑

i=1

x[i] = min
λ≥0

{
kλ+

n∑

i=1

[xi − λ]+

}
. (12)

Proof of Lemma 2

Denote g(`) =
[
[a− `]+ − b

]
+
. For any a ≥ 0, b ≥ 0, we have g(`) = 0 = [a− b− `]+ if

` ≥ a. In the Case of ` < a, there holds g(`) = [a− b− `]+. Thus g(`) = [a− b− `]+ for any
a ≥ 0, b ≥ 0.
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A.2 Proof of Theorem 1

Note that ` : R→ R+ is convex, differentiable at 0 and `′(0) < 0 implies that `(0) > 0. Hence, by
normalization we can let `(0) = 1. Indeed, the commonly used individual losses such as the least
square loss `(t) = (1− t)2, the hinge loss `(t) = (1−t)+, and the logistic loss `(t) = log2(1+e−t)
satisfy the conditions `′(0) < 0 and `(0) = 1. The assumption in part (ii) of Theorem 1 implicitly
assumes that E∗` ≤ 1 because E∗` ≤ E`(0) = 1.

Since (f∗, λ∗) is a minimizer, then, by choosing f = 0 and λ = `(0) = 1 there holds E[`(yf∗(x))−
λ∗)+] + νλ∗ ≤ E[(`(0)− `(0))+] + ν`(0) which implies that the minimizer λ∗ defined in (7) must
satisfy 0 ≤ λ∗ ≤ `(0) = 1. This means that the minimization over λ in (7) can be restricted to
0 ≤ λ ≤ `(0) = 1. Let β = 1 − λ which implies that the minimization (7) is equivalent to the
following

(f∗, β∗) = arg inf
f,0≤β≤1

{
E[(β + `(yf(x))− 1)+]− νβ

}
. (13)

Let (f∗, β∗) be the minimizer. We have, for any f and choosing β = `(0) = 1, that

−νβ∗ ≤
{
E[(β∗ + `(yf∗(x))− 1)+]− νβ∗ ≤ E[(1 + `(yf(x))− 1)+]− ν = E`(f)− ν.

This implies that νβ∗ ≥ ν − E`(f). Since f is arbitrary, β∗ ≥ ν−E∗`
ν > 0 if ν > E∗` . Consequently,

the above arguments show that 0 ≤ λ∗ = 1− β∗ < 1 if ν > E∗` .
Now observe that f∗ = arg inff

{
E[(`(yf(x))−λ∗)+] +νλ∗

}
= arg inff

{
E[(`(yf(x))−λ∗)+]

}
.

Define φ(t) = (`(t)−λ∗)+. This means that f∗ = arg inff E[φ(yf(x))] for standard classification.
The result of Theorem 2 in [1] states that that the loss φ is classification calibrated if φ is differ-
entiable at 0 and φ′(0) < 0. Notice that λ∗ < `(0) = 1 as proved above, which implies that φ is
differentiable at 0 and φ′(0) = `′(0) < 0. This shows that f∗ has the same sign as the Bayes rule
sign(Pr(y = 1|x)− 1

2 ) if ν > E∗` . This completes the proof of the first part of the theorem.

We now move on to prove the proof of the second part of the theorem. To this end, observe that
λ∗ = arginfλ≥0

{
E[`(yf∗(x)) − λ)+] + νλ

}
. Assume that λ∗ = 0. Then, f∗ = f∗` and choosing

f = 0 and λ = 1 = `(0) in the objective function of (7) implies that ν = E[(`(0) − 1)+] +
ν ≥ E[`(yf∗(x)) − λ∗)+] + νλ∗ = E[`(yf∗` (x))] ≥ R∗. Recall [8] that the Bayes error R∗ =∫
X min(η(x), 1− η(x))ρX (x). This proves the Case λ∗ = 0.

Now it only suffices to prove the Case of λ∗ > 0. In this Case , by the first-order optimality
condition, there exists a subgradient of E[`(yf∗(x))−λ)+]+νλ of the variable λ at λ∗ equals to zero.
This implies that E[h(x, y)] + ν = 0, where h(x, y) is some subgradient of (`(yf∗(x))− λ)+ with
respect to λ at λ∗. Notice that h(x, y) ≤ −I`(yf∗(x))>λ∗ . Consequently, ν ≥ E[I`(yf∗(x))>λ∗ ] ≥
E[I`(yf∗(x))>`(0)] since λ∗ ≤ `(0) as proved in part (i). Since we assume that ` is monotonically
decreasing, `(yf∗(x)) > `(0) is equivalent to yf∗(x) < 0. The calibration of ATk models (i.e. f∗
has the sign as the Bayes rule) implies that yf∗(x) < 0 is equivalent to y(2η(x)−1) < 0. Putting the
above arguments together, we conclude that ν ≥ E[Iy(2η(x)−1)<0] =

∫
η(x) 6=1/2

min(η(x), 1−η(x)).

This completes the proof of the theorem.

A.3 Proof of Theorem 2

Steinwart [22] derived the bounds for the excess misclassification error for ν-SVM under the as-
sumption that the kernel is universal, i.e., the RKHS is dense in the space of continuous functions
C(X ) under the uniform norm ‖ · ‖∞ (See [23] for more details). The proof there depends on
Urysohn’s lemma in topology which states any two disjoint closed subsets can be separated by a
continuous function. In contrast, our result holds true without the assumption of universal kernels.

To prove Theorem 2, we need some technical lemmas. We say the function F :
m∏

k=1

Ωk → R has

bounded differences {ck}mk=1 if, for all 1 ≤ k ≤ m,

max
z1,··· ,zk,z′k··· ,zm

|F (z1, · · · , zk−1, zk, zk+1, · · · , zm)− F (z1, · · · , zk−1, z′k, zk+1, · · · , zm)| ≤ ck.
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Lemma 3. (McDiarmid’s inequality [30]) Suppose f :
m∏

k=1

Ωk → R has bounded differences

{ck}mk=1 then , for all ε > 0, there holds

Pr

{
F (z)− E[F (z)] ≥ ε

}
≤ e−

2ε2∑m
k=1

c2
k .

We need to use the the Rademacher average and its contraction property [29, 31].
Definition 1. Let µ be a probability measure on Ω and F be a class of uniformly bounded functions.
For every integer m, the Rademacher average over a set of functions F on

Rm(F ) := EµEε
{ 1

m
sup
f∈F

∣∣∣
m∑

i=1

σif(zi)
∣∣∣
}

where {zi}mi=1 are independent random variables distributed according to µ and {σi}mi=1 are inde-
pendent Rademacher random variables, i.e., Pr(σi = +1) = Pr(σi = −1) = 1/2.
Lemma 4. Let F be a class of uniformly bounded real-valued functions on (Ω, µ) andm ∈ N. If for
each i ∈ {1, . . . ,m}, Ψi : R→ R is a function with a Lipschitz constant ci, then for any {xi}mi=1,

Eε
(

sup
f∈F

∣∣
m∑

i=1

εiΨi(f(xi))
∣∣
)
≤ 2Eε

(
sup
f∈F

∣∣∣
m∑

i=1

ciεif(xi)
∣∣
)
. (14)

Using the standard techniques involving Rademacher averages [29], one can get the following es-
timation. For completeness, we give a self-contained proof. Let the empirical error related to the
hinge loss be denoted by Eh,z(f) = 1

n

∑n
i=1(1− yf(xi))+.

Lemma 5. For any ε > 0, there holds

Pr

{
sup

‖f‖K≤R
Eh(f)− Eh,z(f) ≥ ε+

2κR√
n

}
≤ e−

2nε2

(1+κR)2 .

Proof. Let F (z) = sup
‖f‖K≤R

[Eh(f) − Eh,z(f)]. Observe, for any x, y, that (1 − yf(x))+ ≤ 1 +

|f(x)| ≤ 1 + |〈Kx, f〉K | ≤ 1 + ‖f‖〈Kx,Kx〉K
1
2 = 1 + ‖f‖K

√
K(x, x) ≤ κR. Then, one can

easily get that the bounded differences are ck = 1+κR
n for any 1 ≤ k ≤ n. By the McDiarmid

inequality, we have

Pr

{
sup

‖f‖K≤R
[Eh(f)− Eh,z(f)] ≥ Ez sup

‖f‖K≤R
[Eh(f)− Eh,z(f)] + ε

}
≥ exp

{
− 2nε2

(1 + κR)2

}
.

Let z′ = {z′1, z′2, . . . , z′n} be i.i.d. copies of z. Then,

Ez sup
‖f‖K≤R

[Eh(f)−Eh,z(f)] = Ez[ sup
‖f‖K≤R

[Ez′(Ez′(f))−Eh,z(f)] ≤ EzEz′ sup
‖f‖K≤R

[Ez′(f)−Eh,z(f)].

By standard symmetrization techniques [29], for any Rademacher variables {σi : i = 1, . . . , n}, we
have that

EzEz′ sup
‖f‖K≤R

[Eh(f)− Eh,z(f)] = EzEz′Eσ sup
‖f‖K≤R

[
1

n

n∑

i=1

σi((1− y′if(x′i))+ − (1− yif(xi))+)]

= 2EzEσ sup
‖f‖K≤R

[ 1

n

n∑

i=1

σi(1− yif(xi))+
]
≤ 2EzEσ sup

‖f‖K≤R

1

n

∣∣∣
n∑

i=1

σi(1− yif(xi))+

∣∣∣.

Let Φi(t) = (1− yit)+ which has Lipschitz constant 1. By the contraction property of Rademacher
averages,

Eσ sup
‖f‖K≤R

1

n

∣∣∣
n∑

i=1

σi(1− yif(xi))+

∣∣∣ ≤ Eσ sup
‖f‖K≤R

1

n

∣∣∣
n∑

i=1

σif(xi)
∣∣∣ = Eσ sup

‖f‖K≤R

∣∣∣〈 1
n

n∑

i=1

σiKxi , f〉
∣∣∣
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≤ Eσ sup
‖f‖K≤R

‖ 1

n

n∑

i=1

σiKxi‖K‖f‖K = R Eσ
[
‖ 1

n

n∑

i=1

σiKxi‖K
]

≤ R
[
Eσ‖

1

n

n∑

i=1

σiKxi‖2K
] 1

2 ≤ R

n

[ n∑

i=1

K(xi, xi)
] 1

2 ≤ κR√
n
.

Putting all the above estimations together yields the desired result. This completes the proof of the
lemma.

We also need the Höeffding’s inequality stated as follows.
Lemma 6. Let ξ be a random variable and, for any i ∈ [m], ai ≤ ξ ≤ bi. Then, for any ε > 0,
there holds

Pr

{
1

m

m∑

i=1

ξi − Eξ ≥ ε
}
≤ exp

{
− mε

2

2M2

}
.

To prove the main theorem, we need to establish a lower bound for ρz. Denote κ =

supx∈X
√
K(x, x).

Lemma 7. For µ ∈ (0, 1− Eh(fH)), let dn(Eh(fH) + µ)e ≤ k ≤ n, then we have

Pr

{
z ∈ Zn :

‖fz‖K
ρz

≤ 2k

n
max

(√2C

µ
,

2‖fH‖K
µ

)}
≥ 1− exp

{
− nµ2

2(1 + κ‖fH‖K)2

}
.

Proof. Since (fz, ρz) is a minimizer of formulation (6), for any 0 < ρ ≤ 1 there holds

1

n

n∑

i=1

(ρz − yifz(xi))+ −
k

n
ρz +

1

2C
‖fz‖2K ≤

1

n

n∑
(ρ− yiρfH(xi))+ −

k

n
ρ+

1

2C
‖ρfH‖2K

= ρEh,z(fH)− k

n
ρ+

ρ2

2C
‖fH‖2K . (15)

This implies, for any 0 < ρ ≤ 1, that

k

n
ρz ≥ −ρEh,z(fH) +

k

n
ρ− ρ2

2C
‖fH‖2K .

Applying the Hoeffding inequality (Lemma 6) yields that

Pr
{
Eh,z(fH)− Eh(fH) ≤ µ

2

}
≤ 1− exp

{
− nµ2

2(1 + κ‖fH‖K)2

}
. (16)

Then, on the event U =
{
z ∈ Zn : Eh,z(fH) − Eh(fH) ≤ µ

2

}
, we have −ρEh,z(fH) + k

nρ −
ρ2

2C ‖fH‖2K ≥ ρ( kn − E(fH)− µ
2 )− ρ2

2C ‖fH‖2K ≥ ρ
µ
2 −

ρ2

2C ‖fH‖2K . Define g(ρ) = ρµ
2 −

ρ2

2C ‖fH‖2K .
It is easy to observe that

max
0<ρ≤1

g(ρ) ≥
{

Cµ2

8‖fH‖2K
, Cµ ≤ 2‖fH‖2K ,

µ
4 , Cµ > 2‖fH‖2K .

Consequently, on the event U , there holds

ρz ≥
n

k
max
0<ρ≤1

g(ρ) ≥ n

k
min

(µ
4
,

Cµ2

8‖fH‖2K
)
. (17)

By choosing ρ = 0 in (15), there holds ‖fz‖
2
K

ρz
≤ 2Ck

n . Combining these estimation together, on the
event U there holds

‖fz‖K
ρz

≤
√
‖fz‖2K
ρz

√
1

ρz
≤ 2k

n
max

(√
2C

µ
,

2‖fH‖K
µ

)
.

This completes the proof of the lemma.

4



With all the above technical lemmas, we are ready to prove Theorem 2.

Proof of Theorem 2. We will use the relationship between the excess misclassification error and
generalization error [32], i.e. for any f : X → R, there holds

R(sign(f))−R(fc) ≤ Eh(f)− Eh(fc). (18)

Let U1 be the event such that the inequality in Lemma 7 is true, i.e. U1 =
{
z ∈ Zn : ‖fz‖Kρz

≤
2k
n max

(√
2C
µ ,

2‖fH‖K
µ

)}
. On the event U1, noting that 0 < µ ≤ 1 we have that ‖fz‖Kρz

≤ RC,µ :=

2
√
2C+4‖fH‖K

µ .

Now considering the sample z ∈ U1, using (18) we have

R(sign(fz))−R(fc) ≤ Eh
(fz
ρz

)
− E(fc) ≤ Eh

(fz
ρz

)
− Eh,z(

fz
ρz

) + Eh,z(
fz
ρz

)− E(fc) (19)

By the definition of the minimizer (ρz, fz), there holds 1
n

∑n
i=1(ρz − yifz(xi))+ − k

nρz +
1
2C ‖fz‖2K ≤ 0 which means that 1

n

∑n
i=1(ρz − yifz(xi))+ ≤ k

nρz. Equivalently, Eh,z
(
fz
ρz

)
≤ k

n on
the event U1. This combines with (19) implies, on the event U1, that

R(sign(fz))−R(fc) ≤ Eh
(fz
ρz

)
− Eh,z(

fz
ρz

) + (
k

n
− Eh(fH)) + Eh(fH)− E(fc)

≤ sup
‖f‖K≤RC,µ

[
Eh
(
f
)
− Eh,z(f)

]
+ (

k

n
− Eh(fH)) + inf

f∈HK
Eh(f)− Eh(fc)

≤ sup
‖f‖K≤RC,µ

[
Eh
(
f
)
− Eh,z(f)

]
+ (

k

n
− Eh(fH)) +A(HK)

≤ sup
‖f‖K≤RC,µ

[
Eh
(
f
)
− Eh,z(f)

]
+ µ+

1

n
+A(HK),

where the last inequality follows from the fact, by the definition k = k(n) = dn(Eh(fH) +µ)e, that
Eh(fH) + µ ≤ k

n ≤ Eh(fH) + µ+ 1
n . Therefore,

Pr

{
z ∈ Zn : R(sign(fz))−R(fc) ≥ µ+

1

n
+A(H) + ε+

2κRC,µ√
n

}

≤ Pr(Uc1) + Pr

{
z ∈ U1 : sup

‖f‖K≤RC,µ

[
Eh
(
f
)
− Eh,z(f)

]
≥ ε+

2κRC,µ√
n

}

≤ exp

(
− nµ2

2(1 + κ‖fH‖K)2

)
+ Pr

{
z : sup
‖f‖K≤RC,µ

[
Eh
(
f
)
− Eh,z(f)

]
≥ ε+

2κRC,µ√
n

}

≤ exp

(
− nµ2

2(1 + κ‖fH‖K)2

)
+ exp

(
− 2nε2

(1 + κRC,µ)2

)

≤ 2 exp

(
− nε2µ2

(1 + 2κ
√

2C + 4κ‖fH‖K)2

)
.

Here, the second to last inequality follows from Lemma 5 which is the standard estimation for
Rademacher averages [29].

B Examples of ATk loss coupled with different individual losses

The proposed ATk loss is quite general and can be combined with different existing individual losses.
An interesting phenomenon is that ATk with hinge loss and absolute loss have a close relations to
the well-known ν-SVM and ν-SVR that proposed in [19], respectively. Specifically, we have

Proposition 1. Under conditions C = 1 and K(xi,xi) ≤ 1 for any i, ATk-SVM (6) reduces to
ν-SVM with ν = k

n .
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Proof. Recall [19] that the primal problem of the ν-SVM without the bias term b is formulated by

min
f∈HK ,ρ≥0

1

n

n∑

i=1

[ρ− yif(xi)]+ − νρ+
1

2
‖f‖2K , (20)

where ν ∈ [0, 1] is a scalar. Its dual is given by




minα
1
2

n∑

i,j=1

αiαjyiyjK(xi, xj)

s.t. 0 ≤ αi ≤ 1
n ,∀i = 1, 2, . . . , n

n∑

i=1

αi ≥ ν.

The KKT conditions implies, for any optimal solution α∗ of the dual and any optimal solu-
tion (fz, ρz) of the primal, there holds, for the support vectors xi with 0 < α∗i < 1

n , that
ρz = yi

∑n
j=1 α

∗
jyjK(xi,xj). If one assumes that K(xi,xi) ≤ 1 for all i, then |K(xi, xj)| =

|〈Kxi ,Kxj 〉K | ≤
√
K(xi,xi)

√
K(xj ,xj) ≤ 1. Therefore,

ρz ≤ |yi
n∑

j=1

α∗jyjK(xi,xj)| ≤
n∑

j=1

α∗j ≤ 1,

where the last inequality follows from the fact that αj ≤ 1
n for all j. Consequently, in the minimiza-

tion of (20) we can restrict to ρ ≤ 1 which implies that the ATk-SVM (6) with C = 1 is reduced to
ν-SVM with ν = k

n .

Besides, the dual formulation of ATk-SVM (6) can be easily derived as




minα
1
2

n∑

i,j=1

αiαjyiyjK(xi, xj)−
n∑

i=1

αi

s.t. 0 ≤ αi ≤ C
n ,∀i = 1, 2, . . . , n

n∑

i=1

αi ≤
Ck

n
.

This leads to a convex quadratic programming problem for ATk-SVM and can be solved efficiently.
Proposition 2. MATk model (3) coupled with absolute loss in the RKHS setting becomes ν-SVR
with ν = k

n .

Proof. Recall [19] that the primal problem of the ν-SVR without the bias term b in RKHS is formu-
lated by

min
w,λ≥0

1

n

n∑

i=1

[|yi − f(xi)| − λ]+ + νλ+
1

2C
‖f‖2K , (21)

where ν ∈ [0, 1] is a scalar. It is easy to see in the setting of RKHS that, with individual absolute
loss (i.e., `(f(xi), yi) = |yi − f(xi)|) and Ω(w) = 1

2C ‖f‖2K , MATk model (3) becomes

min
w,λ≥0

1

n

n∑

i=1

[|yi − f(xi)| − λ]+ +
k

n
λ+

1

2C
‖f‖2K , (22)

We name model (22) as ATk-SVR for brevity. It is straightforward that ATk-SVR is exactly the
ν-SVR with ν = k

n .

The above propositions provide new perspectives to understand the success of ν-SVM and ν-SVR.
That is, through “shifting down” the original individual hinge loss and absolute loss and truncating
them at zero, the penalty of correctly classified samples that are “far enough” from classification
boundary in classification and the penalty of samples that are “close enough” to the regression tube
in regression will be zero, which enables the model to put more effort to misclassified samples or
samples that are “too far” to the regression tube. Besides, the good properties of ν in ν-SVM and
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Binary Classification Regression
Dataset c n d IR Dataset c n d IR Dataset n d

Monk 2 432 6 1.12 Spambase 2 4601 57 1.54 Sinc 1000 10
Australian 2 690 14 1.25 German 2 1000 24 2.33 Housing 506 13
Madelon 2 2600 500 1.0 Titanic 2 2201 3 2.10 Abalone 4177 8
Splice 2 3175 60 1.08 Phoneme 2 5404 5 2.41 Cpusmall 8192 12

Table 3: Statistical information of each dataset, where c, n, d are the number of classes, samples and features,
respectively. IR is the class ratio.

ν-SVR that derived in [19] can be extended to k in ATk-SVM and ATk-SVR directly. For example,
for ATk-SVM with conditions C = 1 and K(xi,xi) ≤ 1 and ATk-SVR, k is a lower bound on
the number of support vectors and is an upper bound on the number of margin errors. Due to its
directness, we refer to [19] for their proofs. This can also help us select k in ATk-SVM and ATk-
SVR.

C Toy examples for effects of different aggregate losses

We illustrate the behaviors of different aggregate losses using binary classification on 2D synthetic
data examples. We generate six different datasets (Fig. 4). Each dataset consists of 200 samples
sampled from Gaussian distributions with distinct centers and variances. We use linear classifier and
consider different aggregate losses combined with individual logistic loss and individual hinge loss.
The learned linear classifiers and the misclassification rate of ATk vs. k are shown in Fig. 4. The
left panel in Fig. 4 (i.e., (a1-a6) and (b1-b6)) refers to the results of aggregate losses combined with
individual logistic loss and the right panel (i.e., (c1-c6) and (d1-d6)) refers to the results of aggregate
losses combined with individual hinge loss.

Case 1. The first row in Fig. 4 represents an ideal situation where there is no outliers and the +
samples and − samples are well distributed and linear separable. In this Case , all aggregate losses
with both logistic loss and hinge loss can get perfect classification results. This is also verified in
Fig. 4 (b1) and Fig. 4 (d1) that the misclassification rate is zero for ATk with all k.

Case 2. In the second row, there exists an outlier in the + class (shown as an enlarged ×). We can
see that the maximum loss is very sensitive to outliers and its classification boundary in Fig. 4 (a2)
and Fig. 4 (c2) are largely influenced by this outlier. Seen from Fig. 4 (b2) and Fig. 4 (d2), ATk
loss is more robust with larger k and achieves better classification results when k ≥ 3.

Case 3. In the third row, there is no outliers and the + samples and− samples are still linear separa-
ble. However, the + samples clearly has two distributions (typical distribution and rare distribution).
Seen from Fig. 4 (a3) and Fig. 4 (c3), the linear classifiers learned from average loss sacrifice some
+ samples from rare distribution even though the data are separable. This is because that the indi-
vidual logistic loss has non-zero penalty for correctly classified samples and individual hinge loss
has non-zero penalty for correctly classified samples with margin less than 1. Hence samples that
are “too close” to the classification boundary (samples from rare distributions in this example) are
sacrificed to accommodate reducing the average loss over the whole datasets. Besides, average with
hinge loss achieves better results than that with logistic loss, this may because that for correctly clas-
sified samples with margin larger than 1, the penalty caused by hinge loss is zero while that caused
by logistic loss is still non-zeros. Hence this part of samples still has “negative” effect to the learned
classification boundary of average with logistic loss. By “shifting down” and truncating, ATk loss
with proper k (e.g., k ∈ [1, 18] for logistic loss and k ∈ [1, 50] for hinge loss) can better fit this data,
as is shown in Fig. 4 (b3) and Fig. 4 (d3).

Case 4. The plots in the fourth row refers to a more complicated situation where there are both multi-
modal distributions and outliers. Obviously, neither maximum loss (due to the outlier) nor average
loss (due to the multi-modal distributions) can fit this data very well. Seen from Fig. 4 (b4) and Fig.
4 (d4), there exists a proper region of k (i.e., k ∈ [4, 24] for logistic loss and k ∈ [3, 62] for hinge
loss) that can yield much better classification results. We also report the linear classifier learned from
ATk=10 for better understanding. Seen from Fig. 4 (a4) and Fig. 4 (c4), the classification boundary
of ATk=10 is closer to the optimal Bayes linear classifier than that of maximum and average.

Case 5. The fifth row shows an imbalance scenario where the− samples are far less that the + ones.
The + samples and− samples are linear separable. We can see from Fig. 4 (a5) that the average loss
with individual logistic loss sacrifices all − samples to obtain a small loss over the whole dataset.
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Logistic Loss Hinge Loss
Maximum Average ATk∗ Maximum Average ATk∗

Monk 75.80(3.37) 79.47(2.05) 82.95(2.39) 76.37(3.51) 81.15(3.11) 82.68(2.79)
Australian 78.88(7.56) 86.10(3.19) 88.37(2.97) 78.99(7.47) 85.72(3.15) 87.50(4.14)
Madelon 51.20(2.92) 59.28(1.41) 60.26(1.58) 49.42(2.71) 59.36(1.83) 59.72(1.51)
Splice 76.31(1.94) 82.73(1.01) 83.90(0.97) 76.47(2.12) 83.78(1.12) 83.79(0.97)
Spambase 69.48(5.94) 90.63(1.21) 90.63(1.21) 69.96(6.76) 91.90(0.85) 91.90(0.85)
German 44.88(7.37) 60.12(7.59) 63.80(4.29) 44.87(7.34) 61.02(7.49) 62.96(3.33)
Titanic 46.52(15.27) 66.69(1.44) 66.69(1.44) 48.55(13.15) 66.65(1.43) 67.74(1.78)
Phoneme 19.10(11.84) 63.00(1.84) 66.29(2.04) 12.89(11.47) 70.41(1.65) 70.41(1.65)

Table 4: Average G-mean(%) of different learning objectives over 8 datasets. The best results are shown in
bold with results that are not significant different to the best results underlined.

Square Loss Absolute Loss
Maximum Average ATk∗ Maximum Average ATk∗

Sinc 0.2438(0.0445) 0.0816(0.0045) 0.0806(0.0044) 0.1489(0.0466) 0.0827(0.0048) 0.0821(0.0055)
Housing 0.1198(0.0150) 0.0738(0.0075) 0.0736(0.0079) 0.1233(0.0127) 0.0713(0.0089) 0.0712(0.0088)
Abalone 0.1312(0.0919) 0.0575(0.0016) 0.0574(0.0015) 0.1082(0.0303) 0.0559(0.0014) 0.0557(0.0016)
Cpusmall 0.2404(0.0832) 0.0634(0.0027) 0.0627(0.0025) 0.1868(0.0997) 0.0423(0.0018) 0.0422(0.0018)

Table 5: Average MAE on four datasets. The best results are shown in bold with results that are not significant
different to the best results underlined.

While the average loss with individual hinge loss obtains better results, it still sacrifices half of the−
samples, as is shown in Fig. 4 (c5). In contrast, ATk loss can better fit this distributions and achieves
better classification results with k ∈ [1, 25] for logistic loss and k ∈ [1, 135] for hinge loss.

Case 6. The sixth row shows an imbalanced data with one outlier. Comparing to the results in
the fifth row, the performance of maximum loss decreases due to the outlier. The performance of
average loss with hinge loss also decreases. Seen from Fig. 4 (b6) and Fig. 4 (d6), ATk loss with
k ∈ [2, 12] for logistic loss and k ∈ [3, 59] for hinge loss can better fit this data and achieve better
classification results.

Though very simple, these synthetic datasets reveal some properties of the maximum loss and av-
erage loss intuitively. That is, while maximum loss performs very well for separable data, it it
very sensitive to outliers. Meanwhile, average loss is more robust to outliers than maximum loss,
however, it may sacrifices some correctly classified samples that are “too close” to the classifica-
tion boundary, especially in imbalanced or multi-modal data distributions. As the distributions of
datasets from real applications can be very complicated and outliers are unavoidable, it is interesting
and helpful to add an extra freedom k to better fitting different data distributions.

Sinc data used for regression: This dataset is drawn from sinc function, i.e., y = sin(x)/x, where x
is an scalar, and the goal is to estimate y from the input x. We randomly select 1000 samples (xi, yi)
with xi drawn uniformly from [−10, 10]. As we use linear regression model in our experiments, we
map the input x into a kernel space via the radial basis function (RBF) kernel. We select 10 RBF
kernels from [−10, 10], which leads to 10-dimension input x = [k(x, c1), · · · , k(x, c10)]T , where
k(x, ci) = exp(−(x− ci)2). We also add random Gaussian noise N(0, 0.22) to the target output.

Table 3 tabulates the statistical information of datasets that used in this paper. Experiments results
in terms of G-mean for binary classification are reported in Table 4, and experiments results in terms
of mean absolute error (MAE) for regression are also reported in Table 5.

Reference
[29] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural

results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[30] C. McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–188, 1989.

[31] R. Meir and T. Zhang. Generalization error bounds for Bayesian mixture algorithms. Journal of Machine
Learning Research, 4(Oct):839–860, 2003.

[32] T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimiza-
tion. Annals of Statistics, pages 56–85, 2004.

8



-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k

0

0.02

0.04

0.06

0.08

0.1
Misclassification Rate

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k
0

0.01

0.02

0.03

0.04

0.05
Misclassification Rate

(a1) (b1) (c1) (d1)

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k
0

0.05

0.1

0.15

0.2
Misclassification Rate

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k

0

0.02

0.04

0.06

0.08

0.1
Misclassification Rate

(a2) (b2) (c2) (d2)

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k
0

0.01

0.02

0.03

0.04

0.05
Misclassification Rate

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k
0

0.01

0.02

0.03

0.04

0.05
Misclassification Rate

(a3) (b3) (c3) (d3)

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k
0

0.02

0.04

0.06

0.08

0.1
Misclassification Rate

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k

0

0.005

0.01

0.015

0.02

0.025

0.03
Misclassification Rate

(a4) (b4) (c4) (d4)

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k

0

0.005

0.01

0.015

0.02

0.025
Misclassification Rate

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k

0

0.005

0.01

0.015

0.02

0.025
Misclassification Rate

(a5) (b5) (c5) (d5)

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k

0

0.005

0.01

0.015

0.02

0.025
Misclassification Rate

-1 0 1 2 3
-1

0

1

2

3
Classification Boundary

1 10 100 200k

0

0.005

0.01

0.015

0.02

0.025
Misclassification Rate

(a6) (b6) (c6) (d6)
Figure 4: Comparison of different aggregate losses on 2D synthetic datasets for binary classification on six
different data distributions. Each row refers to one data distribution. In all plots, the + samples are red crosses
and the − samples are blue circles. The outliers are shown with an enlarged × if any. The plots on the left
panel report the results of linear classifiers learned with different aggregate losses combined with individual
logistic loss, and that on the right panel are the results of different aggregate losses combined with individual
hinge loss. The plots on the first and third columns show the learned linear classifiers of maximum, average and
ATk=10 with the optimal Bayes classification shown as shaded areas, and the plots on the second and fourth
columns show the misclassification rate of ATk vs. k.
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