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Abstract

We revisit the classical analysis of generative vs discriminative models for general
exponential families, and high-dimensional settings. Towards this, we develop
novel technical machinery, including a notion of separability of general loss func-
tions, which allow us to provide a general framework to obtain `1 convergence
rates for general M -estimators. We use this machinery to analyze `1 and `

2

convergence rates of generative and discriminative models, and provide insights
into their nuanced behaviors in high-dimensions. Our results are also applicable to
differential parameter estimation, where the quantity of interest is the difference
between generative model parameters.

1 Introduction

Consider the classical conditional generative model setting, where we have a binary random response
Y 2 {0, 1}, and a random covariate vector X 2 Rp, such that X|(Y = i) ⇠ P

✓i for i 2
{0, 1}. Assuming that we know P (Y ) and {P

✓i}1
i=0

, we can use the Bayes rule to predict the
response Y given covariates X . This is said to be the generative model approach to classification.
Alternatively, consider the conditional distribution P (Y |X) as specified by the Bayes rule, also
called the discriminative model corresponding to the generative model specified above. Learning
this conditional model directly is said to be the discriminative model approach to classification. In a
classical paper [8], the authors provided theoretical justification for the common wisdom regarding
generative and discriminative models: when the generative model assumptions hold, the generative
model estimators initially converge faster as a function of the number of samples, but have the same
asymptotic error rate as discriminative models. And when the generative model assumptions do
not hold, the discriminative model estimators eventually overtake the generative model estimators.
Their analysis however was for the specific generative-discriminative model pair of Naive Bayes, and
logistic regression models, and moreover, was not under a high-dimensional sampling regime, when
the number of samples could even be smaller than the number of parameters. In this paper, we aim to
extend their analysis to these more general settings.

Doing so however required some novel technical and conceptual developments. To motivate the
machinery we develop, consider why the Naive Bayes model estimator might initially converge
faster. The Naive Bayes model makes the conditional independence assumption that P (X|Y ) =

Q

p

s=1

P (X
s

|Y ), so that the parameters of each of the conditional distributions P (X
s

|Y ) for s 2
{1, . . . , p} could be estimated independently. The corresponding log-likelihood loss function is thus
fully “separable” into multiple components. The logistic regression log-likelihood on the other hand
is seemingly much less “separable”, and in particular, it does not split into multiple components each
of which can be estimated independently. In general, we do not expect the loss functions underlying
statistical estimators to be fully separable into multiple components, so that we need a more flexible
notion of separability, where different losses could be shown to be separable to differing degrees. In
a very related note, though it might seem unrelated at first, the analysis of `1 convergence rates of
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statistical estimators considerably lags that of say `
2

rates (see for instance, the unified framework of
[7], which is suited to `

2

rates but is highly sub-optimal for `1 rates). In part, the analysis of `1 rates
is harder because it implicitly requires analysis at the level of individual coordinates of the parameter
vector. While this is thus harder than an `

2

error analysis, intuitively this would be much easier if
the loss function were to split into independent components involving individual coordinates. While
general loss functions might not be so “fully separable”, they might perhaps satisfy a softer notion of
separability motivated above. In a contribution that would be of independent interest, we develop
precisely such a softer notion of separability for general loss functions. We then use this notion of
separability to derive `1 convergence rates for general M -estimators.

Given this machinery, we are then able to contrast generative and discriminative models. We focus
on the case where the generative models are specified by exponential family distributions, so that
the corresponding discriminative models are logistic regression models with the generative model
sufficient statistics as feature functions. To compare the convergence rates of the two models,
we focus on the difference of the two generative model parameters, since this difference is also
precisely the model parameter for the discriminative model counterpart of the generative model,
via an application of the Bayes rule. Moreover, as Li et al. [3] and others show, the `

2

convergence
rates of the difference of the two parameters is what drives the classification error rates of both
generative as well as discriminative model classifiers. Incidentally, such a difference of generative
model parameters has also attracted interest outside the context of classification, where it is called
differential parameter learning [1, 14, 6]. We thus analyze the `1 as well as `

2

rates for both the
generative and discriminative models, focusing on this parameter difference. As we show, unlike the
case of Naive Bayes and logistic regression in low-dimensions as studied in [8], this general high-
dimensional setting is more nuanced, and in particular depends on the separability of the generative
models. As we show, under some conditions on the models, generative and discriminative models
not only have potentially different `1 rates, but also differing “burn in” periods in terms of the
minimum number of samples required in order for the convergence rates to hold. The choice of a
generative vs discriminative model, namely that with a better sample complexity, thus depends on their
corresponding separabilities. As a minor note, we also show how generative model M -estimators are
not directly suitable in high-dimensions, and provide a simple methodological fix in order to obtain
better `

2

rates. We instantiate our results with two running examples of isotropic and non-isotropic
Gaussian generative models, and also corroborate our theory with instructive simulations.

2 Background and Setup.

We consider the problem of differential parameter estimation under the following generative model.
Let Y 2 {0, 1} denote a binary response variable, and let X = (X

1

, . . . , X
p

) 2 Rp be the covariates.
For simplicity, we assume P[Y = 1] = P[Y = 0] =

1

2

. We assume that conditioned on the response
variable, the covariates belong to an exponential family, X|Y ⇠ P

✓

⇤
Y
(·), where:

P
✓

⇤
Y
(X|Y ) = h(X) exp(h✓⇤

Y

, �(X)i � A(✓⇤
Y

)). (1)

Here, ✓⇤
Y

is the vector of the true canonical parameters, A(✓) is the log-partition function and �(X)

is the sufficient statistic. We assume access to two sets of samples X n

0

= {x
(0)

i

}n

i=1

⇠ P
✓

⇤
0

and
X n

1

= {x
(1)

i

}n

i=1

⇠ P
✓

⇤
1
. Given these samples, as noted in the introduction, we are particularly

interested in estimating the differential parameter ✓⇤
diff := ✓⇤

1

� ✓⇤
0

, since this is also the model
parameter corresponding to the discriminative model, as we show below. In high dimensional
sampling settings, we additionally assume that ✓⇤

diff is at most s-sparse, i.e. ||✓⇤
diff||

0

 s.

We will be using the following two exponential family generative models as running examples:
isotropic and non-isotropic multivariate Gaussian models.

Isotropic Gaussians (IG) Let X = (X
1

, . . . , X
p

) ⇠ N (µ, I
p

) be an isotropic gaussian random
variable; it’s density can be written as:

P
µ

(x) =

1

p

(2⇡)

p

exp

✓

�1

2

(x � µ)

T

(x � µ)

◆

. (2)

Gaussian MRF (GMRF). Let X = (X
1

, . . . , X
p

) denote a zero-mean gaussian random vector;
it’s density is fully-parametrized as by the inverse covariance or concentration matrix ⇥ = (⌃)

�1 � 0

2



and can be written as:

P
⇥

(x) =

1

r

(2⇡)

pdet
⇣

(⇥)

�1

⌘

exp

✓

�1

2

xT⇥x

◆

. (3)

Let d
⇥

= max

j2[p]

�

�

�

�⇥
(:,j)

�

�

�

�

0

is the maximum number non-zeros in a row of ⇥. Let 
⌃

⇤
=

�

�

�

�

�

�

(⇥⇤
)

�1

�

�

�

�

�

�

1, where |||M |||1 is the `1/`1 operator norm given by |||M |||1 = max

j=1,2,...,p

P

p

k=1

|M
jk

|.

Generative Model Estimation. Here, we proceed by estimating the two parameters {✓⇤
i

}1
i=0

indi-
vidually. Letting b✓

1

and b✓
0

be the corresponding estimators, we can then estimate the difference of
the parameters as b✓diff =

b✓
1

� b✓
0

. The most popular class of estimators for the individual parameters
is based on Maximum likelihood Estimation (MLE), where we maximize the likelihood of the given
data. For isotropic gaussians, the negative log-likelihood function can be written as:

L
nIG(✓) =

✓T ✓

2

� ✓T

bµ, (4)

where bµ =

1

n

P

n

i=1

x
i

. In the case of GGMs the negative log-likelihood function can be written as:

L
nGGM(⇥) =

DD

⇥, b⌃
EE

� log(det(⇥)), (5)

where b⌃ =

1

n

P

n

i=1

x
i

xT

i

is the sample covariance matrix and hhU, V ii =

P

i,j

U
ij

V
ij

denotes
the trace inner product on the space of symmetric matrices. In high-dimensional sampling regimes
(n << p), regularized MLEs, for instance with `

1

-regularization under the assumption of sparse
model parameters, have been widely used [11, 10, 2].
Discriminative Model Estimation. Using Bayes rule, we have that:

P[Y = 1|X] =

P[X|Y = 1]P[Y = 1]

P[X|Y = 0]P[Y = 0] + P[X|Y = 1]P[Y = 1]

=

1

1 + exp (� (h✓⇤
1

� ✓⇤
0

, �(x)i + c⇤
))

(6)

where c⇤
= A(✓⇤

0

) � A(✓⇤
1

). The conditional distribution is simply a logistic regression model, with
the generative model sufficient statistics as the features, and with optimal parameters being precisely
the difference ✓⇤

diff := ✓⇤
1

� ✓⇤
0

of the generative model parameters. The corresponding negative
log-likelihood function can be written as

Llogistic(✓, c) =

1

n

n

X

i=1

(�y
i

(h✓, �(x
i

)i + c) + �(h✓,�(x
i

)i + c)) (7)

where �(t) = log(1 + exp(t)). In high dimensional sampling regimes, under the assumption that the
model parameters are sparse, we would use the `

1

-penalized version b✓diff of the MLE (7) to estimate
✓⇤

diff.

Outline. We proceed by studying the more general problem of `1 error for parameter estimation
for any loss function L

n

(·). Specifically, consider the general M -estimation problem, where we
are given n i.i.d samples Zn

1

= {z
1

, z
2

, . . . , z
n

}, z
i

2 Z from some distribution P, and we are
interested in estimating some parameter ✓⇤ of the distribution P. Let ` : Rp ⇥ Z 7! R be a twice
differentiable and convex function which assigns a loss `(✓; z) to any parameter ✓ 2 Rp, for a given
observation z. Also assume that the loss is Fisher consistent so that ✓⇤ 2 argmin

✓

¯L(✓) where
¯L(✓)

def

= E
z⇠P[`(✓; z)] is the population loss. We are then interested in analyzing the M -estimators

✓⇤ that minimize the empirical loss i.e. b✓ 2 argmin

✓

L
n

(✓), or regularized versions thereof, where
L

n

(✓) =

1

n

P

n

i=1

L(✓; Z
i

).

We introduce a notion of the separability of a loss function, and show how more separable losses
require fewer samples to establish convergence for

�

�

�

�

�

�

b✓ � ✓⇤
�

�

�

�

�

�

1
. We then instantiate our separability

results from this general setting for both generative and discriminative models. We calculate the
number of samples required for generative and discriminative approaches to estimate the differential
parameter ✓⇤

diff, for consistent convergence rates with respect to `1 and `
2

norm. We also discuss the
consequences of these results for high dimensional classification for Gaussian Generative models.
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3 Separability

Let R(�; ✓⇤
) = rL

n

(✓⇤
+�)�rL

n

(✓⇤
)�r2L

n

(✓⇤
)� be the error in the first order approximation

of the gradient at ✓⇤. Let B1(r) = {✓| ||✓||1  r} be an `1 ball of radius r. We begin by analyzing
the low dimensional case, and then extend it to high dimensions.

3.1 Low Dimensional Sampling Regimes

In low dimensional sampling regimes, we assume that the number of samples n � p. In this
setting, we make the standard assumption that the empirical loss function L

n

(·) is strongly convex.
Let b✓ = argmin

✓

L
n

(✓) denote the unique minimizer of the empirical loss function. We begin by
defining a notion of separability for any such empirical loss function L

n

.
Definition 1. L

n

is (↵, �, �) locally separable around ✓⇤
if the remainder term R(�; ✓⇤

) satisfies:

||R(�; ✓⇤
)||1  1

�
||�||↵1 8� 2 B1(�)

This definition might seem a bit abstract, but for some general intuition, � indicates the region where
it is separable, ↵ indicates the conditioning of the loss, while it is � that quantifies the degree of
separability: the larger it is, the more separable the loss function. Next, we provide some additional
intuition on how a loss function’s separability is connected to (↵, �, �). Using the mean-value theorem,
we can write ||R(�, ✓⇤

)||1 =

�

�

�

�

�

r2L
n

(✓⇤
+ t�) � r2L

n

(✓⇤
)

�

�
�

�

�

�

1 for some t 2 (0, 1). This can
be further simplified as ||R(�, ✓⇤

)||1 
�

�

�

�

�

�r2L
n

(✓⇤
+ t�) � r2L

n

(✓⇤
)

�

�

�

�

�

�

1 ||�||1. Hence, ↵ and
1/� measure the smoothness of Hessian (w.r.t. the `1/`1 matrix norm) in the neighborhood of ✓⇤,
with ↵ being the smoothness exponent, and 1/� being the smoothness constant. Note that the Hessian
of the loss function r2L

n

(✓) is a random matrix and can vary from being a diagonal matrix for a
fully-separable loss function to a dense matrix for a heavily-coupled loss function. Moreover, from
standard concentration arguments, the `1/`1 matrix norm for a diagonal ("separable") subgaussian
random matrix has at most logarithmic dimension dependence1, but for a dense ("non-separable")
random matrix, the `1/`1 matrix norm could possibly scale linearly in the dimension. Thus, the
scaling of `1/`1 matrix norm gives us an indication how “separable” the matrix is. This intuition is
captured by (↵, �, �), which we further elaborate in future sections by explicitly deriving (↵, �, �)

for different loss functions and use them to derive `
2

and `1 convergence rates.
Theorem 1. Let L

n

be a strongly convex loss function which is (↵, �, �) locally separable function

around ✓⇤
. Then, if ||rL

n

(✓⇤
)||1  min{ �

2

,
�

1

2

�

↵
↵�1 �

1
↵�1 }

�

�

�

�

�

�

b✓ � ✓⇤
�

�

�

�

�

�

1
 2 ||rL

n

(✓⇤
)||1

where  =

�

�

�

�

�

�r2L
n

(✓⇤
)

�1

�

�

�

�

�

�

1.

Proof. (Proof Sketch). The proof begins by constructing a suitable continuous function F , for
which b� =

b✓ � ✓⇤ is the unique fixed point. Next, we show that F (B1(r)) ✓ B1(r) for r =

2 ||rL
n

(✓⇤
)||1. Since F is continuous and `1-ball is convex and compact, the contraction property

coupled with Brouwer’s fixed point theorem [9], shows that there exists some fixed point � of F ,
such that ||�||1  2 ||rL

n

(✓⇤
)||1. By uniqueness of the fixed point, we then establish our result.

See Figure 1 for a geometric description and Section A for more details

3.2 High Dimensional Sampling Regimes

In high dimensional sampling regimes (n << p), estimation of model parameters is typically an
under-determined problem. It is thus necessary to impose additional assumptions on the true model
parameter ✓⇤. We will focus on the popular assumption of sparsity, which entails that the number
of non-zero coefficients of ✓⇤ is small, so that ||✓⇤||

0

 s. For this setting, we will be focusing in
particular on `

1

-regularized empirical loss minimization:

1Follows from the concentration of subgaussian maxima [12]
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b

�

F (

b

�) =

b

�

F

B1(2 ||rL
n

(✓⇤
)||1)

F (B1(2 ||rL
n

(✓⇤
)||1))

Figure 1: Under the conditions of Theorem 1, F (�) = �r2L
n

(✓⇤
)

�1

(R(�; ✓⇤
) + rL

n

(✓⇤
)) is

contractive over B1(2 ||rL
n

(✓⇤
)||1) and has b� =

b✓ � ✓⇤ as its unique fixed point. Using these
two observations, we can conclude that

�

�

�

�

�

�

b�
�

�

�

�

�

�

1
 2 ||rL

n

(✓⇤
)||1.

b✓
�n = argmin

✓

L
n

(✓) + �
n

||✓||
1

(8)

Let S = {i | ✓⇤
i

6= 0} be the support set of the true parameter and M(S) = {v|v
S

c
= 0} be the

corresponding subspace. Note that under a high-dimensional sampling regime, we can no longer
assume that the empirical loss L

n

(·) is strongly convex. Accordingly, we make the following set of
assumptions:

• Assumption 1 (A1): Positive Definite Restricted Hessian. r2

SS

L
n

(✓⇤
) % �

min

I
• Assumption 2 (A2): Irrepresentability. There exists some  2 (0, 1] such that

�

�

�

�

�

�r2

S

c
S

L
n

(✓⇤
)

�

r2

SS

L
n

(✓⇤
)

� �1

�

�

�

�

�

�

1  1 �  

• Assumption 3 (A3). Unique Minimizer. When restricted to the true support, the solution to the
`
1

penalized loss minimization problem is unique, which we denote by:
˜✓
�n = argmin

✓2M(S)

{L
n

(✓) + �
n

||✓||
1

} . (9)

Assumptions 1 and 2 are common in high dimensional analysis. We verify that Assumption 3 holds
for different loss functions individually. We refer the reader to [13, 5, 11, 10] for further details
on these assumptions. For this high dimensional sampling regime, we also modify our separability
notion to a restricted separability, which entails that the remainder term be separable only over the
model subspace M(S).
Definition 2. L

n

is (↵,�, �) restricted locally separable around ✓⇤
over the subspace M(S) if the

remainder term R(�; ✓⇤
) satisfies:

||R(�; ✓⇤
)||1  1

�
||�||↵1 8� 2 B1(�) \ M(S)

We present our main deterministic result in high dimensions.
Theorem 2. Let L

n

be a (↵,�, �) locally separable function around ✓⇤
. If (�

n

, rL
n

(✓⇤
)) are such

that,

•  

8

�
n

� ||rL
n

(✓⇤
)||1.

• ||rL
n

(✓⇤
)||1 + �

n

 min

n

�

2

,
�

1

2

�

↵
↵�1 �

1
↵�1

o

Then we have that support(b✓
�n) ✓ support(✓⇤

) and

�

�

�

�

�

�

b✓
�n � ✓⇤

�

�

�

�

�

�

1
 2 (||rL

n

(✓⇤
)||1 + �

n

)

where  =

�

�

�

�

�

�r2

SS

L
n

(✓⇤
)

�1

�

�

�

�

�

�

1
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Proof. (Proof Sketch). The proof invokes the primal-dual witness argument [13] which when
combined with Assumption 1-3, gives b✓

�n 2 M(S) and that b✓
�n is the unique solution of the

restricted problem. The rest of the proof proceeds similar to Theorem 1, by constructing a suitable
function F : R|S| 7! R|S| for which b� =

b✓
�n � ✓⇤ is the unique fixed point, and showing that F is

contractive over B1(r; ✓⇤
) for r = 2 (||rL

n

(✓⇤
)||1 + �

n

).See Section B for more details.

Discussion. Theorems 1 and 2 provide a general recipe to estimate the number of samples required
by any loss `(✓, z) to establish `1 convergence. The first step is to calculate the separability constants
(↵, �, �) for the corresponding empirical loss function L

n

. Next, since the loss ` is Fisher consistent,
so that r ¯L(✓⇤

) = 0, the upper bound on ||rL
n

(✓⇤
)||1 can be shown to hold by analyzing the

concentration of rL
n

(✓⇤
) around its mean. We emphasize that we do not impose any restrictions on

the values of (↵, �, �). In particular, these can scale with the number of samples n; our results hold
so long as the number of samples n satisfy the conditions of the theorem. As a rule of thumb, the
smaller that either � or � get for any given loss `, the larger the required number of samples.

4 `1-rates for Generative and Discriminative Model Estimation

In this section we study the `1 rates for differential parameter estimation for the discriminative and
generative approaches. We do so by calculating the separability of discriminative and generative loss
functions, and then instantiate our previously derived results.

4.1 Discriminative Estimation

As discussed before, the discriminative approach uses `
1

-regularized logistic regression with the
sufficient statistic as features to estimate the differential parameter. In addition to A1-A3, we
assume column normalization of the sufficient statistics, i.e.

P

n

i=1

([�(x
i

)]

j

)

2  n. Let �
n

=

max

i

||�(x)

i

||1, ⌫
n

= max

i

||(�(x)

i

)

S

||
2

. Firstly, we characterize the separability of the logistic loss.

Lemma 1. The logistic regression negative log-likelihood L
n

Logistic

from (7) is

⇣

2, 1

s�n⌫

2
n
, 1

⌘

re-

stricted local separable around ✓⇤
.

Combining Lemma 1 with Theorem 2, we get the following corollary.
Corollary 3. (Logistic Regression) Consider the model in (1), then there exist universal positive con-

stants C
1

, C
2

and C
3

such that for n � C
1

2s2�2

n

⌫4

n

log p and �
n

= C
2

q

log p

n

, the discriminative

differential estimate

b✓
diff

, satisfies

support(b✓
diff

) ✓ support(✓⇤
diff

) and

�

�

�

�

�

�

b✓
diff

� ✓⇤
diff

�

�

�

�

�

�

1
 C

3

r

log p

n
.

4.2 Generative Estimation

We characterize the separability of Generative Exponential Families. The negative log-likelihood
function can be written as:

L
n

(✓) = A(✓) � h✓,�
n

i ,

where �
n

=

1

n

P

n

i=1

�(x
i

). In this setting, the remainder term is independent of the data and can
be written as R(�) = rA(✓⇤

+ �) � rA(✓⇤
) � r2A(✓⇤

)� and rL
n

(✓⇤
) = E[�(x)] � 1

n

�(x
i

).
Hence, ||rL

n

(✓⇤
)||1 is a measure of how well the sufficient statistics concentrate around their mean.

Next, we show the separability of our running examples Isotropic Gaussians and Gaussian Graphical
Models.
Lemma 2. The isotropic Gaussian negative log-likelihood L

n

IG

from (4) is (·, 1, 1) locally separa-

ble around ✓⇤
.

Lemma 3. The Gaussian MRF negative log-likelihood L
n

GGM

from (5) is

⇣

2, 2

3d

⇤
⇥

3
⌃⇤

, 1

3d

⇤
⇥⌃⇤

⌘

restricted locally separable around ⇥⇤
.
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Comparing Lemmas 1, 2 and 3, we see that the separability of the discriminative model loss depends
weakly on the feature functions. On the other hand, the separability for the generative model loss
depends critically on the underlying sufficient statistics. This has consequences for their differing
sample complexities for differential parameter estimation, as we show next.
Corollary 4. (Isotropic Gaussians) Consider the model in (2). Then there exist universal constants

C
1

, C
2

, C
3

such that if the number of samples scale as n � C
1

log p, then with probability atleast

1 � 1/pC2
, the generative estimate of the differential parameter

b✓
diff

satisfies

�

�

�

�

�

�

b✓
diff

� ✓⇤
diff

�

�

�

�

�

�

1
 C

3

r

log p

n
.

Comparing Corollary 3 and Corollary 4, we see that for isotropic gaussians, both the discriminative
and generative approach achieve the same `1 convergence rates, but at different sample complexities.
Specifically, the sample complexity for the generative method depends only logarithmically on the
dimension p, and is independent of the differential sparsity s, while the sample complexity of the
discriminative method depends on the differential sparsity s. Therefore in this case, the generative
method is strictly better than its discriminative counterpart, assuming that the generative model
assumptions hold.
Corollary 5. (Gaussian MRF) Consider the model in (3), and suppose that the scaled covari-

ates X
k

/
p

⌃⇤
kk

are subgaussian with parameter �2

. Then there exist universal positive con-

stants C
2

, C
3

, C
4

such that if the number of samples for the two generative models scale as

n
i

� C
2

2

i

6

(⇥

⇤
i )

�1d2
⇥

⇤
i
log p, for i 2 {0, 1}, then with probability at least 1 � 1/pC3

, the gen-

erative estimate of the differential parameter,

b⇥
diff

=

b⇥
1

� b⇥
0

, satisfies

�

�

�

�

�

�

b⇥
diff

� ⇥⇤
diff

�

�

�

�

�

�

1
 C

4

r

log p

n
,

and support(

b⇥
i

) ✓ support(⇥⇤
i

) for i 2 {0, 1}.

Comparing Corollary 3 and Corollary 5, we see that for Gaussian Graphical Models, both the
discriminative and generative approach achieve the same `1 convergence rates, but at different
sample complexities. Specifically, the sample complexity for the generative method depends only on
row-wise sparsity of the individual models d2

⇥

⇤
i
, and is independent of sparsity s of the differential

parameter ⇥⇤
diff. In contrast, the sample complexity of the discriminative method depends only

on the sparsity of the differential parameter, and is independent of the structural complexities of
the individual model parameters. This suggests that in high dimensions, even when the generative
model assumptions hold, generative methods might perform poorly if the underlying model is highly
non-separable (e.g. d = ⌦(p)), which is in contrast to the conventional wisdom in low dimensions.

Related Work. Note that results similar to Corollaries 3 and 5 have been previously reported in
[11, 5] separately. Under the same set of assumptions as ours, Li et al. [5] provide a unified analysis
for support recovery and `1-bounds for `

1

-regularized M-estimators. While they obtain the same
rates as ours, their required sample complexities are much higher, since they do not exploit the
separability of the underlying loss function. As one example, in the case of GMRFs, their results
require the number of samples to scale as n > k2

log p, where k is the total number of edges in the
graph, which is sub-optimal, and in particular does not match the GMRF-specific analysis of [11].
On the other hand, our unified analysis is tighter, and in particular, does match the results of [11].

5 `2-rates for Generative and Discriminative Model Estimation

In this section we study the `
2

rates for differential parameter estimation for the discriminative and
generative approaches.

5.1 Discriminative Approach

The bounds for the discriminative approach are relatively straightforward. Corollary 3 gives bounds
on the `1 error and establishes that support(b✓) ✓ support(✓⇤

). Since the true model parameter is
s-sparse, ||✓⇤||

0

 s, the `
2

error can be simply bounded as
p

s kb✓ � ✓⇤k1.
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5.2 Generative Approach

In the previous section, we saw that the generative approach is able to exploit the inherent separability
of the underlying model, and thus is able to get `1 rates for differential parameter estimation at a
much lower sample complexity. Unfortunately, it does not have support consistency. Hence a naïve

generative estimator will have an `
2

error scaling with
q

p log p

n

, which in high dimensions, would
make it unappealing. However, one can exploit the sparsity of ✓⇤

diff and get better rates of convergence
in `

2

-norm by simply soft-thresholding the generative estimate. Moreover, soft-thresholding also
leads to support consistency.
Definition 3. We denote the soft-thresholding operator ST

�n (·), defined as:

ST

�n (✓) = argmin

w

1

2

||w � ✓||2
2

+ �
n

||w||
1

.

Lemma 4. Suppose ✓ = ✓⇤
+ ✏ for some s-sparse ✓⇤

. Then there exists a universal constant C
1

such

that for �
n

� 2 ||✏||1,

||ST

�n (✓) � ✓⇤||
2

 C
1

p
s ||✏||1 and ||ST

�n (✓) � ✓⇤||
1

 C
1

s ||✏||1 (10)

Note that this is a completely deterministic result and has no sample complexity requirement.
Motivated by this, we introduce a thresholded generative estimator that has two stages: (a) compute
b✓diff using the generative model estimates, and (b) soft-threshold the generative estimate with �

n

=

c
�

�

�

�

�

�

b✓diff � ✓⇤
diff

�

�

�

�

�

�

1
. An elementary application of Lemma 4 can then be shown to provide `

2

error

bounds for b✓diff given its `1 error bounds, and that the true parameter ✓⇤
diff is s-sparse. We instantiate

these `
2

-bounds via corollaries for our running examples of Isotropic Gaussians, and Gaussian MRFs.
Lemma 5. (Isotropic Gaussians) Consider the model in (2). Then there exist universal constants

C
1

, C
2

, C
3

such that if the number of samples scale as n � C
1

log p, then with probability atleast

1 � 1/pC2
, the soft-thresholded generative estimate of the differential parameter ST

�n

⇣

b✓
diff

⌘

, with

the soft-thresholding parameter set as �
n

= c
q

log p

n

for some constant c, satisfies:

�

�

�

�

�

�

ST

�n

⇣

b✓
diff

⌘

� ✓⇤
diff

�

�

�

�

�

�

2

 C
3

r

s log p

n
.

Lemma 6. (Gaussian MRF) Consider the model in Equation 3, and suppose that the covari-

ates X
k

/
p

⌃⇤
kk

are subgaussian with parameter �2

. Then there exist universal positive con-

stants C
2

, C
3

, C
4

such that if the number of samples for the two generative models scale as

n
i

� C
2

2

i

6

(⇥

⇤
i )

�1d2
⇥

⇤
i
log p, for i 2 {0, 1}, for i 2 {0, 1}, then with probability at least 1 � 1/pC3

,

the soft-thresholded generative estimate of the differential parameter, ST

�n

⇣

b⇥
diff

⌘

, with the soft-

thresholding parameter set as �
n

= c
q

log p

n

for some constant c, satisfies:

�

�

�

�

�

�

ST

�n

⇣

b⇥
diff

⌘

� ⇥⇤
diff

�

�

�

�

�

�

2

 C
4

r

s log p

n
.

Comparing Lemmas 5 and 6 to Section 5.1, we can see that the additional soft-thresholding step
allows the generative methods to achieve the same `

2

-error rates as the discriminative methods, but at
different sample complexities. The sample complexities of the generative estimates depend on the
separabilities of the individual models, and is independent of the differential sparsity s, where as the
sample complexity of the discriminative estimate depends only on the differential sparsity s.

6 Experiments: High Dimensional Classification

In this section, we corroborate our theoretical results on `
2

-error rates for generative and discriminative
model estimators, via their consequences for high dimensional classification. We focus on the case
of isotropic Gaussian generative models X|Y ⇠ N (µ

Y

, I
p

), where µ
0

, µ
1

2 Rp are unknown
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(a) s = 4, p = 512
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Figure 2: Effect of sparsity s on excess 0 � 1 error.

and µ
1

� µ
0

is s-sparse. Here, we are interested in a classifier C : Rp 7! {0, 1} that achieves
low classification error E

X,Y

[1 {C(X) 6= Y }]. Under this setting, it can be shown that the Bayes

classifier, that achieves the lowest possible classification error, is given by the linear discriminant
classifier C⇤

(x) = 1
�

xT w⇤
+ b⇤ > 0

 

, where w⇤
= (µ

1

� µ
0

) and b⇤
=

µ

T
0 µ0�µ

T
1 µ1

2

. Thus, the
coefficient w⇤ of the linear discriminant is precisely the differential parameter, which can be estimated
via both generative and discriminative approaches as detailed in the previous section. Moreover, the
classification error can also be related to the `

2

error of the estimates. Under some mild assumptions,
Li et al. [3] showed that for any linear classifier bC(x) = 1

n

xT

bw +

bb > 0

o

, the excess classification
error can be bounded as:

E(

bC)  C
1

✓

|| bw � w⇤||2
2

+

�

�

�

�

�

�

bb � b⇤
�

�

�

�

�

�

2

2

◆

,

for some constant C
1

> 0, and where E(C) = E
X,Y

[1 {C(X) 6= Y }] � E
X,Y

[1 {C⇤
(X) 6= Y }] is

the excess 0-1 error. In other words, the excess classification error is bounded by a constant times the
`
2

error of the differential parameter estimate.

Methods. In this setting, as discussed in previous sections, the discriminative model is simply a
logistic regression model with linear features (6), so that the discriminative estimate of the differential
parameter bw as well as the constant bias term bb can be simply obtained via `

1

-regularized logistic
regression. For the generative estimate, we use our two stage estimator from Section 5, which proceeds
by estimating bµ

0

, bµ
1

using the empirical means, and then estimating the differential parameter by
soft-thresholding the difference of the generative model parameter estimates bw

T

= ST
�n (bµ

1

� bµ
0

)

where �
n

= C
1

q

log p

n

for some constant C
1

. The corresponding estimate for b⇤ is given by
ˆb
T

= � 1

2

h bw
T

, bµ
1

+ bµ
0

i.
Experimental Setup. For our experimental setup, we consider isotropic Gaussian models with

means µ
0

= 1

p

� 1p
s



1

s

0

p�s

�

, µ
1

= 1

p

+

1p
s



1

s

0

p�s

�

, and vary the sparsity level s. For both methods,

we set the regularization parameter 2 as �
n

=

p

log(p)/n. We report the excess classification error
for the two approaches, averaged over 20 trials, in Figure 2.

Results. As can be seen from Figure 2, our two-staged thresholded generative estimator is always
better than the discriminative estimator, across different sparsity levels s. Moreover, the sample
complexity or “burn-in” period of the discriminative classifier strongly depends on the sparsity level,
which makes it unsuitable when the true parameter is not highly sparse. For our two-staged generative
estimator, we see that the sparsity s has no effect on the “burn-in” period of the classifier. These
observations validate our theoretical results from Section 5.

2See Appendix J for cross-validated plots.
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