A Proof for Section 2

Throughout our proof, we presume without loss of generality that the elements in \bar{x} = $(\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_d)$ are in descending order by their magnitude, i.e., $|\bar{x}_1| \geq |\bar{x}_2| \geq \cdots \geq |\bar{x}_s|$ and $\bar{x}_i = 0$ for $s < i \leq d$. We also write $[n] := \{1, 2, \ldots, n\}$ for brevity.

Recall that the partial hard thresholding algorithm with freedom parameter r proceeds as follows at the t-th iteration:

$$
z^{t} = x^{t-1} - \eta \nabla F(x^{t-1})
$$

\n
$$
J^{t} = S^{t-1} \cup \text{supp } (\nabla F(x^{t-1}), r)
$$

\n
$$
y^{t} = \text{HT}_{k}(z_{J^{t}}^{t})
$$

\n
$$
S^{t} = \text{supp } (y^{t})
$$

\n
$$
x^{t} = \arg \min_{\text{supp}(\mathbf{x}) \subset S^{t}} F(\mathbf{x})
$$

We first prove the results that appear in Section 3.

Lemma 8 (Restatement of Lemma 5). *Assume that* $F(x)$ *is* ρ_{2k}^- -RSC and ρ_{2k}^+ -RSS. Consider the $PHT(r)$ algorithm with $\eta < 1/\rho_{2k}^+$. Further assume that the sequence of $\{\boldsymbol{x}^t\}_{t\geq 0}$ satisfies

$$
\|\boldsymbol{x}^{t} - \bar{\boldsymbol{x}}\| \leq \alpha \cdot \beta^{t} \|\boldsymbol{x}^{0} - \bar{\boldsymbol{x}}\| + \psi_{1},
$$

$$
\|\boldsymbol{x}^{t} - \bar{\boldsymbol{x}}\| \leq \gamma \|\bar{\boldsymbol{x}}_{\overline{S^{t}}}\| + \psi_{2},
$$

for positive α , ψ_1 , γ , ψ_2 *and* $0 < \beta < 1$. Suppose that at the *n*-th iteration ($n \ge 0$), S^n *contains the indices of top p (in magnitude) elements of* \overline{x} *. Then, for any integer* $1 \leq q \leq s - p$ *, there exists an integer* $\Delta \geq 1$ *determined by*

$$
\sqrt{2}|\bar{x}_{p+q}| > \alpha \gamma \cdot \beta^{\Delta-1} ||\bar{x}_{\{p+1,\dots,s\}}|| + \Psi
$$

where

$$
\Psi = \alpha \psi_2 + \psi_1 + \frac{1}{\rho_{2k}^-} \|\nabla_2 F(\bar{x})\|,
$$

 $\int \sinh(1) \sinh(1) \, dt$ *s* $n+\Delta$ *contains the indices of top* $p + q$ *elements of* \bar{x} *provided that* $\Psi \leq \sqrt{2} \lambda \bar{x}_{\min}$ *for some* $\lambda \in (0,1)$ *.*

Proof. We aim at deriving a condition under which $[p+q] \subset S^{n+\Delta}$. To this end, it suffices to enforce

$$
\min_{j \in [p+q]} |z_j^{n+\Delta}| > \max_{i \in \overline{S}} |z_i^{n+\Delta}|.
$$
\n(7)

On one hand, for any $j \in [p+q]$,

$$
\begin{aligned} \left| z_j^{n+\Delta} \right| &= \left| \left(\boldsymbol{x}^{n+\Delta-1} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_j \right| \\ &\geq |\bar{x}_j| - \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_j \right| \\ &\geq |\bar{x}_{p+q}| - \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_j \right| . \end{aligned}
$$

On the other hand, for all $i \in \overline{S}$,

$$
\left|z_i^{n+\Delta}\right| = \left|\left(\mathbf{x}^{n+\Delta-1} - \bar{\mathbf{x}} - \eta \nabla F(\mathbf{x}^{n+\Delta-1})\right)_i\right|.
$$

Hence, we know that to guarantee (7), it suffices to ensure for all $j \in [p+q]$ and $i \in \overline{S}$ that

$$
|\bar{x}_{p+q}| > \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta\nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_j \right| + \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta\nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_i \right|.
$$

Note that the right-hand side is upper bounded as follows:

$$
\frac{1}{\sqrt{2}} \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_j \right| + \frac{1}{\sqrt{2}} \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_i \right|
$$
\n
$$
\leq \left\| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_{\{j,i\}} \right\|
$$
\n
$$
\leq \left\| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) + \eta \nabla F(\bar{\boldsymbol{x}}) \right)_{\{j,i\}} \right\| + \eta \left\| \left(\nabla F(\bar{\boldsymbol{x}}) \right)_{\{j,i\}} \right\|
$$
\n
$$
\leq \phi_{2k} \left\| \boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} \right\| + \eta \left\| \nabla_2 F(\bar{\boldsymbol{x}}) \right\|
$$
\n
$$
\leq \phi_{2k} \left\| \boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} \right\| + \eta \left\| \nabla_2 F(\bar{\boldsymbol{x}}) \right\|
$$

where ϕ_{2k} is given by Lemma 17. Note that $\phi_{2k} < 1$ whenever $0 < \eta < 1/\rho_{2k}^+$. Moreover,

$$
\|\bm{x}^{n}-\bar{\bm{x}}\| \leq \gamma \|\bar{\bm{x}}_{\overline{S^{n}}}\| + \psi_{2} \leq \gamma \left\|\bar{\bm{x}}_{\overline{[p]}}\right\| + \psi_{2} = \gamma \left\|\bar{\bm{x}}_{\{p+1,...,s\}}\right\| + \psi_{2}.
$$

Put all the pieces together, we have

$$
\frac{1}{\sqrt{2}} \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_j \right| + \frac{1}{\sqrt{2}} \left| \left(\boldsymbol{x}^{n+\Delta-1} - \bar{\boldsymbol{x}} - \eta \nabla F(\boldsymbol{x}^{n+\Delta-1}) \right)_i \right|
$$

\n
$$
\leq \alpha \gamma \cdot \beta^{\Delta-1} \left\| \bar{\boldsymbol{x}}_{\{p+1,\ldots,s\}} \right\| + \alpha \psi_2 + \psi_1 + \eta \left\| \nabla_2 F(\bar{\boldsymbol{x}}) \right\|
$$

\n
$$
\leq \alpha \gamma \cdot \beta^{\Delta-1} \left\| \bar{\boldsymbol{x}}_{\{p+1,\ldots,s\}} \right\| + \alpha \psi_2 + \psi_1 + \frac{1}{\rho_{2k}} \left\| \nabla_2 F(\bar{\boldsymbol{x}}) \right\|.
$$

Therefore, when

$$
\sqrt{2}|\bar{x}_{p+q}| > \alpha \gamma \cdot \beta^{\Delta-1} \left\| \bar{x}_{\{p+1,\ldots,s\}} \right\| + \alpha \psi_2 + \psi_1 + \frac{1}{\rho_{2k}^-} \left\| \nabla_2 F(\bar{x}) \right\|,
$$

we always have (7). Note that the above holds as far as $\Psi := \alpha \psi_2 + \psi_1 + \frac{1}{\rho_{2k}^-} \|\nabla_2 F(\bar{x})\|$ is strictly smaller than $\sqrt{2} |\bar{x}_s|$. □

Theorem 9 (Restatement of Theorem 6). Assume same conditions as in Lemma 5. Then $PHT(r)$ successfully identifies the support of \bar{x} using $\left(\frac{\log 2}{2\log(1/\beta)} + \frac{\log(\alpha\gamma/(1-\lambda))}{\log(1/\beta)} + 2\right)s$ number of itera*tions.*

Proof. We partition the support set $S = [s]$ into K folds S_1, S_2, \ldots, S_K , where each S_i is defined as follows:

$$
S_i = \{s_{i-1} + 1, \dots, s_i\}, \ \forall \ 1 \leq i \leq K.
$$

Here, $s_0 = 0$ and for all $1 \le i \le K$, the quantity s_i is inductively given by

$$
s_i = \max\Big\{q: \ s_{i-1} + 1 \le q \le s \text{ and } |\bar{x}_q| > \frac{1}{\sqrt{2}} |\bar{x}_{s_{i-1}+1}| \Big\}.
$$

In this way, we note that for any two index sets S_i and S_j , $S_i \cap S_j = \emptyset$ if $i \neq j$. We also know by the definition of s_i that

$$
|\bar{x}_{s_i+1}| \le \frac{1}{\sqrt{2}} |\bar{x}_{s_{i-1}+1}|, \forall 1 \le i \le K - 1.
$$
 (8)

Now we show that after a finite number of iterations, say n, the union of the S_i 's is contained in S^n , i.e., the support set of the iterate x^n . To this end, we prove that for all $0 \le i \le K$,

$$
\bigcup_{t=0}^{i} S_t \subset S^{n_0+n_1+\dots+n_i}
$$
\n(9)

for some n_i 's given below. Above, $S_0 = \emptyset$.

We pick $n_0 = 0$ and it is easy to verify that $S_0 \subset S^0$. Now suppose that (9) holds for $i - 1$. That is, the index set of the top s_{i-1} elements of \bar{x} is contained in $S^{n_0+\cdots+n_{i-1}}$. Due to Lemma 5, (9) holds for i as long as n_i satisfies

$$
\sqrt{2}|\bar{x}_{s_i}| > \alpha \gamma \cdot \beta^{n_i - 1} ||\bar{x}_{\{s_{i-1}+1,\ldots,s\}}|| + \Psi,
$$
\n(10)

where Ψ is given in Lemma 5. Note that

$$
\|\bar{x}_{\{s_{i-1}+1,\ldots,s\}}\|^2 = \|\bar{x}_{S_i}\|^2 + \cdots + \|\bar{x}_{S_K}\|^2
$$

\n
$$
\leq (\bar{x}_{s_{i-1}+1})^2 |S_i| + \cdots + (\bar{x}_{s_{r-1}+1})^2 |S_K|
$$

\n
$$
\leq (\bar{x}_{s_{i-1}+1})^2 (|S_i| + 2^{-1} |S_{i+1}| + \cdots + 2^{i-K} |S_K|)
$$

\n
$$
< 2(\bar{x}_{s_i})^2 (|S_i| + 2^{-1} |S_{i+1}| + \cdots + 2^{i-K} |S_K|),
$$

where the second inequality follows from (8) and the last inequality follows from the definition of q_i . Denote for simplicity

$$
W_i := |S_i| + 2^{-1} |S_{i+1}| + \cdots + 2^{i-K} |S_K|.
$$

As we assumed $\Psi \leq \sqrt{2}\lambda \bar{x}_{\min}$, we get

$$
\alpha\gamma\cdot\beta^{n_i-1}\left\|\bar{\boldsymbol{x}}_{\{s_{i-1}+1,\ldots,s\}}\right\|+\Psi<\sqrt{2}\alpha\gamma\left|\bar{x}_{s_i}\right|\beta^{n_i-1}\sqrt{W_i}+\sqrt{2}\lambda\left|\bar{x}_{s_i}\right|.
$$

Picking

$$
n_i = \log_{1/\beta} \frac{\alpha \gamma \sqrt{W_i}}{1 - \lambda} + 2
$$

guarantees (10). It remains to calculate the total number of iterations. In fact, we have

$$
t_{\max} = n_0 + n_1 + \dots + n_K
$$

\n
$$
= \frac{1}{2 \log(1/\beta)} \sum_{i=1}^K \log W_i + K \cdot \frac{\log(\alpha \gamma/(1-\lambda))}{\log(1/\beta)} + 2K
$$

\n
$$
\stackrel{\zeta_1}{\leq} \frac{K}{2 \log(1/\beta)} \log \left(\frac{1}{K} \sum_{i=1}^K W_i\right) + \left(\frac{\log(\alpha \gamma/(1-\lambda))}{\log(1/\beta)} + 2\right) K
$$

\n
$$
\stackrel{\zeta_2}{\leq} \frac{K}{2 \log(1/\beta)} \log \left(\frac{2}{K} \sum_{i=1}^K |S_i|\right) + \left(\frac{\log(\alpha \gamma/(1-\lambda))}{\log(1/\beta)} + 2\right) K
$$

\n
$$
= \frac{K}{2 \log(1/\beta)} \log \frac{2s}{K} + \left(\frac{\log(\alpha \gamma/(1-\lambda))}{\log(1/\beta)} + 2\right) K
$$

\n
$$
\stackrel{\zeta_3}{\leq} \left(\frac{\log 2}{2 \log(1/\beta)} + \frac{\log(\alpha \gamma/(1-\lambda))}{\log(1/\beta)} + 2\right) s.
$$

Above, ζ_1 immediately follows by observing that the logarithmic function is concave. ζ_2 uses the fact that after rearrangement, the coefficient of $|S_i|$ is $\sum_{j=0}^{i-1} 2^{-j}$ which is always smaller than 2. Finally, since the function a $\log(2s/a)$ is monotonically increasing with respect to a and $1 \le a \le s$, \cap ζ_3 follows.

Lemma 10 (Restatement of Lemma 7). Assume that $F(x)$ satisfies the properties of RSC and RSS *at sparsity level* $k + s + r$ *. Let* $\rho^- := \rho_{k+s+r}^-$ *and* $\rho^+ := \rho_{k+s+r}^+$ *. Consider the support set* $J^t = S^{t-1} \cup \text{supp } (\nabla F(\boldsymbol{x}^{t-1}), r)$. We have for any $0 < \theta \leq 1/\rho^+$,

$$
\left\|\bar{x}_{\overline{J^t}}\right\| \leq \nu(1-\theta\rho^-) \left\|x^{t-1}-\bar{x}\right\| + \frac{\nu}{\rho^-} \left\|\nabla_{s+r}F(\bar{x})\right\|,
$$

where $\nu = \sqrt{s - r + 2}$ *. In particular, picking* $\theta = 1/\rho^+$ *gives*

$$
\left\|\bar{x}_{\overline{J^t}}\right\| \leq \nu \left(1 - \frac{1}{\kappa}\right) \left\|x^{t-1} - \bar{x}\right\| + \frac{\nu}{\rho^-} \left\|\nabla_{s+r} F(\bar{x})\right\|.
$$

Proof. Let $T = \text{supp } (\nabla F(\boldsymbol{x}^{t-1}), r)$. Then $J^t = S^{t-1} \cup T$ and $S^{t-1} \cap T = \emptyset$. Since T contains the top r elements of $\nabla F(\mathbf{x}^{t-1})$, we have that each element in $T \setminus S$ is larger (in magnitude) than that in $S \setminus T$. In particular, we observe for $T \neq S$ that

$$
\frac{1}{|T \setminus S|} ||(\nabla F(\boldsymbol{x}^{t-1}))_{T \setminus S}||^{2} \geq \frac{1}{|S \setminus T|} ||(\nabla F(\boldsymbol{x}^{t-1}))_{S \setminus T}||^{2},
$$

which implies

$$
\left\| \left(\nabla F(\mathbf{x}^{t-1}) \right)_{T \setminus S} \right\| \geq \sqrt{\frac{r - |T \cap S|}{s - |T \cap S|}} \left\| \left(\nabla F(\mathbf{x}^{t-1}) \right)_{S \setminus T} \right\| \geq \sqrt{\frac{1}{s - r + 1}} \left\| \left(\nabla F(\mathbf{x}^{t-1}) \right)_{S \setminus T} \right\|.
$$

Since $\nabla F(\boldsymbol{x}^{t-1})$ is supported on $\overline{S^{t-1}}$, the LHS reads as

$$
\left\| \left(\nabla F(\mathbf{x}^{t-1}) \right)_{T \setminus S} \right\| = \left\| \left(\nabla F(\mathbf{x}^{t-1}) \right)_{T \setminus (S \cup S^{t-1})} \right\| = \frac{1}{\theta} \left\| \left(\mathbf{x}^{t-1} - \theta \nabla F(\mathbf{x}^{t-1}) - \bar{\mathbf{x}} \right)_{T \setminus (S \cup S^{t-1})} \right\|.
$$
\nNow we look at the RHS. It follows that

Now we look at the RHS. It follows that

$$
\begin{aligned} \left\| \left(\nabla F(\boldsymbol{x}^{t-1}) \right)_{S \setminus T} \right\| &= \left\| \left(\nabla F(\boldsymbol{x}^{t-1}) \right)_{S \setminus (T \cup S^{t-1})} \right\| \\ &= \frac{1}{\theta} \left\| (\boldsymbol{x}^{t-1} - \theta \nabla F(\boldsymbol{x}^{t-1}) - \bar{\boldsymbol{x}})_{S \setminus (T \cup S^{t-1})} + \bar{\boldsymbol{x}}_{S \setminus (T \cup S^{t-1})} \right\| \\ &\geq \frac{1}{\theta} \left\| \bar{\boldsymbol{x}}_{S \setminus (T \cup S^{t-1})} \right\| - \frac{1}{\theta} \left\| (\boldsymbol{x}^t - \theta \nabla F(\boldsymbol{x}^t) - \bar{\boldsymbol{x}})_{S \setminus (T \cup S^{t-1})} \right\| .\end{aligned}
$$

Hence,

$$
\|\bar{x}_{\mathcal{F}}\|
$$
\n
$$
= \|\bar{x}_{\mathcal{S}\backslash (T\cup S^{t-1})}\|
$$
\n
$$
\leq \sqrt{s-r+1} \| (x^{t-1} - \theta \nabla F(x^{t-1}) - \bar{x})_{T\backslash (S\cup S^{t-1})} \| + \| (x^{t-1} - \theta \nabla F(x^{t-1}) - \bar{x})_{S\backslash (T\cup S^{t-1})} \|
$$
\n
$$
\leq \sqrt{s-r+1} \| (x^{t-1} - \theta \nabla F(x^{t-1}) - \bar{x})_{T\backslash S} \| + \| (x^{t-1} - \theta \nabla F(x^{t-1}) - \bar{x})_{S\backslash T} \|
$$
\n
$$
\leq \nu \| (x^{t-1} - \theta \nabla F(x^{t-1}) - \bar{x})_{T\Delta S} \|
$$
\n
$$
\leq \nu \| (x^{t-1} - \theta \nabla F(x^{t-1}) - \bar{x} + \theta \nabla F(\bar{x}))_{T\Delta S} \| + \nu \theta \| (\nabla F(\bar{x}))_{T\Delta S} \|
$$
\n
$$
\leq \nu \phi_{k+s+r} \| x^{t-1} - \bar{x} \| + \nu \theta \| (\nabla F(\bar{x}))_{T\Delta S} \|,
$$
\nwhere $\nu = \sqrt{s-r+2}$ and the last inequality uses Lemma 18. For any $0 < \theta \leq 1/\rho^+$, we have

$$
\left\|\bar{x}_{\overline{J^t}}\right\| \leq \nu(1-\theta m) \left\|\bm{x}^{t-1}-\bar{\bm{x}}\right\| + \frac{\nu}{\rho^-} \left\|\nabla_{s+r} F(\bar{\bm{x}})\right\|.
$$

A.1 Proof of Prop. 2

Proof. Recall that we set $k = s$. Using Lemma 11, we have

$$
F(\boldsymbol{x}^t) - F(\bar{\boldsymbol{x}}) \leq \mu_t \left(F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}}) \right),
$$

where $\mu_t = 1 - 2\rho_{2s}^- \eta (1 - \eta \rho_{2s}^+) \cdot \frac{|S^t \setminus S^{t-1}|}{|S^t \setminus S^{t-1}| + |S \setminus S^{t-1}|}$. Now combining this with Prop. 21, we have

$$
\|\bm{x}^{t} - \bar{\bm{x}}\| \leq \sqrt{2\kappa} \sqrt{\mu_1 \mu_2 \dots \mu_t} \left\| \bm{x}^{0} - \bar{\bm{x}} \right\| + \frac{3}{\rho_{2s}^{2}} \left\| \nabla_{2s} F(\bar{\bm{x}}) \right\|.
$$

Note that before the algorithm terminates, $1 \leq |S^t \setminus S^{t-1}| \leq r$. Hence,

$$
\mu_t \le 1 - \frac{2\eta \rho_{2s}^-(1 - \eta \rho_{2s}^+)}{1 + s} =: \mu.
$$

It then follows that

$$
\left\|\boldsymbol{x}^{t} - \bar{\boldsymbol{x}}\right\| \leq \sqrt{2\kappa}(\sqrt{\mu})^{t} \left\|\boldsymbol{x}^{0} - \bar{\boldsymbol{x}}\right\| + \frac{3}{\eta} \left\|\nabla_{2s}F(\bar{\boldsymbol{x}})\right\|.
$$
 (11)

Lemma 19 tells us

$$
\left\|\boldsymbol{x}^{t} - \bar{\boldsymbol{x}}\right\| \leq \kappa \left\|\bar{\boldsymbol{x}}_{\overline{S^{t}}}\right\| + \frac{1}{\eta} \left\|\nabla_{s} F(\bar{\boldsymbol{x}})\right\|.
$$
 (12)

Hence, in light of Lemma 5 and Theorem 6, we obtain that $PHT(r)$ recovers the support using at most

$$
t_{\max} = \left(\frac{\log 2}{\log(1/\mu)} + \frac{\log(2\kappa)}{\log(1/\mu)} + \frac{2\log(\kappa/(1-\lambda))}{\log(1/\mu)} + 2\right) \|\bar{\mathbf{x}}\|_0
$$

iterations. Note that picking $\eta = O(1/\rho_{2s}^+)$, we have $\mu = O(1 - \frac{1}{\kappa})$ and $\log(1/\mu) = O(1/\kappa)$. This gives the $O(s\kappa \log \kappa)$ bound. П

Lemma 11. *Consider the PHT*(*r*) *algorithm. Suppose that* $F(x)$ *is* ρ_{k+s}^- -RSC and ρ_{2k}^+ -RSS. Using *the parameter* $k = s$ *and* $\eta < 1/\rho_{2s}^+$ *, we have*

$$
F(\boldsymbol{x}^t) - F(\bar{\boldsymbol{x}}) \leq \mu_t \left(F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}}) \right),
$$

 $where \mu_t = 1 - 2\eta \rho_{2s}^{-} (1 - \eta \rho_{2s}^{+}) \cdot \frac{|S^t \setminus S^{t-1}|}{|S^t \setminus S^{t-1}| + |S \setminus S^{t-1}|}.$

Proof. Using the RSS property, we have

$$
F(\boldsymbol{z}_{S^{t}}^{t}) - F(\boldsymbol{x}^{t-1}) \leq \left\langle \nabla F(\boldsymbol{x}^{t-1}), \boldsymbol{z}_{S^{t}}^{t} - \boldsymbol{x}^{t-1} \right\rangle + \frac{\rho_{2s}^{+}}{2} \left\| \boldsymbol{z}_{S^{t}}^{t} - \boldsymbol{x}^{t-1} \right\|^{2}
$$

$$
\stackrel{\leq}{=} \left\langle \nabla_{S^{t} \setminus S^{t-1}} F(\boldsymbol{x}^{t-1}), \boldsymbol{z}_{S^{t} \setminus S^{t-1}}^{t} \right\rangle + \frac{\rho_{2s}^{+}}{2} \left(\left\| \boldsymbol{z}_{S^{t} \setminus S^{t-1}}^{t} \right\|^{2} + \left\| \boldsymbol{z}_{S^{t} \setminus S^{t-1}}^{t} - \boldsymbol{x}_{S^{t} \cap S^{t-1}}^{t-1} \right\|^{2} + \left\| \boldsymbol{x}_{S^{t-1} \setminus S^{t}}^{t-1} \right\|^{2} \right)
$$

$$
\stackrel{\leq}{\leq} \left\langle \nabla_{S^{t} \setminus S^{t-1}} F(\boldsymbol{x}^{t-1}), \boldsymbol{z}_{S^{t} \setminus S^{t-1}}^{t} \right\rangle + \rho_{2s}^{+} \left\| \boldsymbol{z}_{S^{t} \setminus S^{t-1}}^{t} \right\|^{2}
$$

$$
\stackrel{\leq}{=} - \eta (1 - \eta \rho_{2s}^{+}) \left\| \nabla_{S^{t} \setminus S^{t-1}} F(\boldsymbol{x}^{t-1}) \right\|^{2}.
$$

Above, we observe that $\nabla F(x^{t-1})$ is supported on $\overline{S^{t-1}}$ and we simply docompose the support set $S^t \cup S^{t-1}$ into three mutually disjoint sets, and hence ζ_1 holds. To see why ζ_2 holds, we note that for any set $\Omega \subset S^{t-1}$, $z_{\Omega}^t = x_{\Omega}^{t-1}$. Hence, $z_{S^t \cap S^{t-1}}^t = x_{S^t \cap S^{t-1}}^{t-1}$. Moreover, since $x_{S^{t-1}\setminus S^t}^{t-1} = z_{S^{t-1}\setminus S^t}^t$ and any element in $z_{S^{t-1}\setminus S^t}^t$ is not larger than that in $z_{S^t\setminus S^{t-1}}^t$ (recall that S^t is obtained by hard thresholding), we have $x_{S^{t-1}\setminus S^t}^{t-1}$ $\| \leq \|$ $\left\| \mathcal{z}_{S^{t}\setminus S^{t-1}}^{t}\right\|$ where we use the fact that $|S^t \setminus S^t| = |S^t \setminus S^{t-1}|$. Therefore, ζ_2 holds. Finally, we write $z_{S^t \setminus S^{t-1}}^t = -\eta \nabla_{S^t \setminus S^{t-1}} F(x^{t-1})$ and obtain ζ_3 .

Since x^t is a minimizer of $F(x)$ over the support set S^t , it immediately follows that

$$
F(\boldsymbol{x}^{t}) - F(\boldsymbol{x}^{t-1}) \leq F(\boldsymbol{z}_{S^{t}}^{t}) - F(\boldsymbol{x}^{t-1}) \leq -\eta(1-\eta\rho_{2s}^{+})\left\|\nabla_{S^{t}\backslash S^{t-1}}F(\boldsymbol{x}^{t-1})\right\|^{2}.
$$

Now we invoke Lemma 12 and pick $\eta \leq 1/\rho_{2s}^+$,

$$
F(\boldsymbol{x}^{t}) - F(\boldsymbol{x}^{t-1}) \leq -2m\eta(1 - \eta \rho_{2s}^{+}) \cdot \frac{|S^{t} \setminus S^{t-1}|}{|S^{t} \setminus S^{t-1}| + |S \setminus S^{t-1}|} \left(F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}}) \right),
$$

which gives

$$
F(\boldsymbol{x}^t) - F(\bar{\boldsymbol{x}}) \leq \mu_t \left(F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}}) \right),
$$

where $\mu_t = 1 - 2\eta \rho_{2s}^{-} (1 - \eta \rho_{2s}^{+}) \cdot \frac{|S^t \setminus S^{t-1}|}{|S^t \setminus S^{t-1}| + |S \setminus S^{t-1}|}.$

Lemma 12. Consider the PHT(r) algorithm and assume $F(x)$ is ρ_{k+s}^- -RSC. Then for all $t \geq 1$,

 $\left\Vert \nabla_{S^{t}\setminus S^{t-1}}F(\boldsymbol{x}^{t-1})\right\Vert$ $2 \geq 2\rho_{k+s}^- \delta_t \left(F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}}) \right),$

where

$$
\delta_t = \frac{|S^t \setminus S^{t-1}|}{|S^t \setminus S^{t-1}| + |S \setminus S^{t-1}|}.
$$

Proof. The lemma holds clearly for either $S^t = S^{t-1}$ or $F(\mathbf{x}^t) \leq F(\bar{\mathbf{x}})$. Hence, in the following S^t $\neq S^{t-1}$ and $F(\mathbf{x}^t) > F(\bar{\mathbf{x}})$. Due to the RSC property, we have

$$
F(\bar{\boldsymbol{x}}) - F(\boldsymbol{x}^{t-1}) - \left\langle \nabla F(\boldsymbol{x}^{t-1}), \bar{\boldsymbol{x}} - \boldsymbol{x}^{t-1} \right\rangle \geq \frac{\rho_{k+s}^-}{2} \left\| \bar{\boldsymbol{x}} - \boldsymbol{x}^{t-1} \right\|^2,
$$

which implies

$$
\langle \nabla F(\boldsymbol{x}^{t-1}), -\bar{\boldsymbol{x}} \rangle \geq \frac{\rho_{k+s}^{-1}}{2} \left\| \bar{\boldsymbol{x}} - \boldsymbol{x}^{t-1} \right\|^2 + F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}})
$$

$$
\geq \sqrt{2\rho_{k+s}^{-1}} \left\| \bar{\boldsymbol{x}} - \boldsymbol{x}^{t-1} \right\| \sqrt{F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}})}.
$$

By invoking Lemma 13 with $u = \nabla F(x^{t-1})$ and $z = -\bar{x}$ therein, we have

$$
\langle \nabla F(\mathbf{x}^{t-1}), -\bar{\mathbf{x}} \rangle \leq \sqrt{\frac{|S \setminus S^{t-1}|}{|S^t \setminus S^{t-1}|} + 1} \|\nabla_{S^t \setminus S^{t-1}} F(\mathbf{x}^{t-1})\| \cdot \|\bar{\mathbf{x}}_{S \setminus S^{t-1}}\| \n= \sqrt{\frac{|S \setminus S^{t-1}|}{|S^t \setminus S^{t-1}|} + 1} \|\nabla_{S^t \setminus S^{t-1}} F(\mathbf{x}^{t-1})\| \cdot \left\|(\bar{\mathbf{x}} - \mathbf{x}^t)_{S \setminus S^{t-1}}\right\| \n\leq \sqrt{\frac{|S \setminus S^{t-1}|}{|S^t \setminus S^{t-1}|} + 1} \|\nabla_{S^t \setminus S^{t-1}} F(\mathbf{x}^{t-1})\| \cdot \|\bar{\mathbf{x}} - \mathbf{x}^t\|.
$$

It is worth mentioning that the first inequality above holds because $\nabla F(x^{t-1})$ is supported on $\overline{S^{t-1}}$ and $S^t \setminus S^{t-1}$ contains the $|S^t \setminus S^{t-1}|$ number of largest (in magnitude) elements of $\nabla F(x^{t-1})$.
Therefore we obtain the result Therefore, we obtain the result.

Lemma 13 (Lemma 1 in [28]). Let **u** and z be two distinct vectors and let $W = \text{supp} (u) \cap \text{supp} (z)$. *Also, let* U *be the support set of the top* r *(in magnitude) elements in* u*. Then, the following holds for all* $r \geq 1$ *:*

$$
\langle \boldsymbol{u}, \boldsymbol{z} \rangle \leq \sqrt{\left \lceil \frac{|W|}{r} \right \rceil} \left \lVert \boldsymbol{u}_U \right \rVert \cdot \left \lVert \boldsymbol{z}_W \right \rVert.
$$

A.2 Proof of Theorem 3

Proof. Let $\rho^- := \rho_{2s+r}^-$ and $\rho^+ := \rho_{2s+r}^+$. Let $\phi := \phi_{2s+r} = 1 - \eta \rho^-$ be the quantity given in Lemma 17. Using Lemma 14, we obtain

$$
\left\|\boldsymbol{x}^{t} - \bar{\boldsymbol{x}}\right\| \leq \left(\sqrt{2}\phi\kappa + \nu(\kappa - 1)\right) \left\|\boldsymbol{x}^{t-1} - \bar{\boldsymbol{x}}\right\| + \frac{2\nu + 4}{\rho^{-}}\left\|\nabla_{s+r}F(\bar{\boldsymbol{x}})\right\|,
$$

where $\nu = \sqrt{s - r + 2}$. We need to ensure that the convergence coefficient is smaller than 1.
Consider $\eta = \eta'/\rho^+$ with $\eta' \in (0, 1]$ for which $\phi = 1 - \eta'/\kappa$. It follows that

$$
\sqrt{2}\phi\kappa + \nu(\kappa - 1) = \sqrt{2}(\kappa - \eta') + \nu(\kappa - 1) \leq (\sqrt{2} + \nu)(\kappa - \eta').
$$

Hence, when we pick $1 - \frac{1}{\sqrt{2}}$ $\frac{1}{2+\nu} < \eta' \leq 1$, and the condition number satisfies

$$
\kappa < \eta' + \frac{1}{\sqrt{2} + \nu},
$$

the sequence of $x^t - \bar{x}$ contracts. On the other hand, using Lemma 19 we get

$$
\left\|\boldsymbol{x}^{t}-\bar{\boldsymbol{x}}\right\| \leq \kappa\left\|\bar{\boldsymbol{x}}_{\overline{S^{t}}}\right\|+\frac{1}{\rho^{-}}\left\|\nabla_{s}F(\bar{\boldsymbol{x}})\right\|.
$$

Hence, applying Lemma 5 and Theorem 6 we obtain the result.

Lemma 14. *Consider the PHT*(*r*) *algorithm with* $k = s$ *. Suppose that* $F(x)$ *is* ρ_{2s+r}^{-} -RSC and ρ_{2s+r}^+ -RSS. Further suppose that $\kappa < 2$. Let the step size $\eta \leq 1/\rho_{2s+r}^+$. Then it holds that

$$
\|x^{t} - \bar{x}\| \leq \left(\sqrt{2}\phi\kappa + \nu(\kappa - 1)\right) \|x^{t-1} - \bar{x}\| + \frac{2\nu + 4}{\rho_{2s+r}} \|\nabla_{s+r}F(\bar{x})\|,
$$

where $\phi = 1 - \eta \rho_{2s+r}^-$ *and* $\nu = \sqrt{s - r + 2}$ *.*

Proof. Consider the vector $z_{J^t}^t$. It is easy to see that $J^t \setminus S^t$ contains the r smallest elements of $z_{J^t}^t$. Hence, for any subset $T \subset J^t$ such that $|T| \ge r$, we have

$$
\left\| \boldsymbol{z}_{J^{t} \setminus S^{t}}^{t} \right\| \leq \left\| \boldsymbol{z}_{T}^{t} \right\|.
$$

In particular, we choose $T = J^t \setminus S$ and obtain

$$
\left\| \boldsymbol{z}_{J^{t}\setminus S^{t}}^{t} \right\| \leq \left\| \boldsymbol{z}_{J^{t}\setminus S}^{t} \right\|.
$$

Eliminating the common contribution from $J^t \setminus (S^t \cup S)$ gives

$$
\left\| \boldsymbol{z}_{J^{t} \cap S \setminus S^{t}}^{t} \right\| \leq \left\| \boldsymbol{z}_{J^{t} \cap S^{t} \setminus S}^{t} \right\|.
$$
\n(13)

The LHS of (13) reads as

$$
\begin{aligned} \left. \boldsymbol{z}_{J^t \cap S \setminus S^t}^t \right\Vert &= \left\Vert (\boldsymbol{x}^{t-1} - \eta \nabla F(\boldsymbol{x}^{t-1}) - \bar{\boldsymbol{x}})_{J^t \cap S \setminus S^t} + \bar{\boldsymbol{x}}_{J^t \setminus S^t} \right\Vert \\ & \geq \left\Vert \bar{\boldsymbol{x}}_{J^t \setminus S^t} \right\Vert - \left\Vert (\boldsymbol{x}^{t-1} - \eta \nabla F(\boldsymbol{x}^{t-1}) - \bar{\boldsymbol{x}})_{J^t \cap S \setminus S^t} \right\Vert, \end{aligned}
$$

while the RHS (13) is given by

 \parallel \parallel $\frac{1}{2}$

$$
\left\| \boldsymbol{z}_{J^{t} \cap S^{t} \setminus S}^{t} \right\| = \left\| (\boldsymbol{x}^{t-1} - \eta \nabla F(\boldsymbol{x}^{t-1}) - \bar{\boldsymbol{x}})_{J^{t} \cap S^{t} \setminus S} \right\|.
$$

Hence, we have

$$
\|\bar{x}_{J^{t}\setminus S^{t}}\| \leq \|(\bm{x}^{t-1} - \eta \nabla F(\bm{x}^{t-1}) - \bar{x})_{J^{t}\cap S\setminus S^{t}}\| + \|(\bm{x}^{t-1} - \eta \nabla F(\bm{x}^{t-1}) - \bar{x})_{J^{t}\cap S^{t}\setminus S}\| \leq \sqrt{2} \|(\bm{x}^{t-1} - \eta \nabla F(\bm{x}^{t-1}) - \bar{x})_{J^{t}}\| \leq \sqrt{2}\phi_{2s+r} \| \bm{x}^{t-1} - \bar{x} \| + \sqrt{2}\eta \| \nabla_{k+r} F(\bar{x})\|,
$$

where we use Lemma 18 for the last inequality and $\phi_{2s+r} = 1 - \eta \rho_{2s+r}^-$ for $\eta \leq 1/\rho_{2s+r}^+$. On the other hand, Lemma 7 shows that

$$
\left\|\bar{\boldsymbol{x}}_{\overline{J^t}}\right\| \leq \nu \left(1 - \frac{1}{\kappa}\right) \left\|\boldsymbol{x}^{t-1} - \bar{\boldsymbol{x}}\right\| + \frac{\nu}{\rho_{2s+r}} \left\|\nabla_{s+r} F(\bar{\boldsymbol{x}})\right\|,
$$

where $\nu = \sqrt{s - r + 2}$. The fact $\overline{S^t} = (J^t \setminus S^t) \cup \overline{J^t}$ implies

$$
\|\bar{x}_{\overline{S^t}}\| \leq \|\bar{x}_{J^t \setminus S^t}\| + \|\bar{x}_{\overline{J^t}}\|
$$

$$
\leq \left(\sqrt{2}\phi_{2s+r} + \nu\left(1 - \frac{1}{\kappa}\right)\right) \|x^{t-1} - \bar{x}\| + \left(\sqrt{2}\eta + \frac{\nu}{\rho_{2s+r}^-}\right) \|\nabla_{k+r}F(\bar{x})\|.
$$

Next, we invoke Lemma 19 to get

$$
\|\boldsymbol{x}^{t}-\bar{\boldsymbol{x}}\| \leq \kappa \left\|\bar{\boldsymbol{x}}_{\overline{S^{t}}}\right\| + \frac{1}{\rho_{2s+r}^{-}} \left\|\nabla_{k} F(\bar{\boldsymbol{x}})\right\|.
$$

Therefore,

$$
\|x^{t} - \bar{x}\| \leq \left(\sqrt{2}\phi_{2s+r}\kappa + \nu(\kappa - 1)\right) \|x^{t-1} - \bar{x}\| + \left(\sqrt{2}\eta\kappa + \frac{\nu\kappa}{\rho_{2s+r}} + \frac{1}{\rho_{2s+r}^{-}}\right) \|\nabla_{s+r}F(\bar{x})\|
$$

$$
\leq \left(\sqrt{2}\phi_{2s+r}\kappa + \nu(\kappa - 1)\right) \|x^{t-1} - \bar{x}\| + \frac{2\nu + 4}{\rho_{2s+r}^{-}} \|\nabla_{s+r}F(\bar{x})\|,
$$

where we use the assumption that $\kappa < 2$ and $\eta \leq 1/\rho_{2s+r}^+ < 1/\rho_{2s+r}^-$ for the last inequality. \Box

A.3 Proof of Theorem 4

Proof. Using Lemma 15, we have

$$
F(\boldsymbol{x}^t) - F(\bar{\boldsymbol{x}}) \leq \mu \left(F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}}) \right),
$$

where

$$
\mu = 1 - \frac{\eta \rho_{2k}^-(1 - \eta \rho_{2k}^+)}{2}.
$$

Now Prop. 21 suggests that

$$
\|\boldsymbol{x}^{t}-\bar{\boldsymbol{x}}\| \leq \sqrt{2\kappa} \left(\sqrt{\mu}\right)^{t} \left\|\boldsymbol{x}^{0}-\bar{\boldsymbol{x}}\right\| + \frac{3}{\rho_{2k}^{-}}\left\|\nabla_{k+s}F(\bar{\boldsymbol{x}})\right\|,
$$

and Lemma 19 implies

$$
\left\|\boldsymbol{x}^{t}-\bar{\boldsymbol{x}}\right\| \leq \kappa\left\|\bar{\boldsymbol{x}}_{\overline{S^{t}}}\right\|+\frac{1}{\rho_{2k}^{-}}\left\|\nabla_{k}F(\bar{\boldsymbol{x}})\right\|.
$$

Combining these with Lemma 5 and Theorem 6 we complete the proof.

Lemma 15. *Consider the PHT*(*r*) *algorithm.* Suppose that $F(x)$ is ρ_{2k}^- -RSC and ρ_{2k}^+ -RSS, and *let* $\kappa = \rho_{2k}^+/\rho_{2k}^-$ *be the condition number. Picking the step size* $0 < \eta < 1/\rho_{2k}^+$ *and the sparsity* parameter $k \geq s + \left(1 + \frac{4}{\eta^2(\rho_{2k}^-)^2}\right) \min\{r,s\}$ *, then we have*

$$
F(\mathbf{x}^{t}) - F(\mathbf{x}^{t-1}) \leq -\frac{\eta \rho_{2k}^{-}(1 - \eta \rho_{2k}^{+})}{2} \left(F(\mathbf{x}^{t-1}) - F(\bar{\mathbf{x}}) \right).
$$

Proof. Using Lemma 16 we obtain

$$
F(\boldsymbol{x}^{t}) - F(\boldsymbol{x}^{t-1}) \leq -\frac{1 - \eta \rho_{2k}^{+}}{2\eta} \left\| \boldsymbol{z}_{S^{t}}^{t} - \boldsymbol{x}^{t-1} \right\|^{2}.
$$

Note that for the right-hand side, we may expand it as follows:

$$
\|z_{S^t}^t - x^{t-1}\|^2 = \|x_{S^t}^{t-1} - x^{t-1} - \eta \nabla_{S^t} F(x^{t-1})\|^2
$$

= $\left\| -x_{S^{t-1}\setminus S^t}^{t-1} - \eta \nabla_{S^t\setminus S^{t-1}} F(x^{t-1}) \right\|^2$
= $\left\| x_{S^{t-1}\setminus S^t}^{t-1} \right\|^2 + \eta^2 \left\| \nabla_{S^t\setminus S^{t-1}} F(x^{t-1}) \right\|^2$

where we use the fact that x^{t-1} is supported on S^{t-1} and $\nabla F(x^{t-1})$ is support on $\overline{S^{t-1}}$ for the second equality, and the third one follows in that the support sets are disjoint. It then follows quickly that

$$
F(\boldsymbol{x}^{t}) - F(\boldsymbol{x}^{t-1}) \leq -\frac{(1 - \eta \rho_{2k}^{+})\eta}{2} \left\| \nabla_{S^{t} \setminus S^{t-1}} F(\boldsymbol{x}^{t-1}) \right\|^{2}.
$$

It remains to lower bound the right-hand side in terms of $F(\mathbf{x}^{t-1}) - F(\bar{\mathbf{x}})$. In fact, in the following, we show that

$$
\left\|\nabla_{S^t\setminus S^{t-1}}F(\boldsymbol{x}^{t-1})\right\|^2 \geq \rho_{2k}^-\left(F(\boldsymbol{x}^{t-1})-F(\bar{\boldsymbol{x}})\right). \tag{14}
$$

,

This suggests

$$
F(\mathbf{x}^{t}) - F(\mathbf{x}^{t-1}) \leq -\frac{\eta \rho_{2k}^{-1} (1 - \eta \rho_{2k}^{+})}{2} \left(F(\mathbf{x}^{t-1}) - F(\bar{\mathbf{x}}) \right)
$$

which completes the proof. In the sequel, we prove the inequality (14) by discussing the size of the support set $S^t \setminus S^{t-1}$.

First, we consider $r \geq s$. Then it is possible that $|S^t \setminus S^{t-1}| \geq s$.

Case 1. $|S^t \setminus S^{t-1}| \geq s$. Using the RSC property, we have

$$
\frac{\rho_{2k}^{-}}{2} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2}
$$
\n
$$
\leq F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) - \left\langle \nabla F(\mathbf{x}^{t-1}), \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\rangle
$$
\n
$$
\leq F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) + \frac{\rho_{2k}^{-}}{2} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} + \frac{1}{2\rho_{2k}^{-}} \left\| \nabla_{S \cup S^{t-1}} F(\mathbf{x}^{t-1}) \right\|^{2}
$$
\n
$$
= F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) + \frac{\rho_{2k}^{-}}{2} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} + \frac{1}{2\rho_{2k}^{-}} \left\| \nabla_{S \setminus S^{t-1}} F(\mathbf{x}^{t-1}) \right\|^{2}.
$$

Therefore, we get

$$
\left\|\nabla_{S\setminus S^{t-1}}F(\boldsymbol{x}^{t-1})\right\|^2\geq 2\rho_{2k}^-\left(F(\boldsymbol{x}^{t-1})-F(\bar{\boldsymbol{x}})\right).
$$

Recall that $S^t \setminus S^{t-1}$ contains the largest elements of $z_{S^{t-1}}^t$. Hence, for any support set $T \subset \overline{S^{t-1}}$ with $|T| \leq |S^t \setminus S^{t-1}|$, we have

$$
\left\| \boldsymbol{z}_T^t \right\| \leq \left\| \boldsymbol{z}_{S^t \setminus S^{t-1}}^t \right\|.
$$

In particular, we can choose $T = S \setminus S^{t-1}$ as we assumed that $\left| S^t \setminus S^{t-1} \right| \ge s \ge |T|$. Then it holds that

$$
\left\| \boldsymbol{z}_{S^{t}\backslash S^{t-1}}^{t} \right\|^{2} \geq \left\| \boldsymbol{z}_{S\backslash S^{t-1}}^{t} \right\|^{2}.
$$

Note that for the left-hand side, $z_{S^t\setminus S^{t-1}}^t = -\eta \nabla_{S^t\setminus S^{t-1}} F(x^{t-1})$ while for the right-hand side, it is exactly equal to $-\eta \nabla_{S\setminus S^{t-1}} F(\boldsymbol{x}^{t-1})$. This completes the proof of the first case.

Case 2. $|S^t \setminus S^{t-1}| < s \leq r$. The proof of this part is more involved. We still begin with the RSC property, which gives

$$
\frac{\rho_{2k}^{-1}}{2} \left\| \bar{\mathbf{z}} - \mathbf{x}^{t-1} \right\|^{2} \leq F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) - \left\langle \nabla F(\mathbf{x}^{t-1}), \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\rangle
$$
\n
$$
\leq F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) + \frac{\rho_{2k}^{-1}}{4} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} + \frac{1}{\rho_{2k}^{-1}} \left\| \nabla_{S \cup S^{t-1}} F(\mathbf{x}^{t-1}) \right\|^{2}
$$
\n
$$
= F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) + \frac{\rho_{2k}^{-1}}{4} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} + \frac{1}{\rho_{2k}^{-1}} \left\| \nabla_{S \setminus S^{t-1}} F(\mathbf{x}^{t-1}) \right\|^{2}
$$
\n
$$
= F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) + \frac{\rho_{2k}^{-1}}{4} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} + \frac{1}{\rho_{2k}^{-1}} \left\| \nabla_{S \setminus (S^{t} \cup S^{t-1})} F(\mathbf{x}^{t-1}) \right\|^{2}
$$
\n
$$
+ \frac{1}{\rho_{2k}^{-1}} \left\| \nabla_{(S^{t} \setminus S^{t-1}) \cap S} F(\mathbf{x}^{t-1}) \right\|^{2}
$$
\n
$$
\leq F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) + \frac{\rho_{2k}^{-1}}{4} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} + \frac{1}{\rho_{2k}^{-1}} \left\| \nabla_{S \setminus (S^{t} \cup S^{t-1})} F(\mathbf{x}^{t-1}) \right\|^{2}
$$
\n
$$
+ \frac{1}{\rho_{2k}^{-1}} \left\| \nabla_{S^{t} \setminus S^{t-1}} F(\mathbf{x}^{t-
$$

Note that the last term is retained for deduction. What we need to show is a proper bound of the term $\left\| \nabla_{S\setminus (S^t\cup S^{t-1})}F(\boldsymbol{x}^{t-1})\right\|$ $2²$ above. First, we observe that

$$
\boldsymbol{z}_{S\backslash (S^t\cup S^{t-1})}^t=-\eta \nabla_{S\backslash (S^t\cup S^{t-1})}F(\boldsymbol{x}^{t-1}).
$$

Next, we compare the elements of $S \setminus (S^t \cup S^{t-1})$ to those in $(S^t \cap S^{t-1}) \setminus S$. For convenience, we denote $T = J^t \setminus (S^{t-1} \cup S^t)$. Since S^t contains the k largest elements of $z_{J^t}^t$, those of $(S^t \cap S^{t-1}) \setminus S$ are larger than those in T. On the other hand, recall that elements in $J^t \setminus S^{t-1}$ are larger than those in $\overline{J^t}$ due to the partial hard thresholding. Since T is a subset of $J^t \setminus S^{t-1}$, we have that T is larger

than $\overline{J^t}$. Consequently, elements in $(S^t \cap S^{t-1}) \setminus S$ are larger than those in $T \cup \overline{J^t} = \overline{S^{t-1} \cup S^t}$. This suggests that

$$
\frac{\left\| z_{S\setminus (S^t\cup S^{t-1})}^t\right\|^2}{\left| S\setminus (S^t\cup S^{t-1})\right|} \le \frac{\left\| z_{(S^t\cap S^{t-1})\setminus S}^t\right\|^2}{\left| (S^t\cap S^{t-1})\setminus S\right|}.
$$

 α

Note that $|S^t \setminus S^{t-1}| < s$ implies $|(S^t \cap S^{t-1}) \setminus S| \geq k - 2s$. Therefore,

$$
\eta^{2} \left\| \nabla_{S \setminus (S^{t} \cup S^{t-1})} F(\boldsymbol{x}^{t-1}) \right\|^{2} \leq \frac{s}{k-2s} \left\| \boldsymbol{x}_{(S^{t} \cap S^{t-1}) \setminus S}^{t-1} - \eta \nabla_{(S^{t} \cap S^{t-1}) \setminus S} F(\boldsymbol{x}^{t-1}) \right\|^{2}
$$

$$
= \frac{s}{k-2s} \left\| \boldsymbol{x}_{(S^{t} \cap S^{t-1}) \setminus S}^{t-1} \right\|^{2}
$$

$$
= \frac{s}{k-2s} \left\| (\boldsymbol{x}^{t-1} - \bar{\boldsymbol{x}})_{(S^{t} \cap S^{t-1}) \setminus S} \right\|^{2}
$$

$$
\leq \frac{s}{k-2s} \left\| \boldsymbol{x}^{t-1} - \bar{\boldsymbol{x}} \right\|^{2}.
$$

Plugging the above into (15), we obtain

$$
\frac{\rho_{2k}^{-}}{2} \left\| \bar{x} - x^{t-1} \right\|^2 \le F(\bar{x}) - F(x^{t-1}) + \frac{\rho_{2k}^{-}}{4} \left\| \bar{x} - x^{t-1} \right\|^2 + \frac{s}{(k-2s)\eta^2 \rho_{2k}^{-}} \left\| \bar{x} - x^{t-1} \right\|^2 + \frac{1}{\rho_{2k}^{-}} \left\| \nabla_{S^t \setminus S^{t-1}} F(x^{t-1}) \right\|^2.
$$

Picking $k \ge 2s + \frac{4s}{\eta^2(\rho_{2k}^-)^2}$ gives

$$
\frac{\rho_{2k}^{-}}{2} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} \leq F(\bar{\mathbf{x}}) - F(\mathbf{x}^{t-1}) + \frac{\rho_{2k}^{-}}{2} \left\| \bar{\mathbf{x}} - \mathbf{x}^{t-1} \right\|^{2} + \frac{1}{\rho_{2k}^{-}} \left\| \nabla_{S^{t} \setminus S^{t-1}} F(\mathbf{x}^{t-1}) \right\|^{2},
$$

which is exactly the claim (14).

Now we consider the parameter setting $r < s$. In this case, $|S^t \setminus S^{t-1}|$ cannot be greater than s. In fact, like we have done for Case 2, we can show that

$$
\eta^{2} \left\| \nabla_{S \setminus (S^{t} \cup S^{t-1})} F(x^{t-1}) \right\|^{2} \leq \frac{r}{k-r-s} \left\| x^{t-1} - \bar{x} \right\|^{2}.
$$

Plugging the above into (15), we obtain

$$
\frac{\rho_{2k}^{-}}{2} \left\| \bar{x} - x^{t-1} \right\|^2 \le F(\bar{x}) - F(x^{t-1}) + \frac{\rho_{2k}^{-}}{4} \left\| \bar{x} - x^{t-1} \right\|^2 + \frac{r}{(k-r-s)\eta^2 \rho_{2k}^{-}} \left\| \bar{x} - x^{t-1} \right\|^2
$$

$$
+ \frac{1}{\rho_{2k}^{-}} \left\| \nabla_{S^t \setminus S^{t-1}} F(x^{t-1}) \right\|^2.
$$

Using $k \ge s + r + \frac{4r}{\eta^2(\rho_{2k}^-)^2}$ we prove (14).

Overall, we find that picking $k \ge s + \left(1 + \frac{4}{\eta^2(\rho_{2k}^-)^2}\right) \min\{r, s\}$ always guarantees the result. \Box

Lemma 16. *Consider the PHT*(r) *algorithm. Suppose that* $F(x)$ *is* ρ_{2k}^+ -RSS. We have

$$
F(\boldsymbol{x}^{t}) - F(\boldsymbol{x}^{t-1}) \leq -\frac{1 - \eta \rho_{2k}^{+}}{2\eta} \left\| \boldsymbol{z}_{S^{t}}^{t} - \boldsymbol{x}^{t-1} \right\|^{2}.
$$

Proof. We partition z^t into four disjoint parts: $S^{t-1} \setminus S^t$, $S^{t-1} \cap S^t$, $S^t \setminus S^{t-1}$ and $\overline{J^t}$. It then follows that

$$
||z_{S^{t}}^{t} - z^{t}||^{2} = ||z_{S^{t-1}\setminus S^{t}}^{t}||^{2} + ||z_{\overline{J^{t}}}^{t}||^{2}
$$

\n
$$
\leq ||z_{S^{t}\setminus S^{t-1}}^{t}||^{2} + ||z_{\overline{J^{t}}}^{t}||^{2}
$$

\n
$$
= ||z_{\overline{S^{t-1}}}^{t}||^{2}
$$

\n
$$
= \eta^{2} ||\nabla F(x^{t-1})||^{2}.
$$

On the other hand, the LHS reads as

$$
\|\mathbf{z}_{S^{t}}^{t} - \mathbf{z}^{t}\|^{2} = \|\mathbf{z}_{S^{t}}^{t} - \mathbf{x}^{t-1} + \eta \nabla F(\mathbf{x}^{t-1})\|^{2}
$$

= $\|\mathbf{z}_{S^{t}}^{t} - \mathbf{x}^{t-1}\|^{2} + \eta^{2} \|\nabla F(\mathbf{x}^{t-1})\|^{2} + 2\eta \langle \nabla F(\mathbf{x}^{t-1}), \mathbf{z}_{S^{t}}^{t} - \mathbf{x}^{t-1} \rangle.$

Hence,

$$
\left\langle \nabla F(\boldsymbol{x}^{t-1}), \boldsymbol{z}_{S^{t}}^{t} - \boldsymbol{x}^{t-1} \right\rangle \leq -\frac{1}{2\eta} \left\| \boldsymbol{z}_{S^{t}}^{t} - \boldsymbol{x}^{t-1} \right\|^{2}.
$$

Using the RSS property, we have

$$
F(\boldsymbol{x}^{t}) - F(\boldsymbol{x}^{t-1}) \le F(\boldsymbol{y}^{t}) - F(\boldsymbol{x}^{t-1})
$$

\n
$$
= F(z_{St}^{t}) - F(\boldsymbol{x}^{t-1})
$$

\n
$$
\le \langle \nabla F(\boldsymbol{x}^{t-1}), z_{St}^{t} - \boldsymbol{x}^{t-1} \rangle + \frac{\rho_{2k}^{+}}{2} ||z_{St}^{t} - \boldsymbol{x}^{t-1}||^{2}
$$

\n
$$
\le -\frac{1 - \eta \rho_{2k}^{+}}{2\eta} ||z_{St}^{t} - \boldsymbol{x}^{t-1}||^{2}.
$$

 \Box

B Technical Lemmas

Lemma 17. *Suppose that* $F(x)$ *is* ρ_K^- -RSC and ρ_K^+ -RSS for some sparsity level $K > 0$. Then for $all \ \theta \in \mathbb{R}$ *, all vectors* $x, x' \in \mathbb{R}^d$ and for any Hessian matrix H of $F(x)$ *, we have*

$$
\left|\left\langle\bm{x},(\bm{I}-\theta\bm{H})\bm{x}'\right\rangle\right|\leq\phi_{K}\left\Vert\bm{x}\right\Vert\cdot\left\Vert\bm{x}'\right\Vert,
$$

provided that $|\mathrm{supp}(\bm{x}) \cup \mathrm{supp}(\bm{x}')| \leq K$ *, and*

$$
\|((\boldsymbol{I}-\theta \boldsymbol{H})\boldsymbol{x})_{S}\|\leq \phi_{K}\|\boldsymbol{x}\|, \quad \text{if } |S\cup \mathrm{supp}\,(\boldsymbol{x})|\leq K,
$$

where

$$
\phi_K = \max\left\{ \left. \left| \theta \rho_K^- - 1 \right|, \, \left| \theta \rho_K^+ - 1 \right| \right. \right\}.
$$

Proof. Since H is a Hessian matrix, we always have a decomposition $H = A^{\top}A$ for some matrix **A**. Denote $T = \text{supp}(\boldsymbol{x}) \cup \text{supp}(\boldsymbol{x}')$. By simple algebra, we have

$$
\begin{aligned} |\langle \boldsymbol{x}, (\boldsymbol{I} - \theta \boldsymbol{H}) \boldsymbol{x}' \rangle| &= |\langle \boldsymbol{x}, \boldsymbol{x}' \rangle - \theta \, \langle \boldsymbol{A} \boldsymbol{x}, \boldsymbol{A} \boldsymbol{x}' \rangle| \\ &\stackrel{\leq}{=} |\langle \boldsymbol{x}, \boldsymbol{x}' \rangle - \theta \, \langle \boldsymbol{A}_T \boldsymbol{x}, \boldsymbol{A}_T \boldsymbol{x}' \rangle| \\ &= \left| \left\langle \boldsymbol{x}, (\boldsymbol{I} - \theta \boldsymbol{A}_T^\top \boldsymbol{A}_T) \boldsymbol{x}' \right\rangle \right| \\ &\leq \left\| \boldsymbol{I} - \theta \boldsymbol{A}_T^\top \boldsymbol{A}_T \right\| \cdot \|\boldsymbol{x}\| \cdot \|\boldsymbol{x}'\| \\ &\stackrel{\leq}{\leq} \max \left\{ \left| \theta \rho_K^- - 1 \right|, \left| \theta \rho_K^+ - 1 \right| \right\} \cdot \|\boldsymbol{x}\| \cdot \|\boldsymbol{x}'\| \, . \end{aligned}
$$

Here, ζ_1 follows from the fact that supp $(x) \cup$ supp $(y) = T$ and ζ_2 holds because the RSC and RSS properties imply that the singular values of any Hessian matrix restricted on an K-sparse support set are lower and upper bounded by ρ_K^- and ρ_K^+ , respectively.

For some index set S subject to $|S \cup \text{supp}(x)| \leq K$, let $x' = ((I - \theta H)x)_S$. We immediately obtain

$$
||x'||^2 = \langle x', (\boldsymbol{I} - \theta \boldsymbol{H})x \rangle \leq \phi_K ||x'|| \cdot ||x||,
$$

indicating

$$
\|((\boldsymbol{I}-\theta \boldsymbol{H})\boldsymbol{x})_{S}\|\leq \phi_{K}\,\|\boldsymbol{x}\|.
$$

Lemma 18. *Suppose that* $F(x)$ *is* ρ_K^- -RSC and ρ_K^+ -RSS for some sparsity level $K > 0$. For all *vectors* $x, x' \in \mathbb{R}^d$ *and support set* T *such that* $|\text{supp} (x - x') \cup T| \leq K$ *, the following holds for* $all \theta \in \mathbb{R}$ *:*

$$
\|(\boldsymbol{x}-\boldsymbol{x}'-\theta\nabla F(\boldsymbol{x})+\theta\nabla F(\boldsymbol{x}'))_T\|\leq \phi_K\,\|\boldsymbol{x}-\boldsymbol{x}'\|\,,
$$

where ϕ_K *is given in Lemma 17.*

Proof. In fact, for any two vectors x and x' , there always exists a quantity $t \in [0, 1]$, such that

$$
\nabla F(\boldsymbol{x}) - \nabla F(\boldsymbol{x}') = \nabla^2 F(t\boldsymbol{x} + (1-t)\boldsymbol{x}')(\boldsymbol{x} - \boldsymbol{x}').
$$

Let $\mathbf{H} = \nabla^2 F(t\mathbf{x} + (1-t)\mathbf{x}')$. We write

$$
\begin{aligned} &\|(x - x' - \theta \nabla F(x) + \theta \nabla F(x'))_T\| \\ &= \|(x - x' - \theta \mathbf{H}(x - x'))_T\| \\ &= \|((\mathbf{I} - \theta \mathbf{H})(x - x'))_T\| \\ &\leq \phi_K \, \|x - x'\| \,, \end{aligned}
$$

where the last inequality applies Lemma 17.

Lemma 19. Suppose that $F(x)$ is ρ_K^- -RSC and ρ_K^+ -RSS for some sparsity level $K > 0$. Let $\kappa :=$ ρ_K^+/ρ_K^- . For all vectors $\bm{x}, \bm{x}' \in \mathbb{R}^d$ with $|\text{supp}(\bm{x}) \cup \text{supp}(\bm{x}')| \leq K$, we have

$$
\|\boldsymbol{x} - \boldsymbol{x}'\| \leq \kappa \left\|\boldsymbol{x}'_{\overline{T}}\right\| + \frac{1}{\rho_K^{-}} \left\|(\nabla F(\boldsymbol{x}) - \nabla F(\boldsymbol{x}'))_T\right\|,
$$

$$
\left\|(\boldsymbol{x} - \boldsymbol{x}')_T\right\| \leq \left(1 - \frac{1}{\kappa}\right) \|\boldsymbol{x} - \boldsymbol{x}'\| + \frac{1}{\rho_K^{-}} \left\|(\nabla F(\boldsymbol{x}) - \nabla F(\boldsymbol{x}'))_T\right\|.
$$

where T *is the support set of* x *.*

Proof. We begin with bounding the ℓ_2 -norm of the difference of x and x'. Let $\Omega = \text{supp} (\mathbf{x}')$. For any positive scalar $\theta \in \mathbb{R}$ we have

$$
\begin{aligned}\n\left\| (x - x')_T \right\|^2 &= \langle x - x' - \theta \nabla F(x) + \theta \nabla F(x'), (x - x')_T \rangle \\
&\quad + \theta \langle \nabla F(x) - \nabla F(x'), (x - x')_T \rangle \\
&\leq \left\| (x - x' - \theta \nabla F(x) + \theta \nabla F(x'))_T \right\| \cdot \left\| (x - x')_T \right\| \\
&\quad + \theta \left\| (\nabla F(x) - \nabla F(x'))_T \right\| \cdot \left\| (x - x')_T \right\| \\
&\leq \left\| x - x' - \theta (\nabla F(x))_{T \cup \Omega} + \theta (\nabla F(x'))_{T \cup \Omega} \right\| \cdot \left\| (x - x')_T \right\| \\
&\quad + \theta \left\| (\nabla F(x) - \nabla F(x'))_T \right\| \cdot \left\| (x - x')_T \right\| \\
&\leq \phi_K \left\| x - x' \right\| \cdot \left\| (x - x')_T \right\| + \theta \left\| (\nabla F(x) - \nabla F(x'))_T \right\| \cdot \left\| (x - x')_T \right\|.\n\end{aligned}
$$

where we recall that ϕ_K is given in Lemma 17. Dividing both sides by $\|(x - \bar{x})_T\|$ gives

$$
\|(\boldsymbol{x}-\boldsymbol{x}')_T\| \leq \phi_K \|\boldsymbol{x}-\boldsymbol{x}'\| + \theta \left\|(\nabla F(\boldsymbol{x})-\nabla F(\boldsymbol{x}'))_T\right\|.
$$

On the other hand,

$$
||x - x'|| \le ||(x - x')_T|| + ||(x - x')_{\overline{T}}||
$$

\n
$$
\le \phi_K ||x - x'|| + \theta ||(\nabla F(x) - \nabla F(x'))_T|| + ||x'_{\overline{T}}||.
$$

Hence, we have

$$
\|\boldsymbol{x}-\boldsymbol{x}'\| \leq \frac{1}{1-\phi_K} \left\|\boldsymbol{x}'_{\overline{T}}\right\| + \frac{\theta}{1-\phi_K} \left\|(\nabla F(\boldsymbol{x}) - \nabla F(\boldsymbol{x}')\right)_T\right\|.
$$

Picking $\theta = 1/\rho_{K_2}^+$, we have $\phi_K = 1 - \frac{1}{\kappa}$. Plugging these into the above and noting that $\rho_K^+ \ge \rho_{K_2}^$ complete the proof.

Lemma 20. Suppose that $F(x)$ is ρ_K -RSC. Then for any vectors x and x' with $\|x - x'\|_0 \le K$, *the following holds:*

$$
\|\boldsymbol{x}-\boldsymbol{x}'\| \leq \sqrt{\frac{2\max\{F(\boldsymbol{x})-F(\boldsymbol{x}'),0\}}{\rho_K^-}} + \frac{2\left\|(\nabla F(\boldsymbol{x}')\right)_T\right\|}{\rho_K^-},
$$

where $T = \text{supp} (x - x')$ *.*

Proof. The RSC property immediately implies

$$
F(\boldsymbol{x}) - F(\boldsymbol{x}') \geq \langle \nabla F(\boldsymbol{x}'), \boldsymbol{x} - \boldsymbol{x}' \rangle + \frac{\rho_K^-}{2} ||\boldsymbol{x} - \boldsymbol{x}' ||^2
$$

$$
\geq - ||\nabla_T F(\boldsymbol{x}')|| \cdot ||\boldsymbol{x} - \boldsymbol{x}' || + \frac{\rho_K^-}{2} ||\boldsymbol{x} - \boldsymbol{x}' ||^2.
$$

Discussing the sign of $F(x) - F(x')$ and solving the above quadratic inequality completes the proof.

Proposition 21. Suppose that $F(x)$ is ρ_{k+s}^- -RSC and ρ_{2k}^+ -RSS. Let $\kappa := \rho_{2k}^+/\rho_{k+s}^-$. Suppose that *for all* $t \geq 1$, \boldsymbol{x}^t *is k-sparse and the following holds:*

$$
F(\boldsymbol{x}^t) - F(\bar{\boldsymbol{x}}) \leq \mu_t \left(F(\boldsymbol{x}^{t-1}) - F(\bar{\boldsymbol{x}}) \right) + \tau,
$$

where $0 < \mu_t < \mu < 1$ *for some* μ , $\tau \geq 0$ *and* \bar{x} *is an arbitrary s-sparse signal. Then,*

$$
\|\bm{x}^{t} - \bar{\bm{x}}\| \leq \sqrt{2\kappa} (\sqrt{\mu_1 \mu_2 \dots \mu_t}) \left\| \bm{x}^{0} - \bar{\bm{x}} \right\| + \frac{3}{\rho_{k+s}^{-}} \left\| \nabla_{k+s} F(\bar{\bm{x}}) \right\| + \sqrt{\frac{2\tau}{\rho_{k+s}^{-}(1-\mu)}}
$$

.

Proof. The RSS property implies that

$$
F(\mathbf{x}^{0}) - F(\bar{\mathbf{x}}) \leq \left\langle \nabla F(\bar{\mathbf{x}}), \mathbf{x}^{0} - \bar{\mathbf{x}} \right\rangle + \frac{\rho_{2k}^{+}}{2} \left\| \mathbf{x}^{0} - \bar{\mathbf{x}} \right\|^{2}
$$

$$
\leq \frac{\rho_{2k}^{+}}{2} \left\| \mathbf{x}^{0} - \bar{\mathbf{x}} \right\|^{2} + \frac{1}{2\rho_{2k}^{+}} \left\| \nabla_{k+s} F(\bar{\mathbf{x}}) \right\|^{2} + \frac{\rho_{2k}^{+}}{2} \left\| \mathbf{x}^{0} - \bar{\mathbf{x}} \right\|^{2}
$$

$$
\leq \rho_{2k}^{+} \left\| \mathbf{x}^{0} - \bar{\mathbf{x}} \right\|^{2} + \frac{1}{2\rho_{2k}^{+}} \left\| \nabla_{k+s} F(\bar{\mathbf{x}}) \right\|^{2}.
$$

Denote $\mu_{1:t} = \mu_1 \mu_2 \ldots \mu_t$. We obtain

$$
F(\boldsymbol{x}^{t}) - F(\bar{\boldsymbol{x}}) \leq \mu_{1:t} \rho^{+} \| \boldsymbol{x}^{0} - \bar{\boldsymbol{x}} \|^{2} + \frac{1}{2\rho_{2k}^{+}} \| \nabla_{k+s} F(\bar{\boldsymbol{x}}) \|^{2} + \frac{\tau}{1-\mu}.
$$

By Lemma 20, we have

$$
\|x^{t} - \bar{x}\|
$$
\n
$$
\leq \sqrt{\frac{2}{\rho_{k+s}^{-}}} \sqrt{\mu_{1:t}\rho_{2k}^{+} \|x^{0} - \bar{x}\|^{2} + \frac{1}{2\rho_{2k}^{+}}} \|\nabla_{k+s}F(\bar{x})\|^{2} + \frac{\tau}{1-\mu} + \frac{2}{\rho_{k+s}^{-}} \|\nabla_{k+s}F(\bar{x})\|
$$
\n
$$
\leq \sqrt{2\kappa}(\sqrt{\mu_{1:t}}) \|x^{0} - \bar{x}\| + \sqrt{\frac{1}{\rho_{k+s}^{-}}\rho_{2k}^{+}} \|\nabla_{k+s}F(\bar{x})\| + \frac{2}{\rho_{k+s}^{-}} \|\nabla_{k+s}F(\bar{x})\| + \sqrt{\frac{2\tau}{\rho_{k+s}^{-}}(1-\mu)}
$$
\n
$$
\leq \sqrt{2\kappa}(\sqrt{\mu_{1:t}}) \|x^{0} - \bar{x}\| + \frac{3}{\rho_{k+s}^{-}} \|\nabla_{k+s}F(\bar{x})\| + \sqrt{\frac{2\tau}{\rho_{k+s}^{-}}(1-\mu)}.
$$