A Appendix

We present some computational and architectural details for the proposed task-based learning model,
both in the general case and for the experiments described in Section 4.

A.1 Differentiating the optimization solution to a stochastic programming problem

The issue of chief technical challenge to our approach is computing the gradient of an objective that
depends upon the argmin operation z*(z; 6). Specifically, we need to compute the term

oL 0L 0z*
00 92+ 00
which involves the Jacobian %i;. This is the Jacobian of the optimal solution with respect to the

distribution parameters 6. Recent approaches have looked into similar argmin differentiations [28, 29],
though the methodology we present here is more general and handles the stochasticity of the objective.

(A.1)

We begin by writing the KKT optimality conditions of the general stochastic programming problem
(3), where all expectations are taken with respect to the modeled distribution y ~ p(y|x;) (for
compactness, denoted here as E,,). Further, assuming the problem is convex means we can replace
the general equality constraints h(z) = 0 with the linear constraint Az = b. A point (z, A, v) is a
primal-dual optimal point if it satisfies
Eyg9(2) <0
Az=10
A>0 (A.2)
AoEyg(z) =0
V.E,, f(2) + \NTV.E,g(2) + ATv =0
where here g denotes the vector of all inequality constraints (represented as a vector-valued function),
and where we wrap the dependence on x and y into the functions f and g; themselves.

Differentiating these equations and applying the implicit function theorem gives a set of linear
equations that we can solve to obtain the necessary Jacobians

‘ Nineq oz OV.E,, f(z) 82r:insq NV.E,, gi()
VZE,, f(2) + > MiVZE,gi(2) (V.Eyg(2)" AT 96 o+ e
=1 2= diag(\) By 9(2)
diag(A) (V:Ey,g(2)) diag(Ey,g(z)) 0 gz 90
A 0 0 90 0
(A.3)

The terms on the left side are the optimality conditions of the convex problem, and the terms on
right side are the derivatives of the relevant functions at the achieved solution, with respect to the
governing parameter §. These equations will take slightly different forms depending on how the
stochastic programming problem is solved, but are usually fairly straightforward to compute if the
solution is solved in some “exact” manner (i.e., where second order information is used). In practice,
we calculate the right side of this equation by employing sequential quadratic programming [30] to
find the optimal policy z* for the given parameters ¢, using a recently-proposed approach for fast
solution of argmin differentiation for QPs [31] to solve the necessary linear equations; we then take
the derivatives at the optimum produced by this strategy.

A.2 Details on computation for inventory stock problem

The objective for our “conditional” variation of the classical inventory stock problem is
1 1 1
fstoek(y, 2) = coz + 5%22 +oply —2l4 + 5%([9 —2]4)? +enlz —yl4 + 5%([«2 —yl+)? (A4

where z is the amount of product ordered; y is the stochastic electricity demand (which is affected
by features z); [v]1 = max{v,0}; and (co, o), (v, @), and (cp, gp) are linear and quadratic costs
on the amount of product ordered, over-orders, and under-orders, respectively. Our proxy stochastic
programming problem can then be written as

minizmize L(0) = Eypy|z:0) [fstock (¥, 2)]. (A.5)

Al

To simplify the setting, we further assume that the demands are discrete, taking on values dy, . . ., d
with probabilities (conditional on) (pg); = p(y = d;|z;0). Thus our stochastic programming
problem (A.5) can be written succinctly as a joint quadratic program

k

s 1 1 1

Zg;@lg;ﬂlé%k coz + §qoz2 + ;(pe)i (Cb(zb)i + 5%(%)? +cn(zn)i + 2(]h(2h)?> (A6)
subject to d — 21 < zp, 21 —d < 2zp, 2,2n,25 > 0.

To demonstrate the explicit formula for argmin operation Jacobians for this particular case (e.g.,
to compute the terms in (A.3)), note that we can write the above QP in inequality form as

minimize,.qz<ny %zTQz + ¢’z with

— -1 —d
z qo 0 0 co 1 0 -1 d
z=1 = |,Q= 0 qvpo 0 ,c=1| awps |, G=] -1 0 0 , h= 0
Zh 0 0 qnpe Chpo 0 —-I 0 0
0 0 1 0
(A7)

Thus, for an optimal primal-dual solution (z*, A*), we can compute the Jacobian ‘g—;; (the Jacobian
of the optimal solution with respect to the probability vector pg mentioned above), via the formula

0

gz; _ Q G"* o W2y + el (A.8)
g D(M\)G D(Gz* —h) qnzf +cpl | :
0

Ope

where D(-) denotes a diagonal matrix for an input vector. After solving the problem and computing
these Jacobians, we can compute the overall gradient with respect to the task loss L(#) via the chain

rule
OL _ 0L 0" 0po
00 0z* dpg 00
where %%)9 denotes the Jacobian of the model probabilities with respect to its parameters, which are
computed in the typical manner. Note that in practice, these Jacobians need not be computed explicitly,

but can be computed efficiently via backpropagation; we use a recently-developed differentiable
batch QP solver [31] to both solve the optimization problem in QP form and compute its derivatives.

(A9)

A.3 Details on computation for power scheduling problem

The objective for the load forecasting problem is given by
24

1
inimi E,nyle: slYi — Zi el?i —Yi 5 (zi — i)’
s i=1 y~p(y|z;0) [7 i =zl +velz — w4 2<Z vi) (A.10)

subject to |z; — zi—1] < ¢, Vi,

where z is the generator schedule, y is the stochastic demand (which is affected by features x),
[v]+ = max{v, 0}, 7. is an over-generation penalty, 7 is an under-generation penalty, and ¢, is a
ramping constraint. Assuming that y; is a Gaussian random variable with mean y; and variance o2,
then this expectation has a closed form that can be computed via analytically integrating the Gaussian
PDEF. Specifically, this closed form is

1
Eywp(y|x;0) Vs [yz - Zi]Jr + Ve [Zz - yz]+ + 5(22 - yz)2

= (s +Ye) (@2p(2i5 1y %) + (20 — W) F (235 1, 02)) — s (25 —) +%((2i — pi)? +07),

a(z;)

(A.11)

where p(z; i1, 0%) and F(z; 1, 02) denote the Gaussian PDF and CDF, respectively with the given
mean and variance. This is a convex function of z (not apparent in this form, but readily established

A2

because it is an expectation of a convex function), and we can thus optimize it efficiently and compute
the necessary Jacobians.

Specifically, we use sequential quadratic programming (SQP) to iteratively approximate the resultant
convex objective as a quadratic objective, and iterate until convergence; specifically, we repeatedly

solve
1 (r“)za(z(k)) da(zF)) g
k+1) __ : T 3¢ 7
AT = angmin 5" diag <a H)ee (T (a1
subject to |z; — zi—1] < ¢ Vi
until [|z*+1) — 2(F)|| < § for a small §, where
Oa
g - (’75 + ’YC)F(ZMU'?U) — Vs
(A.13)

2
92 = (Vs +ve)p(2; 1, 0).

We then compute the necessary Jacobians using the quadratic approximation (A.12) at the solution,
which gives the correct Hessian and gradient terms. We can furthermore differentiate the gradient and
Hessian with respect to the underlying model parameters z and o2, again using a recently-developed
batch QP solver [31].

A.4 Details on computation for battery storage problem

The objective for the battery storage problem is given by
24
minimize Ey 5 2:0) Z Yi(2in — Zout)i + A

Zin, Zout, Zstate ER 24 i—1

subject to Zstate,i+1 = Zstate,i — Zout,i T VeffZin,i Vi, Zstate,1 = B/27
0 < 2zin < ciny, 0< 20w < Cour, 0 < Zgae < B,

2
+ ellzinll* + €l zou®

Zstate — 5

(A.14)

where 2y, Zout, Zstate are decisions over the charge amount, discharge amount, and resultant state of
the battery, respectively; y is the stochastic electricity price (which is affected by features x); B is the
battery capacity; Y. is the battery charging efficiency; c¢;, and cqy are maximum hourly charge and
discharge amounts, respectively; and \ and € are hyperparameters related to flexibility and battery
health, respectively.

Assuming y; is a random variable with mean p;, the expectation in the objective has a closed form:

24 2
Eywp(y|a:;0) [Z yi(zin - Zout)i + A Zstate — o + 6||Zin||2 + 6||’2011t||2‘|
i=1
o) (A.15)
= Zﬂi(zin_zout)i"_)\ Zstate — b +5||ZinH2+€Hzout”2o
i=1

We can then write this expression in QP form as minimize,.cz<p, Az—b} 32" @z + ¢ z with

Zin el 0 0 M
z=| 2z |,Q=1| 0 € O , c= — i ,
Zstate 0 0 by —AB1

Cin

0

0

0 _ Cout _ 0 0 0,...,0,1 o B/2

0 7h* 7A7|:’7effD¥1 *D? DT*Dg]bi[O :|7
I

cooco |~
~
|
[N ~N o O

.y 0
(A.16)

where D = [é } € R24%23 and D, = [? } c R24x23,

A3

For this experiment, we assume that y; is a lognormal random variable (with mean y;); thus, to
obtain our predictions, we predict the mean of log(y) (i.e., we predict log(u)). After obtaining
these predictions, we solve (A.4), compute the necessary Jacobians at the solution, and update the
underlying model parameter p via backpropagation, again using [31].

A.5 Implementation notes

For all linear models, we use a one-layer linear neural network with the appropriate input and output
layer dimensions. For all nonlinear models, we use a two-hidden-layer neural network, where each
“layer” is actually a combination of linear, batch norm [32], ReLU, and dropout (p = 0.2) layers
with dimension 200. In both cases, we add an additional softmax layer in cases where probability
distributions are being predicted.

All models are implemented using PyTorch®! and employ the Adam optimizer [33]. All QPs
are solved using a recently-developed differentiable batch QP solver [31], and Jacobians are also
computed automatically using backpropagation via the same.

Source code for all experiments is available at https://github.com/locuslab/
e2e-model-learning.

AMhttps://pytorch.org

A4

https://github.com/locuslab/e2e-model-learning
https://github.com/locuslab/e2e-model-learning
https://pytorch.org

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE1252522, and by the Department of Energy Computational
Science Graduate Fellowship.

References

[1] Stein W Wallace and Stein-Erik Fleten. Stochastic programming models in energy. Handbooks
in operations research and management science, 10:637-677, 2003.

[2] William T Ziemba and Raymond G Vickson. Stochastic optimization models in finance,
volume 1. World Scientific, 2006.

[3] John A Buzacott and J George Shanthikumar. Stochastic models of manufacturing systems,
volume 4. Prentice Hall Englewood Cliffs, NJ, 1993.

[4] Alexander Shapiro and Andy Philpott. A tutorial on stochastic programming. Manuscript.
Available at www2 . isye.gatech.edu/ashapiro/publications.html, 17,2007.

[5] Jeff Linderoth, Alexander Shapiro, and Stephen Wright. The empirical behavior of sampling
methods for stochastic programming. Annals of Operations Research, 142(1):215-241, 2006.

[6] R Tyrrell Rockafellar and Roger J-B Wets. Scenarios and policy aggregation in optimization
under uncertainty. Mathematics of operations research, 16(1):119-147, 1991.

[7] Yann LeCun, Urs Muller, Jan Ben, Eric Cosatto, and Beat Flepp. Off-road obstacle avoidance
through end-to-end learning. In NIPS, pages 739-746, 2005.

[8] Ryan W Thomas, Daniel H Friend, Luiz A Dasilva, and Allen B Mackenzie. Cognitive networks:
adaptation and learning to achieve end-to-end performance objectives. IEEE Communications
Magazine, 44(12):51-57, 2006.

[9] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text recognition. In Computer
Vision (ICCV), 2011 IEEE International Conference on, pages 1457-1464. IEEE, 2011.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770778, 2016.

[11] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end text recognition
with convolutional neural networks. In Pattern Recognition (ICPR), 2012 2 1st International
Conference on, pages 3304-3308. IEEE, 2012.

[12] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural
networks. In ICML, volume 14, pages 1764-1772, 2014.

[13] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,
Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

[14] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(39):1-40, 2016.

[15] Aviv Tamar, Sergey Levine, Pieter Abbeel, YI WU, and Garrett Thomas. Value iteration
networks. In Advances in Neural Information Processing Systems, pages 2146-2154, 2016.

[16] Ken Harada, Jun Sakuma, and Shigenobu Kobayashi. Local search for multiobjective function
optimization: pareto descent method. In Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 659-666. ACM, 2006.

[17] Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of
pareto dominating policies. Journal of Machine Learning Research, 15(1):3483-3512, 2014.

10

[18] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-
objective deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

[19] Marco A Wiering, Maikel Withagen, and Médalina M Drugan. Model-based multi-objective
reinforcement learning. In Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), 2014 IEEE Symposium on, pages 1-6. IEEE, 2014.

[20] Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk minimization of graphical
model parameters given approximate inference, decoding, and model structure. International
Conference on Artificial Intelligence and Statistics, 15:725-733, 2011. ISSN 15324435.

[21] Tamir Hazan, Joseph Keshet, and David A McAllester. Direct loss minimization for structured
prediction. In Advances in Neural Information Processing Systems, pages 1594-1602, 2010.

[22] Yang Song, Alexander G Schwing, Richard S Zemel, and Raquel Urtasun. Training deep neural
networks via direct loss minimization. In Proceedings of The 33rd International Conference on
Machine Learning, pages 2169-2177, 2016.

[23] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

[24] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J Tomlin. Goal-driven
dynamics learning via bayesian optimization. arXiv preprint arXiv:1703.09260, 2017.

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[26] Yoshua Bengio. Using a financial training criterion rather than a prediction criterion. Interna-
tional Journal of Neural Systems, 8(04):433-443, 1997.

[27] Adam N Elmachtoub and Paul Grigas. Smart "predict, then optimize". arXiv preprint
arXiv:1710.08005, 2017.

[28] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. On differentiating parameterized argmin and argmax problems with application to
bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

[29] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. arXiv preprint
arXiv:1609.07152, 2016.

[30] Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta numerica, 4:1-51,
1995.

[31] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. arXiV preprint arXiv:1703.00443, 2017.

[32] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[33] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

	Introduction
	Background and related work
	End-to-end model learning in stochastic programming
	Discussion and alternative approaches
	Optimizing task loss
	Differentiating the optimization solution to a stochastic programming problem

	Experiments
	Inventory stock problem
	Load forecasting and generator scheduling
	Price forecasting and battery storage

	Conclusions and future work
	Appendix
	Differentiating the optimization solution to a stochastic programming problem
	Details on computation for inventory stock problem
	Details on computation for power scheduling problem
	Details on computation for battery storage problem
	Implementation notes

