A Appendix

We present some computational and architectural details for the proposed task-based learning model,
both in the general case and for the experiments described in Section 4.

A.1 Differentiating the optimization solution to a stochastic programming problem

The issue of chief technical challenge to our approach is computing the gradient of an objective that
depends upon the argmin operation z*(z; 6). Specifically, we need to compute the term
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which involves the Jacobian %i;. This is the Jacobian of the optimal solution with respect to the

distribution parameters 6. Recent approaches have looked into similar argmin differentiations [28, 29],
though the methodology we present here is more general and handles the stochasticity of the objective.
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We begin by writing the KKT optimality conditions of the general stochastic programming problem
(3), where all expectations are taken with respect to the modeled distribution y ~ p(y|x; ) (for
compactness, denoted here as E,, ). Further, assuming the problem is convex means we can replace
the general equality constraints h(z) = 0 with the linear constraint Az = b. A point (z, A, v) is a
primal-dual optimal point if it satisfies
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where here g denotes the vector of all inequality constraints (represented as a vector-valued function),
and where we wrap the dependence on x and y into the functions f and g; themselves.

Differentiating these equations and applying the implicit function theorem gives a set of linear
equations that we can solve to obtain the necessary Jacobians
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The terms on the left side are the optimality conditions of the convex problem, and the terms on
right side are the derivatives of the relevant functions at the achieved solution, with respect to the
governing parameter §. These equations will take slightly different forms depending on how the
stochastic programming problem is solved, but are usually fairly straightforward to compute if the
solution is solved in some “exact” manner (i.e., where second order information is used). In practice,
we calculate the right side of this equation by employing sequential quadratic programming [30] to
find the optimal policy z* for the given parameters ¢, using a recently-proposed approach for fast
solution of argmin differentiation for QPs [31] to solve the necessary linear equations; we then take
the derivatives at the optimum produced by this strategy.

A.2 Details on computation for inventory stock problem

The objective for our “conditional” variation of the classical inventory stock problem is
1 1 1
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where z is the amount of product ordered; y is the stochastic electricity demand (which is affected
by features z); [v]1 = max{v,0}; and (co, o), (v, @), and (cp, gp) are linear and quadratic costs
on the amount of product ordered, over-orders, and under-orders, respectively. Our proxy stochastic
programming problem can then be written as

minizmize L(0) = Eypy|z:0) [ fstock (¥, 2)]. (A.5)
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To simplify the setting, we further assume that the demands are discrete, taking on values dy, . . ., d
with probabilities (conditional on ) (pg); = p(y = d;|z;0). Thus our stochastic programming
problem (A.5) can be written succinctly as a joint quadratic program
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subject to d — 21 < zp, 21 —d < 2zp, 2,2n,25 > 0.

To demonstrate the explicit formula for argmin operation Jacobians for this particular case (e.g.,
to compute the terms in (A.3)), note that we can write the above QP in inequality form as
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Thus, for an optimal primal-dual solution (z*, A*), we can compute the Jacobian ‘g—;; (the Jacobian
of the optimal solution with respect to the probability vector pg mentioned above), via the formula
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where D(-) denotes a diagonal matrix for an input vector. After solving the problem and computing
these Jacobians, we can compute the overall gradient with respect to the task loss L(#) via the chain

rule
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where %%)9 denotes the Jacobian of the model probabilities with respect to its parameters, which are
computed in the typical manner. Note that in practice, these Jacobians need not be computed explicitly,

but can be computed efficiently via backpropagation; we use a recently-developed differentiable
batch QP solver [31] to both solve the optimization problem in QP form and compute its derivatives.

(A9)

A.3 Details on computation for power scheduling problem

The objective for the load forecasting problem is given by
24
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where z is the generator schedule, y is the stochastic demand (which is affected by features x),
[v]+ = max{v, 0}, 7. is an over-generation penalty, 7 is an under-generation penalty, and ¢, is a
ramping constraint. Assuming that y; is a Gaussian random variable with mean y; and variance o2,
then this expectation has a closed form that can be computed via analytically integrating the Gaussian
PDEF. Specifically, this closed form is
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where p(z; i1, 0%) and F(z; 1, 02) denote the Gaussian PDF and CDF, respectively with the given
mean and variance. This is a convex function of z (not apparent in this form, but readily established
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because it is an expectation of a convex function), and we can thus optimize it efficiently and compute
the necessary Jacobians.

Specifically, we use sequential quadratic programming (SQP) to iteratively approximate the resultant
convex objective as a quadratic objective, and iterate until convergence; specifically, we repeatedly
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We then compute the necessary Jacobians using the quadratic approximation (A.12) at the solution,
which gives the correct Hessian and gradient terms. We can furthermore differentiate the gradient and
Hessian with respect to the underlying model parameters z and o2, again using a recently-developed
batch QP solver [31].

A.4 Details on computation for battery storage problem

The objective for the battery storage problem is given by
24
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where 2y, Zout, Zstate are decisions over the charge amount, discharge amount, and resultant state of
the battery, respectively; y is the stochastic electricity price (which is affected by features x); B is the
battery capacity; Y. is the battery charging efficiency; c¢;, and cqy are maximum hourly charge and
discharge amounts, respectively; and \ and € are hyperparameters related to flexibility and battery
health, respectively.

Assuming y; is a random variable with mean p;, the expectation in the objective has a closed form:
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We can then write this expression in QP form as minimize,.cz<p, Az—b} 32" @z + ¢ z with
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where D = [ é } € R24%23 and D, = [ ? } c R24x23,
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For this experiment, we assume that y; is a lognormal random variable (with mean y;); thus, to
obtain our predictions, we predict the mean of log(y) (i.e., we predict log(u)). After obtaining
these predictions, we solve (A.4), compute the necessary Jacobians at the solution, and update the
underlying model parameter p via backpropagation, again using [31].

A.5 Implementation notes

For all linear models, we use a one-layer linear neural network with the appropriate input and output
layer dimensions. For all nonlinear models, we use a two-hidden-layer neural network, where each
“layer” is actually a combination of linear, batch norm [32], ReLU, and dropout (p = 0.2) layers
with dimension 200. In both cases, we add an additional softmax layer in cases where probability
distributions are being predicted.

All models are implemented using PyTorch®! and employ the Adam optimizer [33]. All QPs
are solved using a recently-developed differentiable batch QP solver [31], and Jacobians are also
computed automatically using backpropagation via the same.

Source code for all experiments is available at https://github.com/locuslab/
e2e-model-learning.

AMhttps://pytorch.org
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