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Abstract

We study the online learning problem of a bidder who participates in repeated
auctions. With the goal of maximizing his T-period payoff, the bidder determines
the optimal allocation of his budget among his bids for K goods at each period.
As a bidding strategy, we propose a polynomial-time algorithm, inspired by the
dynamic programming approach to the knapsack problem. The proposed algorithm,
referred to as dynamic programming on discrete set (DPDS), achieves a regret
order of O(

√
T log T ). By showing that the regret is lower bounded by Ω(

√
T ) for

any strategy, we conclude that DPDS is order optimal up to a
√

log T term. We
evaluate the performance of DPDS empirically in the context of virtual trading in
wholesale electricity markets by using historical data from the New York market.
Empirical results show that DPDS consistently outperforms benchmark heuristic
methods that are derived from machine learning and online learning approaches.

1 Introduction

We consider the problem of optimal bidding in a multi-commodity uniform-price auction (UPA) [1],
which promotes the law of one price for identical goods. UPA is widely used in practice. Examples
include spectrum auction, the auction of treasury notes, the auction of emission permits (UK), and
virtual trading in the wholesale electricity market, which we discuss in detail in Sec. 1.1.

A mathematical abstraction of multi-commodity UPA is as follows. A bidder has K goods to bid on
at an auction. With the objective to maximize his T-period expected profit, at each period, the bidder
determines how much to bid for each good subject to a budget constraint.

In the bidding period t, if a bid xt,k for good k is greater than or equal to its auction clearing price
λt,k, then the bid is cleared, and the bidder pays λt,k. His revenue resulting from the cleared bid
will be the good’s spot price (utility) πt,k. In particular, the payoff obtained from good k at period
t is (πt,k − λt,k)1{xt,k ≥ λt,k} where 1{xt,k ≥ λt,k} indicates whether the bid is cleared. Let
λt = [λt,1, ..., λt,K ]ᵀ and πt = [πt,1, ..., πt,K ]ᵀ be the vector of auction clearing and spot market
prices at period t, respectively. Similarly, let xt = [xt,1, ..., xt,K ]ᵀ be the vector of bids for period
t. We assume that (πt, λt) are drawn from an unknown joint distribution and, in our analysis,
independent and identically distributed (i.i.d.) over time.1

At the end of each period, the bidder observes the auction clearing and spot prices of all goods.
Therefore, before choosing the bid of period t, all the information the bidder has is a vector It−1

containing his observation and decision history {xi, λi, πi}t−1
i=1 . Consequently, a bidding policy µ of

a bidder is defined as a sequence of decision rules, i.e., µ = (µ0, µ1..., µT−1), such that, at time t− 1,

1This implies that the auction clearing price is independent of bid xt, which is a reasonable assumption for
any market where an individual’s bid has negligible impact on the market price.
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µt−1 maps the information history It−1 to the bid xt of period t. The performance of any bidding
policy µ is measured by its regret, which is defined by the difference between the total expected
payoff of policy µ and that of the optimal bidding strategy under known distribution of (πt, λt).

1.1 Motivating applications

The mathematical abstraction introduced above applies to virtual trading in the U.S. wholesale
electricity markets that are operated under a two-settlement framework. In the day-ahead (DA)
market, the independent system operator (ISO) receives offers to sell and bids to buy from generators
and retailers for each hour of the next day. To determine the optimal DA dispatch of the next day and
DA electricity prices at each location, ISO solves an economic dispatch problem with the objective of
maximizing social surplus while taking transmission and operational constraints into account. Due
to system congestion and losses, wholesale electricity prices vary from location to location.2 In the
real-time (RT) market, ISO adjusts the DA dispatch according to the RT operating conditions, and the
RT wholesale price compensates deviations in the actual consumption from the DA schedule.

The differences between DA and RT prices occur frequently both as a result of generators and
retailers exercising locational market power [2] and as a result of price spikes in the RT due to
unplanned outages and unpredictable weather conditions [3]. To promote price convergence between
DA and RT markets, in the early 2000s, virtual trading was introduced [4]. Virtual trading is a
financial mechanism that allows market participants and external financial entities to arbitrage on the
differences between DA and RT prices. Empirical and analytical studies have shown that increased
competition in the market due to virtual trading results in price convergence and increased market
efficiency [2, 3, 5].

Virtual transactions make up a significant portion of the wholesale electricity markets. For example,
the total volume of cleared virtual transactions in five big ISO markets was 13% of the total load in
2013 [4]. In the same year, total payoff resulting from all virtual transactions was around 250 million
dollars in the PJM market [2] and 45 million dollars in NYISO market [6].

A bid in virtual trading is a bid to buy (sell) energy in the DA market at a specific location with an
obligation to sell (buy) back exactly the same amount in the RT market at the same location if the bid
is cleared (accepted). Specifically, a bid to buy in the DA market is cleared if the offered bid price is
higher than the DA market price. Similarly, a bid to sell in the DA market is cleared if it is below the
DA market price. In this context, different locations and/or different hours of the day are the set of
goods to bid on. The DA prices are the auction clearing prices, and the RT prices are the spot prices.

The problem studied here may also find applications in other types of repeated auctions where the
auction may be of the double, uniform-price, or second-price types. For example, in the case of
online advertising auctions [7], different goods can correspond to different types of advertising space
an advertiser may consider to bid on.

1.2 Main results and related work

We propose an online learning approach to the algorithmic bidding under budget constraints in
repeated multi-commodity auctions. The proposed approach falls in the category of empirical risk
minimization (ERM) also referred to as the follow the leader approach. The main challenge here is
that optimizing the payoff (risk) amounts to solving a multiple choice knapsack problem (MCKP)
that is known to be NP hard [8]. The proposed approach, referred to as dynamic programming on
discrete set (DPDS), is inspired by a pseudo-polynomial dynamic programming approach to 0-1
Knapsack problems. DPDS allocates the limited budget of the bidder among K goods in polynomial
time both in terms of the number of goods K and in terms of the time horizon T . We show that the
expected payoff of DPDS converges to that of the optimal strategy under known distribution by a rate
no slower than

√
log t/t which results in a regret upper bound of O(

√
T log T ). By showing that, for

any bidding strategy, the regret is lower bounded by Ω(
√
T ), we prove that DPDS is order optimal up

to a
√

log T term. We also evaluate the performance of DPDS empirically in the context of virtual
trading by using historical data from the New York energy market. Our empirical results show that

2For example, transmission congestion may prevent scheduling the least expensive resources at some
locations.
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DPDS consistently outperforms benchmark heuristic methods that are derived from standard machine
learning methods.

The problem formulated here can be viewed in multiple machine learning perspectives. We highlight
below several relevant existing approaches. Since the bidder can calculate the reward that could have
been obtained by selecting any given bid value regardless of its own decision, our problem falls into
the category of full-feedback version of multi-armed bandit (MAB) problem, referred to as experts
problem, where the reward of all arms (actions) are observable at the end of each period regardless of
the chosen arm. For the case of finite number of arms, Kleinberg et al. [9] showed that, for stochastic
setting, constant regret is achievable by choosing the arm with the highest average reward at each
period. A special case of the adversarial setting was studied by Cesa-Bianchi et al. [10] who provided
matching upper and lower bounds in the order of Θ(

√
T ). Later, Freund and Schapire [11] and Auer

et al. [12] showed that the Hedge algorithm, a variation of weighted majority algorithm [13], achieves
the matching bound for the general setting. These results, however, do not apply to experts problems
with continuous action spaces.

The stochastic experts problem where the set of arms is an uncountable compact metric space (X , d)
rather than finite was studied by Kleinberg and Slivkins [14] (see [15] for an extended version). Since
there are uncountable number of arms, it is assumed that, in each period, a payoff function drawn from
an i.i.d. distribution is observed rather than the individual payoff of each arm. Under the assumption
of Lipschitz expected payoff function, they showed that the instance-specific regret of any algorithm is
lower bounded by Ω(

√
T ). They also showed that their algorithm—NaiveExperts—achieves a regret

upper bound of O(T γ) for any γ > (b+ 1)/(b+ 2) where b is the isometry invariant of the metric
space. However, NaiveExperts is computationally intractable in practice because the computational
complexity of its direct implementation grows exponentially with the dimension (number of goods in
our case). Furthermore, the lower bound in [14] does not imply a lower bound for our problem with
a specific payoff. Krichene et al. [16] studied the adversarial setting and proposed an extension of
the Hedge algorithm, which achieves O(

√
T log T ) regret under the assumption of Lipschitz payoff

functions. For our problem, it is reasonable to assume that the expected payoff function is Lipschitz;
yet it is clear that, at each period, the payoff realization is a step function which is not Lipschitz.
Hence, Lipschitz assumption of [16] doesn’t hold in our setting.

Stochastic gradient descent methods, which have low computational complexity, have been extensively
studied in the literature of continuum-armed bandit [17, 18, 19]. However, either the concavity or
the unimodality of the expected payoff function is required for regret guarantees of these methods to
hold. This may not be the case in our problem depending on the underlying distribution of prices.

A relevant work that takes an online learning perspective for the problem of a bidder engaging in
repeated auctions is Weed et al. [7]. They are motivated by online advertising auctions and studied
the partial information setting of the same problem as ours but without a budget constraint. Under the
margin condition, i.e., the probability of auction price occurring in close proximity of mean utility is
bounded, they showed that their algorithm, inspired by the UCB1 algorithm [20], achieves regret that
ranges from O(log T ) to O(

√
T log T ) depending on how tight the margin condition is. They also

provided matching lower bounds up to a logarithmic factor. However, their lower bound does not
imply a bound for the full information setting we study here. Also, the learning algorithm in [7] does
not apply here because the goods are coupled through the budget constraint in our case. Furthermore,
we do not have margin condition, and we allow the utility of the good to depend on the auction price.

Some other examples of literature on online learning in repeated auctions studied the problem of an
advertiser who wants to maximize the number of clicks with a budget constraint [21, 22], or that of
a seller who tries to learn the valuation of its buyer in a posted price auction [23, 24]. The settings
considered in those problems are considerably different from that studied here in the implementation
of budget constraints [21, 22], and in the strategic behavior of the bidder [23, 24].

2 Problem formulation

The total expected payoff at period t given bid xt can be expressed as

r(xt) = E ((πt − λt)ᵀ1{xt ≥ λt}|xt) ,
where the expectation is taken using the joint distribution of (πt, λt), and 1{xt ≥ λt} is the vector of
indicator functions with the k-th entry corresponding to 1{xt,k ≥ λt,k}. We assume that the payoff
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(πt − λt)ᵀ1{xt ≥ λt} obtained at each period is a bounded random variable with support in [l, u],3
and the auction prices are drawn from a distribution with positive support. Hence, a zero bid for any
good is equivalent to not bidding because it will not get cleared.

The objective is to determine a bidding policy µ that maximizes the expected T-period payoff subject
to a budget constraint for each individual period:

maximize
µ

E

(
T∑
t=1

r(xµt )

)
subject to ‖xµt ‖1 ≤ B, for all t = 1, ..., T,

xµt ≥ 0, for all t = 1, ..., T,

(1)

where B is the auction budget of the bidder, xµt denotes the bid determined by policy µ, and xµt ≥ 0
is equivalent to xµt,k ≥ 0 for all k ∈ {1, 2, ...,K}.

2.1 Optimal solution under known distribution

If the joint distribution f(., .) of πt and λt is known, the optimization problem (1) decouples to
solving for each time instant separately. Since (πt, λt) is i.i.d. over t, an optimal solution under
known model does not depend on t and is given by

x∗ = arg max
xt∈F

r(xt) (2)

where F = {x ∈ <K : x ≥ 0, ‖x‖1 ≤ B} is the feasible set of bids. Optimal solution x∗ may not
be unique or it may not have a closed form. The following example illustrates a case where there
isn’t a closed form solution and shows that, even in the case of known distribution, the problem is a
combinatorial stochastic optimization, and it is not easy to calculate an optimal solution.

Example. Let λt and πt be independent, λt,k be exponentially distributed with mean λ̄k > 0, and
the mean of πt,k be π̄k > 0 for all k ∈ {1, ..,K}. Since not bidding for good k is optimal if π̄k ≤ 0,
we exclude the case π̄k ≤ 0 without loss of generality. For this example, we can use the concavity of
r(x) in the interval [0, π̄], where π̄ = [π̄1, ..., π̄K ]ᵀ, to obtain the unique optimal solution x∗, which
is characterized by

x∗k =


π̄k if

∑K
k=1 π̄k ≤ B,

0 if
∑K
k=1 π̄k > B and π̄k/λ̄k < γ∗,

xk satisfying (π̄k − xk)e−xk/λ̄k/λ̄k = γ∗ if
∑K
k=1 π̄k > B and π̄k/λ̄k ≥ γ∗,

where the Lagrange multiplier γ∗ > 0 is chosen such that ‖x∗‖1 = B is satisfied. This solution takes
the form of a "water-filling" strategy. More specifically, if the budget constraint is not binding, then
the optimal solution is to bid π̄k for every good k. However, in the case of a binding budget constraint,
the optimal solution is determined by the bid value at which the marginal expected payoff associated
with each good k is equal to min(γ∗, π̄k/λ̄k), and this bid value cannot be expressed in closed form.

We measure the performance of a bidding policy µ by its regret4, the difference between the expected
T-period payoff of µ and that of x∗, i.e.,

RµT (f) =

T∑
t=1

E(r(x∗)− r(xµt )), (3)

where the expectation is taken with respect to the randomness induced by µ. The regret of any policy
is monotonically increasing. Hence, we are interested in policies with sub-linear regret growth.

3This is reasonable in the case of virtual trading because DA and RT prices are bounded due to offer/bid caps.
4The regret definition used here is the same as in [14]. This definition is also known as pseudo-regret in the

literature [25].
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3 Online learning approach to optimal bidding

The idea behind our approach is to maximize the sample mean of the expected payoff function, which
is an ERM approach [26]. However, we show that a direct implementation of ERM is NP-hard. Hence,
we propose a polynomial-time algorithm that is based on dynamic programming on a discretized
feasible set. We show that our approach achieves the order optimal regret.

3.1 Approximate expected payoff function and its optimization

Regardless of the bidding policy, one can observe the auction and spot prices of past periods.
Therefore, the average payoff that could have been obtained by bidding x up to the current period can
be calculated for any fixed value of x ∈ F . Specifically, the average payoff r̂t,k(xk) for a good k as
a function of the bid value xk can be calculated at period t+ 1 by using observations up to t, i.e.,

r̂t,k(xk) = (1/t)

t∑
i=1

(πi,k − λi,k)1{xk ≥ λi,k}.

For example, at the end of first period, r̂t,k(xk) = (π1,k−λ1,k)1{xk ≥ λ1,k} as illustrated in Fig. 1a.
For, t ≥ 2, this can be expressed recursively;

r̂t,k(xk) =

{
t−1
t r̂t−1,k(xk) if xk < λt,k,
t−1
t r̂t−1,k(xk) + 1

t (πt,k − λt,k) if xk ≥ λt,k.
(4)

Since each observation introduces a new breakpoint, and the value of average payoff function is
constant between two consecutive breakpoints, we observe that r̂t,k(xk) is a piece-wise constant
function with at most t breakpoints. Let the vector of order statistics of the observed auction clearing
prices {λi,k}ti=1 and zero be λ(k) =

[
0, λ(1),k, ..., λ(t),k

]ᵀ
, and let the vector of associated average

payoffs be r(k), i.e., r(k)
i = r̂t,k

(
λ

(k)
i

)
. Then, r̂t,k(xk) can be expressed by the pair

(
λ(k), r(k)

)
,

e.g., see Fig. 1b.

λ1,k

xk

r̂1,k(xk)

π1,k − λ1,k

0
(a) t = 1

λ
(k)
2

xk

r̂4,k(xk)

r
(k)
2

λ
(k)
3 λ

(k)
4 λ

(k)
5

r
(k)
3

r
(k)
4

r
(k)
5

0
(b) t = 4

Figure 1: Piece-wise constant average payoff function of good k

For a vector y, let ym:n = (ym, ym+1, ..., yn) denote the sequence of entries from m to n. Initialize(
λ(k), r(k)

)
= (0, 0) at the beginning of first period. Then, at each period t ≥ 1, the pair

(
λ(k), r(k)

)
can be updated recursively as follows:(

λ(k), r(k)
)

=

([
λ

(k)
1:ik

, λt,k, λ
(k)
ik+1:t

]ᵀ
,

[
t− 1

t
r

(k)
1:ik

,
t− 1

t
r

(k)
ik:t +

1

t
(πt,k − λt,k)

]ᵀ)
, (5)

where ik = max
i:λ

(k)
i <λt,k

i at period t.

Consequently, overall average payoff function r̂t(x) can be expressed as a sum of average payoff
functions of individual goods. Instead of the unknown expected payoff r(x), let’s consider the
maximization of the average payoff function, which corresponds to the ERM approach, i.e.,

max
x∈F

r̂t(x) = max
x∈F

K∑
k=1

r̂t,k(xk). (6)

Due to the piece-wise constant structure, choosing xk = λ
(k)
i for some i ∈ {1, ..., t+ 1} contributes

the same amount to the overall payoff as choosing any xk ∈
[
λ

(k)
i , λ

(k)
i+1

)
if i < t + 1 and any
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xk ≥ λ(k)
i if i = t+ 1. However, choosing xk = λ

(k)
i utilizes a smaller portion of the budget. Hence,

an optimal solution to (6) can be obtained by solving the following integer linear program:

maximize
{zk}Kk=1

K∑
k=1

(
r(k)

)ᵀ
zk

subject to
K∑
k=1

(
λ(k)

)ᵀ
zk ≤ B,

1ᵀzk ≤ 1, ∀k = 1, ...,K,

zk,i ∈ {0, 1}, ∀i = 1, ..., t+ 1; ∀k = 1, ...,K.

(7)

where the bid value xk =
(
λ(k)

)ᵀ
zk for good k.

Observe that (7) is a multiple choice knapsack problem (MCKP) [8], a generalization of 0-1 knapsack.
Unfortunately, (7) is NP-hard [8]. If we had a polynomial-time algorithm that finds an optimal
solution x ∈ F to (6), then we could have obtained the solution of (7) in polynomial-time too by
setting zk,i = 1 where i = max

i:λ
(k)
i ≤xk

i for each k. Therefore, (6) is also NP-hard, and, to the
best of our knowledge, there isn’t any method in the ERM literature [27], which mostly focuses on
classification problems, suitable to implement for the specific problem at hand.

3.2 Dynamic programming on discrete set (DPDS) policy

Next, we present an approach that discretizes the feasible set using intervals of equal length and
optimizes the average payoff on this new discrete set via a dynamic program. Although this approach
doesn’t solve (6), the solution can be arbitrarily close to the optimal depending on the choice of
the interval length under the assumption of the Lipschitz continuous expected payoff function. To
exploit the smoothness of Lipschitz continuity, discretization approach of the continuous feasible set
has been used in the continuous MAB literature previously [17, 14]. However, different than MAB
literature, in this paper, discretization approach is utilized to reduce the computational complexity of
an NP-hard problem as well.

Let αt be an integer sequence increasing with t and Dt = {0, B/αt, 2B/αt, ..., B} as illustrated in
Fig. 2. Then, the new discrete set is given as Ft = {x ∈ F : xk ∈ Dt,∀k ∈ {1, ...,K}}. Our goal is
to optimize r̂t(.) on the new set Ft rather than F , i.e.,

max
xt+1∈Ft

r̂t(xt+1). (8)

λ
(k)
2

xk

r̂4,k(xk)

r
(k)
2

λ
(k)
3 λ

(k)
4 λ

(k)
5

r
(k)
3

r
(k)
4

r
(k)
5

B
α4

2B
α4

3B
α4

4B
α4

0

Figure 2: Example of the discretization of the decision space for good k when t = 4

Now, we use dynamic programming approach that has been used to solve 0-1 Knapsack problems
including MCKP given in (7) [28]. However, direct implementation of this approach results in pseudo-
polynomial computational complexity in the case of 0-1 Knapsack problems. The discretization of
the feasible set with equal interval length reduces the computational complexity to polynomial time.

We define the maximum payoff one can collect with budget b among goods {1, ..., n} when the bid
value xk is restricted to the set Dt for each good k as

Vn(b) = max
{xk}nk=1:

∑n
k=1 xk≤b,xk∈Dt∀k

n∑
k=1

r̂t,k(xk).
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Then, the following recursion can be used to solve for VK(B) which gives the optimal solution to (8):

Vn(jB/αt) =

{
0 if n = 0, j ∈ {0, 1, ..., αt},
max
0≤i≤j

(r̂t,n(iB/αt) + Vn−1((j − i)B/αt)) if 1 ≤ n ≤ K, j ∈ {0, 1, ..., αt}.
(9)

This is the Bellman equation where Vn(b) is the maximum total payoff one can collect using remaining
budget b and remaining n goods. Its optimality can be shown via a simple induction argument. Recall
that r̂t,n(0) = 0 for all (t, n) pairs due to the assumption of positive day-ahead prices.

Recursion (9) can be solved starting from n = 1 and proceeding to n = K, where, for each n, Vn(b)
is calculated for all b ∈ Dt. Since the computation of Vn(b) requires at most αt + 1 comparison for
any fixed value of n ∈ {1, ...,K} and b ∈ Dt, it has a computational complexity on the order of Kα2

t
once the average payoff values r̂t,n(xn) for all xn ∈ Dt and n ∈ {1, ...,K} are given. For each
n ∈ {1, ...,K}, computation of r̂t,n(xn) for all xn ∈ Dt introduces an additional computational
complexity of at most on the order of t, which can be observed from the update step of

(
λ(k), π(k)

)
,

given in (5). Hence, total computational complexity of DPDS is O(K max(t, α2
t )) at each period t.

3.3 Convergence and regret of DPDS policy

Under the assumption of Lipschitz continuity, Theorem 1 shows that the value of DPDS converges to
the value of the optimal policy under known model with a rate faster than or equal to

√
log t/t if the

DPDS algorithm parameter αt = dtγe with γ ≥ 1/2. Consequently, the regret growth rate of DPDS
is upper bounded by O(

√
T log T ). If γ = 1/2, then the computational complexity of the algorithm

is bounded by O(Kt) at each period t, and total complexity over the entire horizon is O(KT 2).

Theorem 1 Let xDPDS
t+1 denote the bid of DPDS policy for period t+ 1. If r(.) is Lipschitz continuous

on F with p-norm and Lipschitz constant L, then, for any γ > 0 and for DPDS parameter choice
αt ≥ 2,

E(r(x∗)−r(xDPDS
t+1 )) ≤ LK1/pB

αt
+
√

2(γ + 1)K + 1(u− l)
√

log t

t
+

4 min(u− l, LK1/pB)αKt
t(γ+1)K+1/2

,

(10)
and for αt = max(dtγe, 2) with γ ≥ 1/2,

RDPDS
T (f) ≤ 2(LK1/pB+4 min(u−l, LK1/pB))

√
T+2

√
2(γ + 1)K + 1(u−l)

√
T log T . (11)

Actually, we can relax the uniform Lipschitz continuity condition. Under the weaker condition of
|r(x∗) − r(x)| ≤ L‖x∗ − x‖qp for all x ∈ F and for some constant L > 0, the incremental regret
bound that is given in (10) becomes

E(r(x∗)−r(xDPDS
t+1 )) ≤ LKq/p(B/αt)

q+(u−l)(
√

2(γ + 1)K + 1
√

log t/t+4αKt t
−(γ+1)K−1/2).

The proof of Theorem 1 is derived by showing that the value of x∗t+1 = arg maxx∈Ft
r(x) converges

to the value of x∗ due to Lipschitz continuity, and the value of xDPDS
t+1 converges to the value of x∗t+1

via the use of concentration inequality inspired by [20, 17].

Even though the upper bound of regret in Theorem 1 depends on the budget B linearly, this de-
pendence can be avoided in the expense of increase in computational complexity. For example,
in the literature, the reward is generally assumed to be in the unit interval, i.e., l = 0 and u = 1,
and the expected reward is assumed to be Lipschitz continuous with Euclidean norm and constant
L = 1. In this case, by following the proof of Theorem 1, we observe that assigning γ = 1/2 and
αt = max(dαtγe, 2) for some α > 0 gives a regret upper bound of 2B

√
KT/α+12

√
KT log T +α

for T > α+ 1. Consequently, if B = O(K), then O(K3/4
√
T +
√
KT log T ) regret is achievable

by setting α = K3/4.

3.4 Lower bound of regret for any bidding policy

We now show that DPDS in fact achieves the slowest possible regret growth. Specifically, Theorem 2
states that, for any bidding policy µ and horizon T , there exists a distribution f for which the regret
growth is slower than or equal to the square root of the horizon T .
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Theorem 2 Consider the case where K = 1, B = 1, and λt and πt are independent random
variables with distributions

fλ(λt) = ε−11{(1− ε)/2 ≤ λt ≤ (1 + ε)/2}

and fπ(πt) = Bernoulli(π̄), respectively. Let f(λt, πt) = fλ(λt)fπ(πt) and ε = T−1/2/2
√

5. Then,
for any bidding policy µ,

RµT (f) ≥ (1/16
√

5)
√
T ,

either for π̄ = 1/2 + ε or for π̄ = 1/2− ε.

As seen in Theorem 2, we choose a specific distribution for the auction clearing and spot prices.
Observe that, for this distribution, the payoff function is Lipschitz continuous with Lipschitz constant
L = 3/2 because the magnitude of the derivative of the payoff function |r′(x)| ≤ |π̄ − x|/ε ≤ 3/2
for (1 − ε)/2 ≤ x ≤ (1 + ε)/2 and r′(x) = 0 otherwise. So, it satisfies the condition given in
Theorem 1.

The proof of Theorem 2 is obtained by showing that, every time the bid is cleared, an incremental
regret greater than ε/2 is incurred under the distribution with π̄ = (1/2−ε); otherwise, an incremental
regret greater than ε/2 is incurred under the distribution with π̄ = (1/2 + ε). However, to distinguish
between these two distributions, one needs Ω(T ) samples, which results in a regret lower bound
of Ω(

√
T ). The bound is obtained by adapting a similar argument used by [29] in the context of

non-stochastic MAB problem.

4 Empirical study

New York ISO (NYISO), which consists of 11 zones, allows virtual transactions at zonal nodes only.
So, we use historical DA and RT prices of these zones from 2011 to 2016 [30]. Since the price for
each hour is different at each zone, there are 11×24 different locations, i.e., zone-hour pairs, to bid on
every day. The prices are per unit (MWh) prices. We also consider buy and sell bids simultaneously
for all location. As explained in Sec. 1.1, a sell bid is a bid to sell in the DA market with an obligation
to buy back in the RT market. Hence, the profit of a sell bid at period t is (λt − πt)ᵀ1{xt ≤ λt}.
Generally, an upper bound p̄ for the DA prices is known, e.g. p̄ = $1000 for NYISO. We convert
a sell bid to a buy bid by using xsell

t = p̄ − xt, λsell
t = p̄ − λt, and πsell

t = p̄ − πt instead of xt, λt,
and πt. NYISO DA market for day t closes at 5:00 am on day t − 1. Hence, the RT prices of all
hours of day t− 1 cannot be observed before the bid submission for day t. Therefore, the most recent
information used before the submission for day t was the observations from day t− 2.

(a) y = 2012 (b) y = 2013 (c) y = 2014

(d) y = 2015 (e) y = 2016

Figure 3: Cumulative profit trajectory of year y for B = 100000

We compare DPDS with three algorithms. One of them is UCBID-GR, inspired by UCBID [7]. At
each day, UCBID-GR sorts all locations according to their profitabilities, i.e., their price spread (the
difference between DA and RT price) sample means. Then, starting from the most profitable location,

8



UCBID-GR sets the bid of a location equal to its RT price sample mean until there isn’t any sufficient
budget left.

The second algorithm, referred to as SA, is a variant of Kiefer-Wolfowitz stochastic approximation
method. SA approximates the gradient of the payoff function by using the current observation and
updates the bid of each k as follows;

xt,k = xt−1,k + at ((πt−2,k − λt−2,k)(1{xt−1,k + ct ≥ λt−2,k} − 1{xt−1,k ≥ λt−2,k})) /ct.

Then, xt is projected to the feasible set F .

The last algorithm is SVM-GR, which is inspired by the use of support vector machines (SVM) by
Tang et al. [31] to determine if a buy or a sell bid is profitable at a location, i.e., if the price spread is
positive or negative. Due to possible correlation of the price spread at a location on day t with the
price spreads observed recently at that and also at other locations, the input of SVM for each location
is set as the price spreads of all locations from day t− 7 to day t− 2. To test SVM-GR algorithm
at a particular year, for each location, the data from the previous year is used to train SVM and to
determine the average profit, i.e., average price spread, and the bid level that will be accepted with
95% confidence in the event that a buy or a sell bid is profitable. For the test year, at each period,
SVM-GR first determines if a buy or a sell bid is profitable for each location. Then, SVM-GR sorts
all locations according to their average profits, and, starting from the most profitable location, it sets
the bid of a location equal to the bid level with 95% confidence of acceptance until there isn’t any
sufficient budget left.

To evaluate the performance of a year, DPDS, UCBID-GR, and SA algorithms have also been trained
starting from the beginning of the previous year. The algorithm parameter of DPDS was set as αt = t;
and the step size at and ct of SA were set as 20000/t and 2000/t1/4, respectively.

For B=$100,000, the cumulative profit trajectory of five consecutive years are given in Fig. 3. We
observe that DPDS obtains a significant profit in all cases, and it outperforms other algorithms
consistently except 2015 where SVM-GR makes approximately 25% more profit. However, in three
out of five years, SVM-GR suffers a considerable amount of loss. In general, UCBID-GR performs
quite well except 2016, and SA algorithm incurs a loss almost every year.

5 Conclusion

By applying general techniques such as ERM, discretization approach, and dynamic programming, we
derive a practical and efficient algorithm to the algorithmic bidding problem under budget constraint
in repeated multi-commodity auctions. We show that the expected payoff of the proposed algorithm,
DPDS, converges to that of the optimal strategy by a rate no slower than

√
log t/t, which results

in a O(
√
T log T ) regret. By showing that the regret is lower bounded by Ω(

√
T ) for any bidding

strategy, we prove that DPDS is order optimal up to a
√

log T term.

For the motivating application of virtual bidding in electricity markets (see Sec. 1.1), the stochastic
setting, studied in this paper, is natural due to the electricity markets being competitive, which
implies that the existence of an adversary is very unlikely. However, it is also of interest to study the
adversarial setting to extend the results to other applications. For example, the adversarial setting of
our problem is a special case of no-regret learning problem of Simultaneous Second Price Auctions
(SiSPA), studied by Daskalakis and Syrgkanis [32] and Dudik et al. [33].

In particular, to deal with the adversarial setting, it is possible to use our dynamic programming
approach as the offline oracle for the Oracle-Based Generalized FTPL algorithm proposed by Dudik
et al. [33] if we fix the discretized action set over the whole time horizon. More specifically, let the
interval length of discretization beB/m, i.e., αt = m. Then, it is possible to show that a 1-admissible
translation matrix with Kdlogme columns is implementable with complexity m. Consequently,
no-regret result of Dudik et al. [33] holds with a regret bound of O(K

√
T logm) if we measure

the performance of the algorithm against the best action in hindsight in the discretized finite action
set rather than in the original continuous action set considered here. Unfortunately, as shown by
Weed et al. [7], it is not possible to achieve sublinear regret with a fixed discretization for the specific
problem considered in this paper. Hence, it requires further work to see if this method can be extended
to obtain no-regret learning for the adversarial setting under the original continuous action set.
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[28] Krzysztof Dudziński and Stanisław Walukiewicz. Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research, 28(1):3 – 21, 1987.

[29] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[30] NYISO Website, 2017. http://www.nyiso.com/public/markets_operations/
market_data/pricing_data/index.jsp.

[31] Wenyuan Tang, Ram Rajagopal, Kameshwar Poolla, and Pravin Varaiya. Private communications, 2017.

[32] Constantinos Daskalakis and Vasilis Syrgkanis. Learning in auctions: Regret is hard, envy is easy. In 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 219–228, 2016.

[33] Miroslav Dudik, Nika Haghtalab, Haipeng Luo, Robert E. Shapire, Vasilis Syrgkanis, and Jennifer Wortman
Vaughan. Oracle-efficient online learning and auction design. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 528–539, 2017.

[34] Alexandre B. Tsybakov. Lower bounds on the minimax risk, pages 77–135. Springer New York, New York,
NY, 2009.

11

http://www.nyiso.com/public/markets_operations/market_data/pricing_data/index.jsp
http://www.nyiso.com/public/markets_operations/market_data/pricing_data/index.jsp


A Simulation study

Here, we present a simulation example to illustrate the regret growth rate of DPDS. We consider an
example with K = 5. In this example, πt and λt are independent, λt is exponentially distributed with
mean λ̄ = [4, 6, 8, 8, 4]ᵀ, and πt is uniformly distributed with mean π̄ = [5, 8, 8, 9, 3]ᵀ and support in
[π̄ − 1, π̄ + 1]. Previously, in Sec. 2.1, we stated the characterization of the optimal solution for this
example. By using this characterization, we determined the optimal solution and the associated budget
B for a range of values of the Lagrange multiplier γ∗ of the budget constraint. More specifically,
for the values 0.1,0.2,0.3, and 0.4 of γ∗, the corresponding values of B are 25.828, 20.870, 17.018,
13.845, respectively. We evaluate the performance of algorithms for these four different values of B.

(a) Regret when B = 13.845 (b) Regret when B = 17.018

(c) Regret when B = 20.870 (d) Regret when B = 25.828

Figure 4: Regret with respect to
√
t

As a benchmark comparison we consider two different approaches.The first one is based on a sliding
window (SW) forecasting approach that calculates the average payoff function of each good every
day from the prices of last ten days only. Then, it determines the optimal solution maximizing the
total average payoff by solving the integer linear program given in (7). The second one, referred to as
SA, is a variant of Kiefer-Wolfowitz stochastic approximation method as explained in Sec. 4. Recall
that SA approximates the gradient of the payoff function using the current observation and updates
the bid of each k as follows;

xt+1,k = xt,k + at ((πt,k − λt,k)(1{xt,k + ct ≥ λt,k} − 1{xt,k ≥ λt,k})) /ct.

Then, SA projects xt+1 to the feasible set F . To give a good result for B = 13.845, step size at
and ct were carefully chosen to be 5.5/t and 2.5/t1/4, respectively. We set the DPDS algorithm
parameter αt = t.

To calculate the average performance, 1000 Monte Carlo runs were used. The regret performances
for budgets 13.845, 17.018, 20.870 and 25.828 are given in Fig. 4. In all cases, DPDS outperforms,
and its order of regret growth is actually better than

√
T . When the SA algorithm parameters are

tuned well, we observe that its performance may get close to DPDS as in Fig. 4a. However, when we
increase the budget to 25.828 gradually, the performance of SA deteriorates significantly. Also, as
seen in Fig. 4, the regret of SW is much higher than DPDS and SW because SW does not converge to
the optimal solution due to fixed number of samples used in prediction.
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B DPDS algorithm pseudo-code

Algorithm 1 DPDS policy

1: Input: x1 = 0; Initialize
(
λ(k), r(k)

)
= (0, 0) ∀ k ∈ {1, ...,K};

2: for t = 1 to T do
3: Bid xt;
4: At the end of period t, observe (λt, πt) and update

(
λ(k), r(k)

)
∀ k ∈ {1, ...,K} using (5)

given in Sec. 3.1;
5: Set V0(jB/αt) = 0 ∀ j ∈ {0, 1, ..., αt} and Vn(0) = 0 ∀ n ∈ {1, ...,K};
6: Set wn(0) = 0 ∀ n ∈ {1, ...,K};
7: for n = 1 to K do
8: l = 1, d = 0, and j′ = αt;
9: for j = 1 to αt do

10: while d = 0 do
11: if λ(n)

l > jB/αt then
12: r̂t,n (jB/αt) = r

(n)
l−1

13: break;
14: else
15: if l = t+ 1 then
16: r̂t,n (jB/αt) = r

(n)
t+1;

17: d = 1 and j′ = j;
18: break;
19: else
20: l = l + 1;
21: end if
22: end if
23: end while
24: Vn(jB/αt) = Vn−1(jB/αt) and wn(jB/αt) = 0;
25: for i = 1 to min{j, j′} do
26: if Vn(jB/αt) < Vn−1((j − i)B/αt) + r̂t,n(iB/αt) then
27: Vn(jB/αt) = Vn−1((j − i)B/αt) + r̂t,n(iB/αt);
28: wn(jB/αt) = iB/αt;
29: end if
30: end for
31: end for
32: end for
33: Br = B;
34: for k = K to 1 do
35: xt+1,k = wk(Br);
36: Br = Br − xt+1,k;
37: end for
38: end for

C Proof of Theorem 1

Recall that x∗ = arg maxx∈F r(x) and let x∗t+1 = arg maxx∈Ft
r(x). Hence, for any x′ ∈ Ft,

r(x∗)− r(x∗t+1) ≤ r(x∗)− r(x′).

We take x′k = bx∗k/(B/αt)c(B/αt) for all k ∈ {1, ...,K}, where bx∗k/(B/αt)c denotes the largest
integer smaller or equal to x∗k/(B/αt), so that x′ ∈ Ft and |x′k − x∗k| ≤ B/αt for all k ∈ {1, ...,K}.
Then, due to Lipschitz continuity of the expected payoff function r(.) on F with p-norm and constant
L,

r(x∗)− r(x∗t+1) ≤ LK1/pB/αt. (12)
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Since the payoff obtained at each period t is in [l, u] and r(.) is Lipschitz, r(x∗t+1)− r(x) ≤ C for
any x ∈ Ft where C = min(u− l, LK1/pB). Then, for any δt > 0,

r(x∗t+1)− r(xDPDS
t+1 ) =

∑
x∈Ft

(r(x∗t+1)− r(x))1{xDPDS
t+1 = x}

≤ δt
∑

x∈Ft:r(x∗
t+1)−r(x)≤δt

1{xDPDS
t+1 = x}+ C

∑
x∈Ft:r(x∗

t+1)−r(x)>δt

1{xDPDS
t+1 = x}

≤ δt + C
∑

x∈Ft:r(x∗
t+1)−r(x)>δt

1{xDPDS
t+1 = x},

where the last inequality is obtained by the fact that at most one of the indicator functions can be
equal to 1 due to the events being disjoint. For any x ∈ Ft, r̂t(x) ≥ r̂t(x∗t+1) has to hold if xDPDS

t+1 = x
holds. Hence, we can upper bound the last inequality obtained to get

r(x∗t+1)− r(xDPDS
t+1 ) ≤ δt + C

∑
x∈Ft:r(x∗

t+1)−r(x)>δt

1{r̂t(x) ≥ r̂t(x∗t+1)}.

Now, observe that for r̂t(x) ≥ r̂t(x∗t+1) to hold for any x ∈ Ft satisfying r(x∗t+1)− r(x) > δt, the
event

E1 = {r̂t(x∗t+1) + δt/2 ≤ r(x∗t+1)}

holds and/or the event
E2 = {r(x) + δt/2 ≤ r̂t(x)}

holds. Consequently,

E(r(x∗t+1)− r(xDPDS
t+1 )) ≤ δt + C

∑
x∈Ft:r(x∗

t+1)−r(x)>δt

Pr(E1 ∪ E2).

For any fixed value of x ∈ F , {(πi−λi)ᵀ1{x ≥ λi}}ti=1 are i.i.d. random variables taking values in
[l, u] with mean r(x). Therefore, by Hoeffding’s inequality, both Pr(E1) and Pr(E2) are upper bounded
by exp{−tδ2

t /(2(u− l)2)}. Using the fact that the cardinality of the set {x ∈ Ft : r(x∗t+1)− r(x) >

δt} is upper bounded by αKt +K ≤ 2αKt for αt ≥ 2 and Pr(E1 ∪ E2) ≤ Pr(E1) + Pr(E2), we get

E(r(x∗t+1)− r(xDPDS
t+1 )) ≤ δt + 4CαKt exp{−tδ2

t /(2(u− l)2)}. (13)

By using (12) and (13) and setting δt =
√

2(γ + 1)K + 1(u− l)
√

log t/t, we obtain

E(r(x∗)− r(xDPDS
t+1 )) = E(r(x∗)− r(x∗t+1)) + E(r(x∗t+1)− r(xDPDS

t+1 ))

≤ LK1/pB/αt +
√

2(γ + 1)K + 1(u− l)
√

log t/t+ 4CαKt t
−(γ+1)K−1/2.

For any T ≥ 2,
∑T−1
t=1 1/

√
t ≤ 2

√
T − 1 − 1 and

∑T−1
t=1

√
log t/t ≤ 2

√
(T − 1) log(T − 1).

Hence, for any αt = max(dtγe, 2) with γ ≥ 1/2 and T > 2,

T−1∑
t=2

E(r(x∗)− r(xDPDS
t+1 )) ≤

(
LK1/pB + 4C

) T−1∑
t=1

1√
t

+
√

2(γ + 1)K + 1(u− l)
T−1∑
t=1

√
log t

t

≤
(
LK1/pB + 4C

)
(2
√
T − 1− 1)

+ 2
√

2(γ + 1)K + 1(u− l)
√

(T − 1) log(T − 1).

Since E(r(x∗)− r(xDPDS
t )) ≤ C, for any T ≥ 1,

RDPDS
T (f) ≤ 2(LK1/pB + 4C)

√
T + 2

√
2(γ + 1)K + 1(u− l)

√
T log T .

�
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D Proof of Theorem 2

Fix any policy µ. Since λt and πt are independent,

r(x) = E((π̄ − λt)1{x ≥ λt}|x)

and
r(x∗)− r(xµt ) = E((π̄ − λt)(1{x∗ ≥ λt} − 1{xµt ≥ λt})|x

µ
t , x
∗) (14)

Let f0, f1, f2 denote the distribution of {λt, πt}Tt=1 and policy µ under the choice of π̄ = 1/2,
π̄ = 1/2− ε, and π̄ = 1/2 + ε, respectively. Also, let Ei(.) andRµT (fi) denote the expectation with
respect to the distribution fi and the regret of policy µ under distribution fi, respectively.

Under distribution f1, observe that π̄ − λt ≤ −ε/2 for any value of λt . Therefore, optimal solution
under known distribution x∗ ∈ [0, (1− ε)/2] so that 1{x∗ ≥ λt} = 0. Then, by using (14), the regret
given in (3) in Sec. 2.1 can be expressed as

RµT (f1) = E1

(
T∑
t=1

−(π̄ − λt)1{xµt ≥ λt}

)
≥ ε

2
E1

(
T∑
t=1

1{xµt ≥ λt}

)
.

Similarly, under distribution f2, observe that π̄ − λt ≥ ε/2 for any value of λt . Therefore, optimal
solution under known distribution x∗ ∈ [(1 + ε)/2, 1] so that 1{x∗ ≥ λt} = 1. Then, by using (14),
the regret can be expressed as

RµT (f2) = E2

(
T∑
t=1

(π̄ − λt)1{xµt < λt}

)
≥ ε

2
E2

(
T∑
t=1

1{xµt < λt}

)
.

For any non-negative bounded function h defined on information history IT = {xt, λt, πt}Tt=1 such
that 0 ≤ h(IT ) ≤M for some M ≥ 0 and for any distributions p and q, the difference between the
expected value of h under the distributions p and q is bounded by a function of the KL-divergence
between these distributions as follows:

Eq(h(IT ))− Ep(h(IT )) ≤
∫
q(IT )>p(IT )

h(IT )(q(IT )− p(IT ))dIT

≤M
∫
q(IT )>p(IT )

q(IT )− p(IT )dIT

= M
1

2

∫
|q(IT )− p(IT )|dIT

≤M
√

KL(q||p)/2. (15)

where KL(q||p) =
∫
q(IT ) log(q(IT )/p(IT ))dIT is the KL-divergence between q and p and the

last inequality is due to Pinsker’s inequality [34], i.e., V (q, p) ≤
√

KL(q||p)/2 where V (q, p) =∫
|q(IT ) − p(IT )|dIT /2 is the variational distance between q and p. The bound given in (15) is

inspired by a similar bound obtained by Auer et al. [29] in the proof of Lemma A.1 for the case of
discrete distribution in the context of non-stochastic multi-armed bandit problem.

Now, since
∑T
t=1 1{x

µ
t ≥ λt} ≤ T and

∑T
t=1 1{x

µ
t < λt} ≤ T , we use (15) to obtain

RµT (f1) ≥ ε

2

(
E0

(
T∑
t=1

1{xµt ≥ λt}

)
− T

√
KL(f0||f1)/2

)
,

and

RµT (f2) ≥ ε

2

(
E0

(
T∑
t=1

1{xµt < λt}

)
− T

√
KL(f0||f2)/2

)
.

Consequently,

max
i∈{1,2}

RµT (fi) ≥
1

2
(RµT (f1) +RµT (f2))

≥ ε

4

(
T − T

√
KL(f0||f1)/2− T

√
KL(f0||f2)/2

)
. (16)
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For any i ∈ {0, 1, 2}, we can express the distribution of observations in terms of conditional
distributions as follows;

fi(IT ) =

T∏
t=1

fi(πt, λt|xµt , It−1)fi(x
µ
t |It−1)

=

T∏
t=1

fi(πt)fλ(λt)f(xµt |It−1),

where the second equality is due to the independence of λt and πt from the past observations It−1,
the bid xµt , and from each other. Also, the distribution of xµt given It−1 does not depend on i.
Consequently, for i ∈ {1, 2},

KL(f0||fi) =

∫
f0(IT ) log

(
T∏
t=1

f0(πt)

fi(πt)

)
dIT

=

T∑
t=1

∫
f0(IT ) log

(
f0(πt)

fi(πt)

)
dIT

=

T∑
t=1

(
1

2
log

(
1/2

1/2 + ε

)
+

1

2
log

(
1/2

1/2− ε

))
= −(T/2) log

(
1− 4ε2

)
.

Then, by (16) and by setting ε = T−1/2/2
√

5, we get

max
i∈{1,2}

RµT (fi) ≥
εT

4

(
1−

√
−T log (1− 4ε2)

)
=

√
T

8
√

5

(
1−

√
−T log (1− 1/(5T ))

)
≥
√
T

16
√

5

where the last inequality follows from the fact that − log(1− x) ≤ (5/4)x for 0 ≤ x ≤ 1/5. �
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