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Abstract

We study a variant of online linear optimization where the player receives a hint
about the loss function at the beginning of each round. The hint is given in the
form of a vector that is weakly correlated with the loss vector on that round. We
show that the player can benefit from such a hint if the set of feasible actions is
sufficiently round. Specifically, if the set is strongly convex, the hint can be used to
guarantee a regret of O(log(T )), and if the set is q-uniformly convex for q ∈ (2, 3),
the hint can be used to guarantee a regret of o(

√
T ). In contrast, we establish

Ω(
√
T ) lower bounds on regret when the set of feasible actions is a polyhedron.

1 Introduction

Online linear optimization is a canonical problem in online learning. In this setting, a player attempts
to minimize an online adversarial sequence of loss functions while incurring a small regret, compared
to the best offline solution. Many online algorithms exist that are designed to have a regret of O(

√
T )

in the worst case and it has been known that one cannot avoid a regret of Ω(
√
T ) in the worst case.

While this worst-case perspective on online linear optimization has lead to elegant algorithms and
deep connections to other fields, such as boosting [9, 10] and game theory [4, 2], it can be overly
pessimistic. In particular, it does not account for the fact that the player may have side-information
that allows him to anticipate the upcoming loss functions and evade the Ω(

√
T ) regret. In this

work, we go beyond this worst case analysis and consider online linear optimization when additional
information in the form of a function that is correlated with the loss is presented to the player.

More formally, online convex optimization [24, 11] is a T -round repeated game between a player and
an adversary. On each round, the player chooses an action xt from a convex set of feasible actions
K ⊆ Rd and the adversary chooses a convex bounded loss function ft. Both choices are revealed and
the player incurs a loss of ft(xt). The player then uses its knowledge of ft to adjust its strategy for
the subsequent rounds. The player’s goal is to accumulate a small loss compared to the best fixed
action in hindsight. This value is called regret and is a measure of success of the player’s algorithm.

When the adversary is restricted to Lipschitz loss functions, several algorithms are known to guarantee
O(
√
T ) regret [24, 16, 11]. If we further restrict the adversary to strongly convex loss functions, the

regret bound improves to O(log(T )) [14]. However, when the loss functions are linear, no online
algorithm can have a regret of o(

√
T ) [5]. In this sense, linear loss functions are the most difficult

convex loss functions to handle [24].
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In this paper, we focus on the case where the adversary is restricted to linear Lipschitz loss functions.
More specifically, we assume that the loss function ft(x) takes the form cTtx, where ct is a bounded
loss vector in C ⊆ Rd. We further assume that the player receives a hint before choosing the action
on each round. The hint in our setting is a vector that is guaranteed to be weakly correlated with the
loss vector. Namely, at the beginning of round t, the player observes a unit-length vector vt ∈ Rd
such that vT

t ct ≥ α‖ct‖2, and where α is a small positive constant. So long as this requirement is met,
the hint could be chosen maliciously, possibly by an adversary who knows how the player’s algorithm
uses the hint. Our goal is to develop a player strategy that takes these hints into account, and to
understand when hints of this type make the problem provably easier and lead to smaller regret.

We show that the player’s ability to benefit from the hints depends on the geometry of the player’s
action set K. Specifically, we characterize the roundness of the set K using the notion of (C, q)-
uniform convexity for convex sets. In Section 3, we show that if K is a (C, 2)-uniformly convex
set (or in other words, if K is a C-strongly convex set), then we can use the hint to design a player
strategy that improves the regret guarantee to O

(
(Cα)−1 log(T )

)
, where our O(·) notation hides

a polynomial dependence on the dimension d and other constants. Furthermore, as we show in
Section 4, if K is a (C, q)-uniformly convex set for q ∈ (2, 3), we can use the hint to improve the
regret to O

(
(Cα)

1
1−q T

2−q
1−q

)
, when the hint belongs to a small set of possible hints at every step.

In Section 5, we prove lower bounds on the regret of any online algorithm in this model. We first
show that when K is a polyhedron, such as a L1 ball, even a stronger form of hint cannot guarantee a
regret of o(

√
T ). Next, we prove a lower bound of Ω(log(T )) regret when K is strongly convex.

1.1 Comparison with Other Notions of Hints

The notion of hint that we introduce in this work generalizes some of the notions of predictabil-
ity on online learning. Hazan and Megiddo [13] considered as an example a setting where
the player knows the first coordinate of the loss vector at all rounds, and showed that when
|ct1| ≥ α and when the set of feasible actions is the Euclidean ball, one can achieve a regret
of O(1/α · log(T )). Our work directly improves over this result, as in our setting a hint vt = ±e1
also achieves O(1/α · log(T )) regret, but we can deal with hints in different directions at differ-
ent rounds and we allow for general uniformly convex action sets. Rakhlin and Sridharan [20]
considered online learning with predictable sequences, with a notion of predictability that is con-
cerned with the gradient of the convex loss functions. They show that if the player receives a

hint Mt at round t, then the regret of the algorithm is at most O(
√∑T

t=1 ‖∇ft(xt)−Mt‖2∗).
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Figure 1: Comparison
between notions of hint.

In the case of linear loss functions, this implies that having an estimate vector
c′t of the loss vector within distance σ of the true loss vector ct results in
an improved regret bound of O(σ

√
T ). In contrast, we consider a notion of

hint that pertains to the direction of the loss vector rather than its location.
Our work shows that merely knowing whether the loss vector positively or
negatively correlates with another vector is sufficient to achieve improved
regret bound, when the set is uniformly convex. That is, rather than having
access to an approximate value of ct, we only need to have access to a
halfspace that classifies ct correctly with a margin. This notion of hint is
weaker that the notion of hint in the work of Rakhlin and Sridharan [20]
when the approximation error satisfies ‖ct − c′t‖2 ≤ σ · ‖ct‖2 for σ ∈ [0, 1). In this case one can
use c′t/ ‖c′t‖2 as the direction of the hint in our setting and achieve a regret of O( 1

1−σ log T ) when
the set is strongly convex. This shows that when the set of feasible actions is strongly convex, a
directional hint can improve the regret bound beyond what has been known to be achievable by an
approximation hint. However, we note that our results require the hints to be always valid, whereas
the algorithm of Rakhlin and Sridharan [19] can adapt to the quality of the hints.

We discuss these works and other related works, such as [15], in more details in Appendix A.

2 Preliminaries

We begin with a more formal definition of online linear optimization (without hints). LetA denote the
player’s algorithm for choosing its actions. On round t the player uses A and all of the information
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it has observed so far to choose an action xt in a convex compact set K ⊆ Rd. Subsequently, the
adversary chooses a loss vector ct in a compact set C ⊆ Rd. The player and the adversary reveal their
actions and the player incurs the loss cTtxt. The player’s regret is defined as

R(A, c1:T ) =

T∑
t=1

cTtxt −min
x∈K

T∑
t=1

cTtx.

In online linear optimization with hints, the player observes vt ∈ Rd with ‖vt‖2 = 1, before choosing
xt, with the guarantee that vT

t ct ≥ α‖ct‖2, for some α > 0.

We use uniform convexity to characterize the degree of convexity of the player’s action set K.
Informally, uniform convexity requires that the convex combination of any two points x and y on the
boundary of K be sufficiently far from the boundary. A formal definition is given below.
Definition 2.1 (Pisier [18]). Let K be a convex set that is symmetric around the origin. K and the
Banach space defined by K are said to be uniformly convex if for any 0 < ε < 2 there exists a
δ > 0 such that for any pair of points x, y ∈ K with ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε, we have∥∥x+y

2

∥∥
K ≤ 1− δ. The modulus of uniform-convexity δK(ε) is the best possible δ for that ε, i.e.,

δK(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
K

: ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε
}
.

For brevity, we say that K is (C, q)-uniformly convex when δK(ε) = Cεq and we omit C when it is
clear from the context.

Examples of uniformly convex sets include Lp balls for any 1 < p <∞ with modulus of convexity
δLp(ε) = Cpε

p for p ≥ 2 and a constant Cp and δLp(ε) = (p − 1)ε2 for 1 < p ≤ 2. On the other
hand, L1 and L∞ units balls are not uniformly convex. When δK(ε) ∈ Θ(ε2), we say that K is
strongly convex.

Another notion of convexity we use in this work is called exp-concavity. A function f : K → R is
exp-concave with parameter β > 0, if exp(−βf(x)) is a concave function of x ∈ K. This is a weaker
requirement than strong convexity when the gradient of f is uniformly bounded [14]. The next
proposition shows that we can obtain regret bounds of order Θ(log(T )) in online convex optimization
when the loss functions are exp-concave with parameter β.
Proposition 2.2 ([14]). Consider online convex optimization on a sequence of loss functions
f1, . . . , fT over a feasible set K ⊆ Rd, such that all t, ft : K → R is exp-concave with pa-
rameter β > 0. There is an algorithm, with runtime polynomial in d, which we call AEXP, with a
regret that is at most dβ (1 + log(T + 1)).

Throughout this work, we draw intuition from basic orthogonal geometry. Given any vector x and a
hint v, we define x v = (xTv)v and x

T

v = x−(xTv)v, as the parallel and the orthogonal components
of x with respect to v. When the hint v is clear from the context we simply use x and x

T

to denote
these vectors.

Naturally, our regret bounds involve a number of geometric parameters. Since the set of actions of the
adversary C is compact, we can find G ≥ 0 such that ‖c‖2 ≤ G for all c ∈ C. When K is uniformly
convex, we denote K = {w ∈ Rd | ‖w‖K ≤ 1}. In this case, since all norms are equivalent in finite
dimension, there exist R > 0 and r > 0 such that Br ⊆ K ⊆ BR, where Br (resp. BR) denote the
L2 unit ball centered at 0 with radius r (resp. R). This implies that 1

R ‖·‖2 ≤ ‖·‖K ≤ 1
r ‖·‖2.

3 Improved Regret Bounds for Strongly Convex K
At first sight, it is not immediately clear how one should use the hint. Since vt is guaranteed to satisfy
cTtvt ≥ α‖ct‖2, moving the action x in the direction −vt always decreases the loss. One could hope
to get the most benefit out of the hint by choosing xt to be the extremal point in K in the direction
−vt. However, this naïve strategy could lead to a linear regret in the worst case. For example, say
that ct = (1, 12 ) and vt = (0, 1) for all t and let K be the Euclidean unit ball. Choosing xt = −vt
would incur a loss of −T2 , while the best fixed action in hindsight, the point (−2√

5
, −1√

5
), would incur a

loss of −
√
5

2 T . The player’s regret would therefore be
√
5−1
2 T .

3



Intuitively, the flaw of this naïve strategy is that the hint does not give the player any information
about the (d − 1)-dimensional subspace orthogonal to vt. Our solution is to use standard online
learning machinery to learn how to act in this orthogonal subspace. Specifically, on round t, we use
vt to define the following virtual loss function:

ĉt(x) = min
w∈K

cTtw s.t. w

T

vt = x

T

vt .
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Figure 2: Virtual function ĉ(·).

In words, we consider the 1-dimensional subspace spanned by vt
and its (d− 1)-dimensional orthogonal subspace separately. For any
action x ∈ K, we find another point, w ∈ K, that equals x in the
(d − 1)-dimensional orthogonal subspace, but otherwise incurs the
optimal loss. The value of the virtual loss ĉt(x) is defined to be the
value of the original loss function ct at w. The virtual loss simulates
the process of moving x as far as possible in the direction−vt without
changing its value in any other direction (see Figure 2). This can be
more formally seen by the following equation.

arg min
w∈K:w

T

=x̂

Tc
T

tw = arg min
w∈K:w

T

=x̂

T

(
(c

T

t )Tx̂

T

+ (ct )Tw
)

= arg min
w∈K:w

T

=x̂

Tv
T

tw, (1)

where the last transition holds by the fact that ct =
∥∥ct ∥∥2 vt since the hint is valid.
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Figure 3: Uniform-convexity of the
feasible set affects the convexity the
virtual loss function.

This provides an intuitive understanding of a measure of convexity
of our virtual loss functions. WhenK is uniformly convex then the
function ĉt(·) demonstrates convexity in the subspace orthogonal
to vt. To see that, note that for any x and y that lie in the space
orthogonal to vt, their mid point x+y2 transforms to a point that
is farther away in the direction of −vt than the midpoint of the
transformations of x and y. As shown in Figure 3, the modulus
of uniform convexity of K affects the degree of convexity of
ĉt(·). We note, however, that ĉt(·) is not strongly convex in
all directions. In fact, ĉt(·) is constant in the direction of vt.
Nevertheless, the properties shown here allude to the fact that
ĉt(·) demonstrates some notion of convexity. As we show in the
next lemma, this notion is indeed exp-concavity:
Lemma 3.1. If K is (C, 2)-uniformly convex, then ĉt(·) is 8α·C·rG·R2 -exp-concave.

Proof. Let γ = 8α·C·rG·R2 . Without loss of generality, we assume that ct 6= 0, otherwise ĉt(·) = 0 is a
constant function and the proof follows immediately. Based on the above discussion, it is not hard to
see that ĉt(·) is continuous (we prove this in more detail in the Appendix D.1. So, to prove that ĉt(·)
is exp-concave, it is sufficient to show that

exp

(
−γ · ĉt

(
x+ y

2

))
≥ 1

2
exp (−γ · ĉt(x)) +

1

2
exp (−γ · ĉt(y)) ∀(x, y) ∈ K.

Consider (x, y) ∈ K and choose corresponding (x̂, ŷ) ∈ K such that ĉt(x) = cTt x̂ and ĉt(y) = cTt ŷ.
Without loss of generality, we have ‖x̂‖K = ‖ŷ‖K = 1, as we can always choose corresponding x̂, ŷ
that are extreme points of K. Since exp(−γĉt(·)) is decreasing in ĉt(·), we have

exp

(
−γ · ĉt

(
x+ y

2

))
= max

‖w‖K≤1
w

T

vt=( x+y2 )

T

vt

exp(−γ · cTtw). (2)

Note that w = x̂+ŷ
2 − δK(‖x̂− ŷ‖K) vt

‖vt‖K
satisfies ‖w‖K ≤ 1, since ‖w‖K ≤

∥∥∥ x̂+ŷ2 ∥∥∥K +

δK(‖x̂− ŷ‖K) ≤ 1 (see also Figure 3). Moreover, w

T

vt = (x+y2 )

T

vt . So, by using this w in
Equation (2), we have

exp

(
−γ · ĉt

(
x+ y

2

))
≥ exp

(
−γ

2
· (cTt x̂+ cTt ŷ) + γ · c

T
tvt
‖vt‖K

· δK(‖x̂− ŷ‖K)

)
. (3)
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On the other hand, since ‖vt‖K ≤ 1
r‖vt‖2 = 1

r and ‖x̂− ŷ‖K ≥ 1
R‖x̂− ŷ‖2, we have

exp

(
γ · c

T
tvt
‖vt‖K

· δK(‖x̂− ŷ‖K)

)
≥ exp

(
γ · r · α · ‖ct‖2 · C ·

1

R2
· ‖x̂− ŷ‖22

)
≥ exp

(
γ · α · C · r

R2
· ‖ct‖2 ·

(
cTt x̂

‖ct‖2
− cTt ŷ

‖ct‖2

)2
)

≥ exp

(
(γ/2)2 · (cTt x̂− cTt ŷ)2

2

)
≥ 1

2
· exp

(γ
2
· (cTt x̂− cTt ŷ)

)
+

1

2
· exp

(γ
2
· (cTt ŷ − cTt x̂)

)
,

where the penultimate inequality follows by the definition of γ and the last inequality is a consequence
of the inequality exp(z2/2) ≥ 1

2 exp(z) + 1
2 exp(−z),∀z ∈ R. Plugging the last inequality into (3)

yields

exp

(
−γĉt(

x+y

2
)

)
≥ 1

2
exp

(
−γ

2
(cTt x̂+ cTt ŷ)

)
·
{

exp
(γ

2
(cTt x̂− cTt ŷ)

)
+ exp

(γ
2

(cTt ŷ − cTt x̂)
)}

=
1

2
exp (−γ · cTt ŷ) +

1

2
exp (−γ · cTt x̂)

=
1

2
exp (−γ · ĉt(y)) +

1

2
exp (−γ · ĉt(x)) ,

which concludes the proof.

Now, we use the sequence of virtual loss functions to reduce our problem to a standard online convex
optimization problem (without hints). Namely, the player applies AEXP (from Proposition 2.2),
which is an online convex optimization algorithm known to have O(log(T )) regret with respect to
exp-concave functions, to the sequence of virtual loss functions. Then our algorithm takes the action
x̂t ∈ K that is prescribed by AEXP and moves it as far as possible in the direction of −vt. This
process is formalized in Algorithm 1.

Algorithm 1 Ahint FOR STRONGLY CONVEX K
For t = 1, . . . , T ,

1. Use Algorithm AEXP with the history ĉτ (·) for τ < t, and let x̂t be the chosen action.

2. Let xt = arg minw∈K(vT
tw) s.t. w

T

vt = x̂

T

vt
t . Play xt and receive ct as feedback.

Next, we show that the regret of algorithmAEXP on the sequence of virtual loss functions is an upper
bound on the regret of Algorithm 1.
Lemma 3.2. For any sequence of loss functions c1, . . . , cT , let R(Ahint, c1:T ) be the regret of
algorithm Ahint on the sequence c1, . . . , cT , and R(AEXP, ĉ1:T ) be the regret of algorithm AEXP

on the sequence of virtual loss functions ĉ1, . . . , ĉT . Then, R(Ahint, c1:T ) ≤ R(AEXP, ĉ1:T ).

Proof. Equation (1) provides an equivalent definition xt = arg minw∈K(cTtw) s.t. w

T

vt = x̂

T

vt
t .

Using this, we show that the loss of algorithm Ahint on the sequence c1:T is the same as the loss of
algorithm AEXP on the sequence ĉ1:T .

T∑
t=1

ĉt(x̂t) =

T∑
t=1

min
w∈K:w

T

=x̂

T

t

cTtw =

T∑
t=1

cTt( arg min
w∈K:w

T

=x̂

T

t

cTtw) =

T∑
t=1

cTtxt.

Next, we show that the offline optimal on the sequence ĉ1:T is more competitive that the offline
optimal on the sequence c1:T . First note that for any x and t, ĉt(x) = minw∈K:w

T

=x

TcTtw ≤ cTtx.
Therefore, minx∈K

∑T
t=1 ĉt(x) ≤ minx∈K

∑T
t=1 c

T
tx. The proof concludes by

R(Ahint, c1:T ) =

T∑
t=1

cTtxt −min
x∈K

T∑
t=1

cTtx ≤
T∑
t=1

ĉt(x̂t)−min
x∈K

T∑
t=1

ĉt(x) = R(AEXP, ĉ1:T ).
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Our main result follows from the application of Lemmas 3.1 and 3.2.
Theorem 3.3. Suppose that K ⊆ Rd is a (C, 2)-uniformly convex set that is symmetric around the
origin, and Br ⊆ K ⊆ BR for some r and R. Consider online linear optimization with hints where
the cost function at round t is ‖ct‖2 ≤ G and the hint vt is such that cTtvt ≥ α‖ct‖2, while ‖vt‖2 = 1.
Algorithm 1 in combination with AEXP has a worst-case regret of

R(Ahint, c1:T ) ≤ d ·G ·R2

8α · C · r · (1 + log(T + 1)).

Since AEXP requires the coefficient of exp-concavity to be given as an input, α needs to be known
a priori to be able to use Algorithm 1. However, we can use a standard doubling trick to relax this
requirement and derive the same asymptotic regret bound. We defer the presentation of this argument
to Appendix B.

4 Improved Regret Bounds for (C, q)-Uniformly Convex K
In this section, we consider any feasible set K that is (C, q)-uniformly convex for q ≥ 2. Our results
differ from the previous section in two aspects. First, our algorithm can be used with (C, q)-uniformly
convex feasible sets for any q ≥ 2 compared to the results of the previous section that only hold for
strongly convex sets (q = 2). On the other hand, the approach in this section requires the hints to be
restricted to a finite set of vectors V . We show that when K is (C, q)-uniformly convex for q > 2,
our regret is O(T

2−q
1−q ). If q ∈ (2, 3), this is an improvement over the worst case regret of O(

√
T )

guaranteed in the absence of hints.

We first consider the scenario where the hint is always pointing in the same direction, i.e. vt = v for
some v and all t ∈ [T ]. In this case, we show how one can use a simple algorithm that picks the best
performing action so far (a.k.a the Follow-The-Leader algorithm) to obtain improved regret bounds.
We then consider the case where the hint belongs to a finite set V . In this case, we instantiate one
copy of the Follow-The-Leader algorithm for each v ∈ V and combine their outcomes in order to
obtain improved regret bounds that depend on the cardinality of V , which we denote by |V|.
Lemma 4.1. Suppose that vt = v for all t = 1, · · · , T and that K is (C, q)-uniformly convex that is
symmetric around the origin, and Br ⊆ K ⊆ BR for some r and R. Consider the algorithm, called
Follow-The-Leader (FTL), that at every round t, plays xt ∈ arg minx∈K

∑
τ<t c

T
τx. If

∑t
τ=1 c

T
τv ≥ 0

for all t = 1, · · · , T , then the regret is bounded as follows,

R(AFTL, c1:T ) ≤
(‖v‖K ·Rq

2C

)1/(q−1)
·
T∑
t=1

(
‖ct‖q2∑t
τ=1 c

T
τv

)1/(q−1)

.

Furthermore, when v is a valid hint with margin α, i.e., cTtv ≥ α · ‖ct‖2 for all t = 1, · · · , T , the
right-hand side can be further simplified to obtain the regret bound:

R(AFTL, c1:T ) ≤ 1

2γ
·G · (ln(T ) + 1) if q = 2

and
R(AFTL, c1:T ) ≤ 1

(2γ)1/(q−1)
·G · q − 1

q − 2
· T q−2

q−1 if q > 2,

where γ = C·α
‖v‖K·Rq

.

Proof. We use a well-known inequality, known as FT(R)L Lemma (see e.g., [12, 17]), on the regret
incurred by the FTL algorithm:

R(AFTL, c1:T ) ≤
T∑
t=1

cTt(xt − xt+1).

Without loss of generality, we can assume that ‖xt‖K = ‖xt+1‖K = 1 since the maximum of a linear
function is attained at a boundary point. Since K is (C, q)-uniformly convex, we have∥∥∥∥xt + xt+1

2

∥∥∥∥
K
≤ 1− δK(‖xt − xt+1‖K).

6



This implies that ∥∥∥∥xt + xt+1

2
− δK(‖xt − xt+1‖K)

v

‖v‖K

∥∥∥∥
K
≤ 1.

Moreover, xt+1 ∈ arg minx∈K x
T
∑t
τ=1 cτ . So, we have(

t∑
τ=1

cτ

)T(
xt + xt+1

2
− δK(‖xt − xt+1‖K)

v

‖v‖K

)
≥ inf
x∈K

xT

t∑
τ=1

cτ = xT

t+1

t∑
τ=1

cτ .

Rearranging this last inequality and using the fact that
∑t
τ=1 v

Tcτ ≥ 0, we obtain:(
t∑

τ=1

cτ

)T(
xt − xt+1

2

)
≥ δK(‖xt − xt+1‖K) ·

∑t
τ=1 v

Tcτ
‖v‖K

≥ C · ‖xt − xt+1‖q2
‖v‖K ·Rq

·
(

t∑
τ=1

vTcτ

)
.

By definition of FTL, we have xt ∈ arg minx∈K x
T
∑t−1
τ=1 cτ , which implies:(

t−1∑
τ=1

cτ

)T

xt+1 − xt
2

≥ 0.

Summing up the last two inequalities and setting γ = C·α
‖v‖K·Rq

, we derive:

cTt

(
xt − xt+1

2

)
≥ γ

α
·
(

t∑
τ=1

vTcτ

)
· ‖xt − xt+1‖q2 ≥

γ

α
·
(

t∑
τ=1

vTcτ

)
· (cTt(xt − xt+1))q

‖ct‖q2
.

Rearranging this last inequality and using the fact that
∑t
τ=1 v

Tcτ ≥ 0, we obtain:

|cTt(xt − xt+1)| ≤ 1

(2γ/α)1/(q−1)
·
(

‖ct‖q2∑t
τ=1 v

Tcτ

)1/(q−1)

. (4)

Summing (4) over all t completes the proof of the first claim. The regret bounds for when vTct ≥
α · ‖ct‖2 for all t = 1, · · · , T follow from the first regret bound. We defer this part of the proof to
Appendix D.2.

Note that the regret bounds become O(T ) when q → ∞. This is expected because Lq balls are
q-uniformly convex for q ≥ 2 and converge to L∞ balls as q → ∞ and it is well-known that
Follow-The-Leader yields Θ(T ) regret in online linear optimization when K is a L∞ ball.

Using the above lemma, we introduce an algorithm for online linear optimization with hints that
belong to a set V . In this algorithm, we instantiate one copy of the FTL algorithm for each possible
direction of the hint. On round t, we invoke the copy of the algorithm that corresponds to the direction
of the hint vt, using the history of the game for rounds with hints in that direction. We show that the
overall regret of this algorithm is no larger than the sum of the regrets of the individual copies.

Algorithm 2 Aset: SET-OF-HINTS

For all v ∈ V , let Tv = ∅.
For t = 1, . . . , T ,

1. Play xt ∈ arg minx∈K
∑
τ∈Tvt c

T
τx and receive ct as feedback.

2. Update Tvt ← Tvt ∪ {t}.

Theorem 4.2. Suppose that K ⊆ Rd is a (C, q)-uniformly convex set that is symmetric around the
origin, and Br ⊆ K ⊆ BR for some r and R. Consider online linear optimization with hints where
the cost function at round t is ‖ct‖2 ≤ G and the hint vt comes from a finite set V and is such that
cTtvt ≥ α‖ct‖2, while ‖vt‖2 = 1. Algorithm 2 has a worst-case regret of

R(Aset, c1:T ) ≤ |V| · R2

2C · α · r ·G · (ln(T ) + 1), if q = 2,

and

R(Aset, c1:T ) ≤ |V| ·
(

Rq

2C · α · r

)1/(q−1)
·G · q − 1

q − 2
· T q−2

q−1 if q > 2.
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Proof. We decompose the regret as follows:

R(Aset, c1:T ) =

T∑
t=1

cTtxt − inf
x∈K

T∑
t=1

cTtx ≤
∑
v∈V

{∑
t∈Tv

cTtxt − inf
x∈K

∑
t∈Tv

cTtx

}
≤ |V| ·max

v∈V
R(AFTL, cTv ).

The proof follows by applying Lemma 4.1 and by using ‖vt‖K ≤ (1/r) · ‖vt‖2 = 1/r.

Note thatAset does not require α or V to be known a priori, as it can compile the set of hint directions
as it sees new ones. Moreover, if the hints are not limited to finite set V a priori, then the algorithm
can first discretize the L2 unit ball with an α/2-net and approximate any given hint with one of the
hints in the discretized set. Using this discretization technique, Theorem 4.2 can be extended to the
setting where the hints are not constrained to a finite set while having a regret that is linear in the size
of the α/2-net (exponential in the dimension d.) Extensions of Theorem 4.2 are discussed in more
details in the Appendix C.

5 Lower Bounds

The regret bounds derived in Sections 3 and 4 suggest that the curvature of K can make up for the
lack of curvature of the loss function to get rates faster than O(

√
T ) in online convex optimization,

provided we receive additional information about the next move of the adversary in the form of a
hint. In this section, we show that the curvature of the player’s decision set K is necessary to get rates
better than O(

√
T ), even in the presence of a hint.

As an example, consider the unit cube, i.e. K = {x | ‖x‖∞ ≤ 1}. Note that this set is not uniformly
convex. Since, the ith coordinate of points in such a set, namely xi, has no effect on the range of
acceptable values for the other coordinates, revealing one coordinate does not give us any information
about the other coordinates xj for j 6= i. For example, suppose that ct has each of its first two
coordinates set to +1 or −1 with equal probability and all other coordinates set to 1. In this case,
even after observing the last d− 2 coordinates of the loss vector, the problem is reduced to a standard
online linear optimization problem in the 2-dimensional unit cube. This choice of ct is known to
incur a regret of Ω(

√
T ) [1]. Therefore, online linear optimization with the set K = {x | ‖x‖∞ ≤ 1},

even in the presence of hints, has a worst-case regret of Ω(
√
T ). As it turns out, this result holds for

any polyhedral set of actions. We prove this by means of a reduction to the lower bounds established
in [8] that apply to the online convex optimization framework (without hint). We defer the proof to
the Appendix D.4.
Theorem 5.1. If the set of feasible actions is a polyhedron then, depending on the set C, either there
exists a trivial algorithm that achieves zero regret or every online algorithm has worst-case regret
Ω(
√
T ). This is true even if the adversary is restricted to pick a fixed hint vt = v for all t = 1, · · · , T .

At first sight, this result may come as a surprise. After all, since any Lp ball with 1 < p ≤ 2 is
strongly convex, one can hope to use a L1+ν unit ball K′ to approximate K when K is a L1 ball
(which is a polyhedron) and apply the results of Section 3 to achieve better regret bounds. The
problem with this approach is that the constant in the modulus of convexity of K′ deteriorates when
p→ 1 since δLp(ε) = (p− 1) · ε2, see [3]. As a result, the regret bound established in Theorem 3.3
becomes O( 1

p−1 · log T ). Since the best approximation of a L1 unit ball using a Lp ball is of the

form {x ∈ Rd | d1− 1
p ‖x‖p ≤ 1}, the distance between the offline benchmark in the definition

of regret when using K′ instead of K can be as large as (1 − d 1
p−1) · T , which translates into an

additive term of order (1− d 1
p−1) · T in the regret bound when using K′ as a proxy for K. Due to

the inverse dependence of the regret bound obtained in Theorem 3.3 on p− 1, the optimal choice of
p = 1 + Õ( 1√

T
) leads to a regret of order Õ(

√
T ).

Finally, we conclude with a result that suggests that O(log(T )) is, in fact, the optimal achievable
regret when K is strongly convex in online linear optimization with a hint. We defer the proof to the
Appendix D.4.
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Theorem 5.2. If K is a L2 ball then, depending on the set C, either there exists a trivial algorithm
that achieves zero regret or every online algorithm has worst-case regret Ω(log(T )). This is true
even if the adversary is restricted to pick a fixed hint vt = v for all t = 1, · · · , T .

6 Directions for Future Research

We conjecture that the dependence of our regret bounds with respect to T is suboptimal when K is
(C, q)-uniformly convex for q > 2. We expect the optimal rate to converge to

√
T when q →∞ as

Lq balls converge to L∞ balls and it is well known that the minimax regret scales as
√
T in online

linear optimization without hints when the decision set is a L∞ ball. However, this calls for the
development of an algorithm that is not based on a reduction to the Follow-The-Leader algorithm, as
discussed after Lemma 4.1.

We also conjecture that it is possible to relax the assumption that there are finitely many hints when
K is (C, q)-uniformly convex with q > 2 without incurring an exponential dependence of the regret
bounds (and the runtime) on the dimension d, see Appendix C. Again, this calls for the development
of an algorithm that is not based on a reduction to the Follow-The-Leader algorithm.

A solution that would alleviate the two aforementioned shortcomings would likely be derived through
a reduction to online convex optimization with convex functions that are (C, q)-uniformly convex,
for q ≥ 2, in all but one direction and constant in the other, in a similar fashion as done in Section
3 when q = 2. There has been progress in this direction in the literature, but, to the best of our
knowledge, no conclusive result yet. For instance, Vovk [23] studies a related problem but restricts
the study to the squared loss function. It is not clear if the setting studied in this paper can be reduced
to the setting of square loss function. Another example is given by [21], where the authors consider
online convex optimization with general (C, q)-uniformly convex functions in Banach spaces (with
no hint) achieving a regret of order O(T (q−2)/(q−1)). Note that this rate matches the one derived in
Theorem 4.2. However, as noted above, our setting cannot be reduced to theirs because our virtual
loss functions are not uniformly convex in every direction.
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A Additional Related Works

The notion of hint introduced in this work is quite general and arises naturally in a variety of settings.
Indeed, this notion generalizes some of the previous notions of predictability in online convex
optimization.

Aside from the example, mentioned in Section 1.1, where a hint on the first coordinate of
the loss vector is provided to the player, Hazan and Megiddo [13] also considered modeling the
prior information in each round as a state space and measuring regret against a stronger benchmark
that uses a mapping from the state space to the feasible set. Chiang and Lu [6] considered actively
querying bits of the loss vector, but their result mainly improves the dependence of the regret on the
dimension d.

Another notion of predictability is concerned with predictability of the entire loss vector rather than
individual bits. Chiang et al. [7] considered online convex optimization with a sequence of loss
functions that demonstrates a gradual change and they derived a regret bound in terms of the deviation
of the loss functions. Rakhlin and Sridharan [19, 20] extended this line of work beyond sequences
with gradual changes and showed that one can achieve an improved regret bound if the gradient of
the loss function is predictable. They also applied this method to offline optimization problems such
as Max Flow and to the problem of computing Nash equilibria in zero-sum games. In the latter case,
they showed that when both players employ a variant of the Mirror Prox algorithm, they converge
to the minimax equilibrium at a rate O(log(T )). We compare our results to results derived in the
literature on online convex optimization in more details below.

Comparison with [13] Hazan and Megiddo [13] considered as an example a setting where the
player knows the first coordinate of the loss vector at all rounds, and showed that when |ct1| > 0 and
when the set of feasible actions is the Euclidean ball, one can achieve a regret of O(d · log(T )). Our
work directly improves over this result, as in our setting a hint vt = ±e1 also achieves O(log(T ))
regret, where the hidden factors are independent of d (see Theorem 4.2 with V = {e1,−e1}).
Moreover, we can deal with hints in different directions at different rounds and we allow for general
uniformly convex action sets.

Connection with [19, 20] Suppose that we are provided with a vector c̃t at the beginning of time
period t such that c̃t approximates ct in the following sense: ‖ct − c̃t‖2 ≤ σ‖ct‖2 for σ ∈ [0, 1) (if
σ ≥ 1 this gives us essentially no information because c̃t = 0 is a valid choice). Then c̃t

‖c̃t‖2 (or 0 if
c̃t = 0) is a valid hint with margin α = (1− σ)/(1 + σ). Indeed note that ‖c̃t‖2 ≤ (1 + σ) · ‖ct‖2
and ‖c̃t‖2 ≥ (1− σ) · ‖ct‖2. Moreover:

c̃Ttct
‖c̃t‖2

=
1

2
· ‖ct‖

2
2 + ‖c̃t‖22 − ‖c̃t − ct‖22

‖c̃t‖2

≥ 1

2
· (1 + (1− σ)2 − σ2) · ‖ct‖

2
2

‖c̃t‖2
= (1− σ) · ‖ct‖2‖c̃t‖2
≥ 1− σ

1 + σ
· ‖ct‖2.

When K is strongly convex (e.g. a L2 ball) and ‖ct − c̃t‖2 ≤ σ‖ct‖2 for σ ∈ [0, 1) for all time
periods t = 1, · · · , T , we get a regret bound of order O((1 + σ)/(1− σ) · log(T )) which improves

upon the bound σ ·
√∑T

t=1 ‖ct‖22 obtained in [19]. However, the regret bounds that we get are not
adaptive, i.e. we need to assume that ‖ct − c̃t‖2 ≤ σ‖ct‖2 holds at all time periods to establish the
regret bounds. This is in contrast with the analysis carried out in [19] where the regret bounds adapt
to the sequence (c1, · · · , cT ) at hand.

Comparison with [15] The regret bounds obtained for the Follow-The-Leader algorithm in Lemma
4.1 are incomparable to the ones obtained by Huang et al. [15] for online linear optimization (without
hints) in the sense that: (i) their bounds adapt to the sequence of cost vectors (c1, · · · , cT ) without
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making any assumption about them a priori whereas, in our case, the hints are assumed to be valid a
priori, and (ii) our results hold for general uniformly convex sets, which enables us to get intermediate
rates that interpolate between log(T ) and

√
T , whereas their results hold for stronger convex sets.

B Doubling Trick when K is Strongly Convex and α is not Known a Priori.

We break down the horizon into phases where, during phase i ∈ N, we run Ahint from scratch
(discarding all previously observed values of the loss vectors ct and the hints vt) with exp-concavity
parameter taken as 2i−1 · 8·C·rG·R2 . Phase i+ 1 begins at time ti+1 when the hint is no longer valid with
margin 1/2i−1, i.e.:

ti+1 = min{τ ≥ ti | cTτvτ < (1/2i−1) · ‖cτ‖2}+ 1

(with the convention that 0/0 = 1) and phase 1 begins at time t1 = 1.
Lemma B.1. When α is not known a priori, using the doubling trick yields a regret bound that
is identical (up to a constant additive term) to the one we would obtain if we knew α a priori.
Specifically, we have:

R(Ahint, c1:T ) ≤ 2 log(
1

α
) ·G ·R+

d ·G ·R2

8α · C · r · (1 + log(1 + T )).

Proof. Let N denote the number of phases and define tN+1 = T + 1. Note that there are at most
N ≤ log(1/α) phases since cTt vt

‖ct‖2
∈ [α, 1] for all time periods t by assumption. Observe that, for

any phase i and for any time period t = ti, · · · , ti+1 − 2, we have cTt vt
‖ct‖2

≥ 1/2i−1 so that ĉt(·) is

2i−1 · 8C·r
G·R2 -exp-concave. Using Lemmas 3.1 and 3.2, we get:

T∑
t=1

cTtxt − inf
x∈K

T∑
t=1

cTtx ≤
N∑
i=1

{
ti+1−1∑
t=ti

cTtxt − inf
x∈K

ti+1−1∑
t=ti

cTtx}

≤ 2N ·G ·R+

N∑
i=1

{
ti+1−2∑
t=ti

cTtxt − inf
x∈K

ti+1−2∑
t=ti

cTtx}

≤ 2 log(
1

α
) ·G ·R+

N∑
i=1

2i−1 · d ·G ·R
2

8C · r · (1 + log(1 + ti+1 − ti − 1))

≤ 2 log(
1

α
) ·G ·R+ 2N · d ·G ·R

2

8C · r · (1 + log(1 + T ))

≤ 2 log(
1

α
) ·G ·R+

d ·G ·R2

8α · C · r · (1 + log(1 + T )),

where we use ‖ct‖2 ≤ G and ‖xt‖2 ≤ R · ‖xt‖K = R for the second inequality. This concludes the
proof.

C Extensions of Theorem 4.2.

Hints pointing in arbitrary directions When the directions of the hints are arbitrary, we can
discretize the L2 unit sphere using an α/2-net (which contains at most (1 + 4

α )n points, see [22]),
which we denote by Ṽ . At any time t = 1, · · · , T , the hint vt is first mapped to its closest neighbor in
V , denoted by ṽt, and we use Aset with V = Ṽ and ṽt as “the” hint. We refer to this new algorithm
as Ãset.
Theorem C.1. Suppose that K is (C, q)-uniformly convex. If the hints come from a finite set V ,
then Ãset yields the same regret bounds as Aset up to a multiplicative factor 2. If the hints point in
arbitrary directions then we have:

R(Ãset, c1:T ) ≤ (1 +
4

α
)d · R2

C · α · r ·G · (ln(T ) + 1), if q = 2,
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and

R(Ãset, c1:T ) ≤ (1 +
4

α
)d ·
(

Rq

C · α · r

)1/(q−1)
·G · q − 1

q − 2
· T q−2

q−1 if q > 2.

Proof. Observe that, at any time period t = 1, · · · , T , ṽt is a valid hint with margin α/2. Indeed:

cTt ṽt = cTtvt − cTt(vt − ṽt)
≥ α · ‖ct‖2 − ‖ct‖2 · ‖vt − ṽt‖2
≥ α/2 · ‖ct‖2 ,

by definition of Ṽ . If the hints come from a finite set V , the set of hints {ṽt | t = 1, · · · , T} is also
finite with cardinality at most |V| since the mapping vt → ṽt is independent of t. This shows the first
part of the claim. If the hints point in arbitrary directions, then let, for each v ∈ Ṽ , Tv be the subset
of time periods such that vt is mapped to v. We have:

R(Ãset, c1:T ) =

T∑
t=1

cTtxt − inf
x∈K

T∑
t=1

cTtx

≤
∑
v∈Ṽ
{
∑
t∈Tv

cTtxt − inf
x∈K

∑
t∈Tv

cTtx}

≤ |Ṽ| ·max
v∈Ṽ

R(AFTL, cTv ),

which concludes the proof with Lemma 4.1.

Random hints We consider an extension to a stochastic setting where the hint is not necessarily
always valid at each round but rather in expectations. We next show that Aset yields regret bounds
similar to the ones derived when the hint is always valid.
Theorem C.2. Suppose that: (a) the hints come from a finite set V , (b) K is (C, q)-uniformly
convex, (c) ((ct, vt))t∈N is an independent stochastic process (but not necessarily i.i.d.), and (d)
E[cTtvt | vt = v] ≥ α · E[‖ct‖2 | vt = v] for all v ∈ V . Then, we have:

E[R(Aset, c1:T )] ≤ |V| · 7R2

C · α · r ·G · (ln(T ) + 1) +O(1),

if q = 2 and

E[R(Aset, c1:T )] ≤ |V| ·
(

7Rq

C · α · r

)1/(q−1)
·G · q − 1

q − 2
· T q−2

q−1 +O(1),

if q > 2.

The proof is deferred to the Appendix D.3. Note that Theorem C.2 is a strict generalization of
Theorem 4.2 since we allow the sequence ((ct, vt))t∈N not to be identically distributed.

To illustrate the applicability of Theorem C.2, we consider the setting studied in [15] where ((ct))t∈N
is an i.i.d. stochastic process with mean µ 6= 0 and no hint is available. In this setting, we can take
vt = µ/ ‖µ‖2 as the hint at any time period for the purpose of the analysis (but µ need not be known
since we are using a single instance of FTL when the hint is the same at all time periods). Indeed, in
this case, we have:

E[cTtvt] = E[ct]
T
µ

‖µ‖2
= ‖µ‖2
≥ ‖µ‖2

G
· E[‖ct‖2]

as long as ‖ct‖2 ≤ G. Hence, when the set K is a L2 ball, we recover the regret bound O( G2

‖µ‖2
·

log(T )) established in [15].
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D Omitted Proofs

D.1 Omitted Proof for Lemma 3.1

Lemma D.1. The function ĉt(·) is continuous for any t ∈ N.

Proof. Take a point x ∈ K and a sequence xn ∈ K → x. For every n, there exists wn ∈ K such that
w

T

n = x

T

n and ĉt(xn) = cTtwn. Observe that the sequence (cTtwn)n∈N is bounded since ‖wn‖K ≤ 1.
Hence, it is sufficient to show that (cTtwn)n∈N has a unique limit point ĉt(x). Consider a subsequence
of (cTtwn)n∈N that converges and, since K is compact, extract further a subsequence of (wn)n∈N that
converges to some w∞ ∈ K. Without loss of generality, we continue to assume that these sequences
are indexed by all n ∈ N. Taking limits in w

T

n = x

T

n , we get w

T

∞ = x

T

(an orthogonal projection is
a linear operator and thus is continuous in finite dimension). Consider w ∈ K such that ‖w‖K < 1

and w

T

= x

T

. For n big enough we have
∥∥x T

− x

T

n

∥∥
K ≤ 1−‖w‖K and so

∥∥w + x

T

n − x

T∥∥
K ≤ 1

and (w+x

T

n −x

T

)

T

= x

T

n . By definition of wn, we get cTtw

T

n ≤ cTtw+cTt(x

T

n −x

T

). Taking limits,
we get cTtw∞ ≤ cTtw for all w such that ‖w‖K < 1 and w

T

= x

T

. By continuity of linear functions
this also holds for all w ∈ K such that w

T

= x

T

and we get ĉt(x) = cTtw∞ = lim
n→∞

cTtwn =

lim
n→∞

ĉt(xn).

D.2 Omitted Proofs for Lemma 4.1

As we showed in the main body of the paper, we have:

|cTt(xt − xt+1)| ≤ 1

(2γ/α)1/(q−1)
·
(

‖ct‖q2∑t
τ=1 v

Tcτ

)1/(q−1)

.

In what follows, we further assume that v is a valid hint with margin α, i.e., vTct ≥ α · ‖ct‖2 for all
t = 1, · · · , T . We get:

|cTt(xt − xt+1)| ≤ 1

(2γ)1/(q−1)
·
(

‖ct‖q2∑t
τ=1 ‖cτ‖2

)1/(q−1)

.

Note that the right-hand side is finite even if ct = 0. Plugging this last inequality back into the first
regret bound, we derive:

R(AFTL, c1:T ) ≤ 1

(2γ)1/(q−1)
·
T∑
t=1

(
‖ct‖q2∑t
τ=1 ‖cτ‖2

)1/(q−1)

≤ 1

(2γ)1/(q−1)
· sup
(y1,··· ,yT )∈[0,G]T

T∑
t=1

(
yqt∑t
τ=1 yτ

)1/(q−1)

.

We prove below that for any t = 1, · · · , T and any fixed values (y1, · · · , yt−1, yt+1, · · · , yT ) ∈
[0, G]T−1, the function yt →

∑T
n=1

(
yqn∑n
τ=1 yτ

)1/(q−1)
is convex on [0, G] and thus the maximum of

this function is attained at an extreme point: either 0 or G. Repeating this process for t = 1, · · · , T ,
we get:

R(AFTL, c1:T ) ≤ 1

(2γ)1/(q−1)
· sup
(y1,··· ,yT )∈{0,G}T

T∑
t=1

(
yqt∑t
τ=1 yτ

)1/(q−1)

≤ 1

(2γ)1/(q−1)
· sup
n=0,··· ,T

n∑
k=1

(
Gq

k ·G )1/(q−1)

≤ 1

(2γ)1/(q−1)
·G ·

T∑
k=1

1

k1/(q−1)
.
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This concludes the proof as
∑T
k=1

1
k1/(q−1) ≤ ln(T ) + 1 if q = 2 and

∑T
k=1

1
k1/(q−1) ≤ q−1

q−2 · T
q−2
q−1

if q > 2.
Let us now prove that, for any t = 1, · · · , T and any fixed values (y1, · · · , yt−1, yt+1, · · · , yT ) ∈
[0, G]T−1, the function yt →

∑T
n=1(

yqn∑n
τ=1 yτ

)1/(q−1) is convex on [0, G]. Clearly, yt →∑
n 6=t(

yqn∑n
τ=1 yτ

)1/(q−1) is convex on [0, G] since yt only appears in the denominator and 1/(q−1) ≥
0. We use the shorthand A =

∑t−1
τ=1 yτ . It remains to show that φ : y → ( yq

y+A )1/(q−1) is convex.
We have:

φ
′′
(y) =

q

(q − 1)2
· yq/(q−1)−2 ·A2 · (y +A)−1/(q−1)−2,

which is non-negative for A ≥ 0 and y > 0 (for y = 0, we can directly show by hand that
φ(λ · 0 + (1− λ) · z) ≤ λ · φ(0) + (1− λ) · φ(z) for λ ∈ [0, 1] and z ≥ 0).

D.3 Proof of Theorem C.2

We will need the following concentration inequality.
Lemma D.2 (Chernoff-Hoeffding concentration inequality). Let (Xt)t=1,··· ,T be a sequence of
jointly independent random variables in [0, 1]. We have, for any ε ∈ (0, 1):

P

[
T∑
t=1

Xt > (1 + ε) ·
T∑
t=1

E[Xt]

]
≤ exp(−ε

2

3
·
T∑
t=1

E[Xt])

and

P

[
T∑
t=1

Xt < (1− ε) ·
T∑
t=1

E[Xt]

]
≤ exp(−ε

2

2
·
T∑
t=1

E[Xt]).

To establish the claims of Theorem C.2, first observe that:

E[R(Aset, c1:T )] = E[

T∑
t=1

cTtxt − inf
x∈K

T∑
t=1

cTtx]

≤
∑
v∈V
{E[

∑
t∈Tv

cTtxt − inf
x∈K

∑
t∈Tv

cTtx]}

≤ |V| ·max
v∈V

E[R(AFTL, cTv )].

Take v ∈ V . In the same spirit as in Lemma 4.1, what remains to be done is to bound the regret
incurred by Follow-The-Leader for any independent stochastic sequence (ct)t∈N such that E[cTtv] ≥
α · E[‖ct‖2] for all t = 1, · · · , T . We start with the same standard inequality on the regret incurred
by Follow-The-Leader:

E[R(AFTL, c1:T )] ≤ E[

T∑
t=1

cTt(xt − xt+1)]. (5)

Without loss of generality, we can assume that ‖xt‖K = ‖xt+1‖K = 1. Hence, we have:∥∥∥∥xt + xt+1

2

∥∥∥∥
K
≤ 1− δK(‖xt − xt+1‖K),

which implies that ∥∥∥∥xt + xt+1

2
− 6

7
· δK(‖xt − xt+1‖K) · rv

∥∥∥∥
K
≤ 1,

since ‖v‖K ≤ 1/r · ‖v‖2 = 1/r. Since moreover we have xt+1 ∈ arg minx∈K x
T
∑t
τ=1 cτ , we

derive, along the same lines as in Lemma 4.1, that:(
t∑

τ=1

cτ

)T

xt − xt+1

2
≥ 6

7
· δK(‖xt − xt+1‖K) · r ·

t∑
τ=1

vTcτ (6)
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Moreover, since xt ∈ arg minx∈K x
T
∑t−1
τ=1 cτ , we have:(

t−1∑
τ=1

cτ

)T

xt+1 − xt
2

≥ 0.

Summing these two inequalities yields:

cTt
xt − xt+1

2
≥ 6

7
· δK(‖xt − xt+1‖K) · r ·

t∑
τ=1

vTcτ .

Similarly, since: ∥∥∥∥xt + xt+1

2
± δK(‖xt − xt+1‖K)

ct
‖ct‖K

∥∥∥∥
K
≤ 1,

xt+1 ∈ arg minx∈K x
T
∑t
τ=1 cτ , and xt ∈ arg minx∈K x

T
∑t−1
τ=1 cτ , we get:

(

t∑
τ=1

cτ )T
xt − xt+1

2
≥ δK(‖xt − xt+1‖K) ·

∑t
τ=1 c

T
tcτ

‖ct‖K
and (

t−1∑
τ=1

cτ

)T

xt+1 − xt
2

≥ δK(‖xt − xt+1‖K) ·
∑t−1
τ=1−cTtcτ
‖ct‖K

.

Summing these last two inequalities yields:

cTt
xt − xt+1

2
≥ δK(‖xt − xt+1‖K) · ‖ct‖

2
2

‖ct‖K
≥ δK(‖xt − xt+1‖K) · r · ‖ct‖2 ,

(7)

since ‖ct‖K ≤ 1/r · ‖ct‖2. Define the events:

At = {
t−1∑
τ=1

vTcτ <
1

2
·
t−1∑
τ=1

E[vTcτ ]}

and

Bt = {
t−1∑
τ=1

‖cτ‖2 >
3

2
·
t−1∑
τ=1

E[‖cτ‖2]}.

Using Lemma D.2, we have:

P[At] ≤ exp(− 1

8G
·
t−1∑
τ=1

E[vTcτ ])

≤ exp(− α

16G
·
t−1∑
τ=1

E[‖cτ‖2]),

and

P[Bt] ≤ exp(− 1

12G
·
t−1∑
τ=1

E[‖cτ‖2]),

since |vTct| ≤ ‖ct‖2 ≤ G. Note that, conditioned on the events A{
t and B{

t , summing inequalities (6)
and (7) yields:

cTt(xt+1 − xt) ≥ δK(‖xt − xt+1‖K) · r ·
(
‖ct‖2 + 6/7vTct + 6/7

t−1∑
τ=1

vTcτ

)

≥ δK(‖xt − xt+1‖K) · r ·
(

1/7 ‖ct‖2 + α/7

t−1∑
τ=1

‖cτ‖2

)
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≥ C · r · α
7 ·Rq ·

(
t∑

τ=1

‖cτ‖2

)
· ‖xt − xt+1‖q2 .

Following the same steps as in Lemma 4.1, we conclude that:

|cTt(xt − xt+1)| ≤ 1

(γ)1/(q−1)
·
(

‖ct‖q2∑t
τ=1 ‖cτ‖2

)1/(q−1)

,

with γ = C·r·α
7Rq . Plugging this last inequality back into (5), we get:

E[R(AFTL, c1:T )] ≤
T∑
t=1

E [‖ct‖2 · (‖xt‖2 + ‖xt+1‖2) · 1At∪Bt ]

+
1

(γ)1/(q−1)
·
T∑
t=1

E

( ‖ct‖q2∑t
τ=1 ‖cτ‖2

)1/(q−1)

· 1A{
t∩B{

t


≤ 2R ·

T∑
t=1

E[‖ct‖2 · 1At∪Bt ]

+
1

(γ)1/(q−1)
· sup
p1,··· ,pT∈P(C)

E

 T∑
t=1

(
‖ct‖q2∑t
τ=1 ‖cτ‖2

)1/(q−1)
= 2R ·

T∑
t=1

E[‖ct‖2] · (P[At] + P[Bt])

+
1

(γ)1/(q−1)
· sup
y1,··· ,yT∈[0,G]

T∑
t=1

(
yqt∑t
τ=1 yτ

)1/(q−1)

,

whereP(C) denotes the set of probability distributions on C and where we use ‖xt‖2 ≤ R·‖xt‖K ≤ R
and ‖xt+1‖2 ≤ R · ‖xt+1‖K ≤ R since xt, xt+1 ∈ K. The last equality is obtained by independence
of ct and (c1, · · · , ct−1). The second term is bounded in the proof of Lemma 4.1. As for the first
term, we have:

T∑
t=1

E[‖ct‖2] · (P[At] + P[Bt])

≤ 2

T∑
t=1

E[‖ct‖2] · exp(− α

16G
·
t−1∑
τ=1

E[‖cτ‖2])

≤ 2 sup
y1,··· ,yT∈[0,G]

T∑
t=1

yt · exp(− α

16G
·
t−1∑
τ=1

yτ ).

Observe that, for any t = 1, · · · , T and for any fixed values (y1, · · · , yt−1, yt+1, · · · , yT ) ∈
[0, G]T−1, the function yt →

∑T
n=1 yn · exp(− α

16G ·
∑n−1
τ=1 yτ ) is convex on [0, G]. Hence, its

maximum is attained at an extreme point: either 0 or G. Repeating this process for t = 1, · · · , T , we
get:

T∑
t=1

E[‖ct‖2] · (P[At] + P[Bt]) ≤ 2 sup
y1,··· ,yT∈{0,G}

T∑
t=1

yt · exp(− α

16G
·
t−1∑
τ=1

yτ )

≤ 2G · sup
n=0,··· ,T

n∑
k=0

exp(− α

16
· k)

≤ 2G

1− exp(− α
16 )

= O(1),

which concludes the proof.
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D.4 Derivation of the Lower Bounds

For any given α ∈ (0, 1], we establish, depending on the curvature ofK, lower bounds on regret when
the opponent adversarially chooses the hints (v1, · · · , vT ) as well as the cost vectors (c1, · · · , cT ) ∈ C.
In fact, we establish the regret bounds in the case of a weaker adversary who has to pick a fixed
hint v initially and to stick to it throughout the game (i.e. vt = v for all t = 1, · · · , T ). Since this
is a weaker notion of adversary, the lower bounds carry over to the more adversarial setting where
the adversary is free to pick a different hint at every time period. The minimax regret that can be
achieved by an online algorithm in this setting is expressed as:

RT (C,K) = sup
v∈B2

inf
x1∈K

sup
c1∈C: cT1v≥α·‖c1‖2

inf
xT∈K

sup
cT∈C: cTT v≥α·‖cT ‖2

[
T∑
t=1

cTtxt − inf
x∈K

T∑
t=1

cTtx

]
,

where B2 denotes the unit ball for the L2 norm. Observe that:

RT (C,K) = sup
v∈B2

Φ(v),

where Φ(v) is the minimax regret that can be achieved by an online algorithm in online linear
optimization without hints when the cost vectors ct all lie in C ∩ {c ∈ Rd | cTv ≥ α · ‖c‖2} and
xt ∈ K, i.e:

Φ(v) = inf
x1∈K

sup
c1∈C: cT1v≥α·‖c1‖2

inf
xT∈K

sup
cT∈C: cTT v≥α·‖cT ‖2

[
T∑
t=1

cTtxt − inf
x∈K

T∑
t=1

cTtx

]
.

Given this characterization, all the lower bounds established in this section are derived by means of a
reduction to the lower bounds established in [8] in the standard online linear optimization framework
(without hints). Following Flajolet and Jaillet [8], we are first led to identify trivial settings where
there is an obvious algorithm that achieves zero regret.
Definition D.3. The “game with hints” is said to be trivial if and only if, for all hints v ∈ B2, there
exists x(v) ∈ K such that cTx(v) = minx∈K cTx for all c ∈ C that satisfy cTv ≥ α · ‖c‖2.

If the game with hints is trivial then the optimal strategy is to play xt = x(vt) at any time period
t ∈ N in order to get zero regret. As it turns out, this uniquely identifies trivial games with hints, as
we next show.
Lemma D.4. For any T ∈ N,RT (C,K) ≥ 0. Moreover,RT (C,K) = 0 if and only if the game with
hints is trivial.

Proof. For the first part, observe that either C = {0} in which case RT (C,K) = 0 or we can find
c 6= 0 in C in which case the opponent can pick v = c

‖c‖2
and ct = c at any time period t which

yields:

RT (C,K) ≥ inf
x1∈K

· · · inf
xT∈K

[
T∑
t=1

cTxt − inf
x∈K

T∑
t=1

cTx

]
= T · inf

x∈K
cTx− T · inf

x∈K
cTx = 0.

For the second part, observe that if the game with hints is trivial, we can play xt = x(vt) at any time
period t ∈ N and the regret incurred is

∑T
t=1 inf

x∈K
cTtx− inf

x∈K

∑T
t=1 c

T
tx ≤ 0, which in combination

withRT (C,K) ≥ 0 shows thatRT (C,K) = 0. Conversely, suppose thatRT (C,K) = 0. Consider
any v ∈ B2. Using Lemma 3 of [8] for online linear optimization when the adversary’s decision set
is Z = C ∩ {c ∈ Rd | cTv ≥ α · ‖c‖2} and the player’s decision set is F = K (in their notations),
we get that Φ(v) ≥ 0 and that Φ(v) = 0 if and only if there exists a trivial algorithm for this online
linear optimization problem with zero regret, i.e. if and only if there exists x(v) ∈ K such that
cTx(v) = minx∈K cTx for all c ∈ C satisfying cTv ≥ α·‖c‖2. Since 0 = RT (C,K) = supv∈B2

Φ(v),
this implies that the game with hints is trivial.

Flajolet and Jaillet [8] show that it is essential for K to be sufficiently curved to get regret bounds
better than

√
T in online linear optimization. We extend this characterization and show that this is

true even in the presence of hints. To establish the regret bound, the goal is to find a hint v∗ such that
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the online linear optimization problem where ct ∈ C ∩ {c ∈ Rd | cTv∗ ≥ α · ‖c‖2} and xt ∈ K is
non-trivial, in the sense that there is no single point x∗ inK that belongs to arg minx∈K c

Tx uniformly
for all c ∈ C ∩ {c ∈ Rd | cTv∗ ≥ α · ‖c‖2}. If we can find such a hint v∗, then Theorem 2 of [8]
shows that Φ(v∗) = Ω(

√
T ) and thusRT (C,K) = supv∈B2

Φ(v) = Ω(
√
T ).

Theorem D.5. Suppose that K is a polyhedron, then either the game with hints is trivial or
RT (C,K) = Ω(

√
T ).

Proof. Suppose that the game with hints is not trivial. Then, there exists a hint v∗ ∈ B2 such
that for all x ∈ K there exists c ∈ C such that cTv∗ ≥ α · ‖c‖2 and cTx > minx∈K cTx. As
a result, and borrowing the notations of Lemma D.4, Φ(v∗) = Ω(

√
T ) follows from Theorem

2 of [8] applied to the online linear optimization problem where the adversary’s decision set is
Z = C ∩ {c ∈ Rd | cTv∗ ≥ α · ‖c‖2} and the player’s decision set is F = K (in their notations).
SinceRT (C,K) = supv∈B2

Φ(v), this concludes the proof.

This shows that o(
√
T ) regret bounds are not possible when K is not curved. It is a priori unclear

however whether log(T ) is the optimal growth rate when K is strongly convex. We show that this is
indeed the case by means of a reduction to a standard online linear optimization problem where K is
a L2 ball and 0 does not lie in the convex hull of the adversary’s decision set.
Theorem D.6. If K is a L2 ball, then either the game with hints is trivial orRT (C,K) = Ω(log(T )).

Proof. Suppose that the game with hints is not trivial. There exists a hint v∗ ∈ B2 such that for
all x ∈ K, there exists c ∈ C such that cTv∗ ≥ α · ‖c‖2 and cTx > minx∈K cTx. In other words,
for all x ∈ K, we can find a cost vector c that is valid with respect to the hint v∗ and such that x is
not the optimal solution for c. Let x1, x2 be two non-co-linear points in K and let c1 as a c2 be the
corresponding valid cost vectors. Observe that, necessarily, c1 and c2 are non-co-linear and we have
0 /∈ [c1, c2] since (λc1+(1−λ)c2)Tv∗ ≥ α ·(λ ‖c1‖2+(1−λ) ‖c2‖2) ≥ α ·min(‖c1‖2 , ‖c2‖2) > 0
for λ ∈ [0, 1]. Then Φ(v∗) = Ω(log(T )) follows from Theorem 5 of [8] applied to the online linear
optimization problem where the adversary’s decision set is Z = {c1, c2} and the player’s decision
set is F = K (in their notations). Note that the assumptions of Theorem 5 of [8] are satisfied since,
as shown above, 0 /∈ conv(Z). SinceRT (C,K) = supv∈B2

Φ(v) this concludes the proof.
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