
A Appendix

A.1 Noisy Discriminators

Our noisy latent space discriminator of Section 4.3 optimizes the objective:

max
py|z,qz|x

Ep̃[Eqz|x [log p(y|z)]−DKL(q(z|x)||p(z))] (5)

Where p̃(x) is a balanced dataset of positives x ∼ δx∗(x) with label y = 1, and negatives x ∼ pX (x)
with label y = 0.
Proposition 2. (Noisy Optimal Discriminator) For any encoder distribution q(z|x), the optimal
noisy discriminator of Section 4.3 satisfies

D(z) =
q(z|y = 1)

q(z|y = 1) + q(z|y = 0)
.

Proof. This is readily obtained by differentiating the objective with respect to D(z). First we rewrite
Eq. (5) in terms of D(z):

L = Ex,y∼p̃[

∫
z

q(z|x)(y logD(z) + (1− y) log(1−D(z))]−DKL(q(z|x)||p(z))

Differentiating and setting to 0, we obtain:

∂L
∂D(z)

=

∫
x,y

p̃(x, y)q(z|x)(y 1

D(z)
− (1− y) 1

1−D(z)
)d{x, y} = 0

Splitting up the positive p̃(x|y = 1) and negative p̃(x|y = 0) distributions, we have:

1

2

1

D(z)

∫
x

δx∗(x)q(z|x)dx︸ ︷︷ ︸
q(z|y=1)

−1

2

1

1−D(z)

∫
x

pX (x)q(z|x)dx︸ ︷︷ ︸
q(z|y=0)

= 0

Solving for D(z) yields the desired result.

We can also write down the form of the optimal encoder to understand how the objective shapes the
encoding distribution:
Proposition 3. (Noisy Optimal Encoder) For any discriminator D(z), the optimal encoder of
Section 4.3 satisfies

q(z|x) ∝ D(z)ysoft(x)(1−D(z))1−ysoft(x)p(z).

Where ysoft(x) = p(y = 1|x) = δx∗ (x)
δx∗ (x)+pX (x) is the average label of x.

Proof. This is readily obtained by differentiating the objective with respect to q(z|x). Letting L
denote the objective of Eq. (5):

0 =
∂L

∂q(z|x)
=

∂

∂q(z|x)

∫
y,x

p(y|x)p̃(x)[
∫
z

q(z|x) log p(y|z)dz−
∫
z

q(z|x) log q(z|x)
p(z)

dz]d{x, y}

0 =

∫
y

p(y|x)[log p(y|z)− 1− log q(z|x) + log p(z)]dy

Rearranging,

log q(z|x) = 1 + log p(z) +

∫
y

p(y|x) log p(y|z)dy

q(z|x) ∝ p(z)e
∫
y
p(y|x) log p(y|z)dy = p(z)[D(z)p(y=1|x)(1−D(z))p(y=0|x)]

12

a) 2D Maze b) SparseHalfCheetah c) DoomMyWayHome+

d) SwimmerGather e) Freeway f) Frostbite g) Venture

Figure 4: Illustrations of several tasks used in our experiments.

A.2 K-Exemplar Model

In the K-exemplar model, each discriminator is associated with a batch of K positive exemplars
B = {x1, . . . xK}. In this case, we sample positives from the batch B uniformly at random rather
than always using a single exemplar. Letting PB(x) denote a uniform distribution over B, we
optimize

DB=arg max
D∈D

(Ex∼PB
[logD(x)] + Ex′∼PX [log 1−D(x′)]) . (6)

Using the same argument as the single exemplar model, we can characterize the optimal discriminator
for the noiseless K-exemplar model:

Proposition 4. (K-Exemplar Optimal Discriminator) For a discriminator trained with K positives
{x1, ...xK} sampled uniformly, the optimal discriminator D∗B evaluated at any one of the positives x
satisfies

D∗B(x) =
1

1 +KPX (x)
.

Proof. Taking the derivative of Equation (6) with respect to D∗B(x), we obtain

1

KD∗B(x)
− P (x)

1−D∗B(x)
= 0.

Solving for D∗B(x) yields the desired result.

Extensions to noisy versions of the K-exemplar model follow in exactly the same way as the single
exemplar model, only changing the positive distribution from δx∗(x) to PB(x).

A.3 Task Descriptions

In this section we describe the tasks used in our experiments. Sample images from these tasks are
included in Figure 4.

2D Maze. This task involves navigating through a 2D maze, using the (x,y) coordinate of the agent
as the observation. The challenge stems from the sparse reward, which is only obtained in a small
box around the goal. The agent therefore has to figure out how to reach novel parts of the maze in
order to eventually find the reward region.

SparseHalfCheetah. This task involves making a 6-DoF robot run forward as fast as possible.
However, this task has been modified to have a sparse reward as done by Houthooft et al. (2016), so

13

Figure 5: Bonuses assigned by exemplar model during the middle of training, plotted by XY position
in the maze (left) shown with the maze (right) for reference. Yellow/white denotes high bonus, red
denotes low bonus. Note that the starting room (with the blue dot) is assigned low bonus, and the
outer rooms are assigned higher bonuses.

that the agent only receives reward upon reaching a certain position threshold, and receives a constant
reward afterwards.

SwimmerGather. This locomotion task, initially proposed as a hierarchical task by Duan et al.
(2016), involves navigating a 3-link snake-like robot to collect green or red pellets. The agent is
rewarded for collecting green pellets and penalized for red ones.

Doom (MyWayHome+). This task involves navigating an agent through a maze to find a vest that
is located in one of the rooms. The observations consist only of visual feedback, and the reward is
sparse and only given when the vest is obtained. This is a slightly modified version of the OpenAI
Gym task where we initialize the agent in the furthest room from the vest to create a sparse reward
task. In Figure 4, the map of the environment is shown, with the agent starting at the blue dot and the
goal at the green dot. The input is resized to an RGB 32 x 32 image. A sample map of the bonuses
along trajectories during the middle of training is shown in Figure 5.

Freeway. This game involves navigating an agent across a highway with moving cars, which push
the agent back when touched. The reward is sparse and the agent scores a 1 when it makes it across
the highway.

Frostbite. This game involves an agent jumping across ice platforms floating across a river. The
reward is dense in that the agent receives reward when it jumps on a platform, but higher scores
requires the agent to navigate to other stages which generally requires exploration.

Venture. This game involves an agent navigating an agent into multiple rooms, where reward is
received upon picking up certain objects. The agent must avoid death from touching wandering
enemies. We show example images with low and high bonuses given by our algorithm on this task in
Figure 6.

A.4 Experiment Hyperparameters

A.4.1 Policy Model Parameters

We used an identical fully connected policy architecture across all non-image tasks, and a convolu-
tional architecture for the image task.

For non-image tasks, we used a 2-layer neural network with 32 hidden units per layer, and relu
nonlinearities.

14

Figure 6: Top: 3 of the lowest scoring images on Venture early during training. These are typically
pictures of the agent in the "overworld" where it spends most of its time. Bottom: 3 of the highest
scoring images, which are typically when the agent enters one of the many rooms with reward.
Images are grayscale due to preprocessing of the image.

For Doom, we used 2 convolutional layers (16 4x4 filters, stride 2) followed by 2 fully connected
layers with 32 units each. All nonlinearities were relus. We resize the input screen to a RGB 32 x
32 image. For Atari, we used 2 convolutional layers (32 8x8 filters, stride 4, 16 4x4 filter stride 2)
followed by 2 fully connected layers with 256 units each. All nonlinearities were relus. For Atari we
use the last 4 frames each resized to a grayscale 42 x 42 image.

A.4.2 Exemplar Model Parameters

We used an identical fully connected exemplar architecture across all non-image tasks, and a convolu-
tional architecture for the image task.

For non-image tasks, we used a 2-layer shared neural network with tanh nonlinearities and 16 units
per layer. The final unshared layer was a linear layer.

For image-based tasks, we used a shared network consisting of 2 convolutional layers (16 4x4 filters,
stride 2) followed by 2 fully connected layers with 16 units each. The convolutional layers used relu
nonlinearities, and the fully connected used tanh. The shared network architecture is identical to the
policy architecture. The final unshared layer was a linear layer.

We also found it useful to lower the learning rate for the shared network as it has many more gradients
backpropogating through it than the unshared layer. Thus, we optimized our model using ADAM
with a learning rate of 5 ∗ 10−4 for the shared layers and 1 ∗ 10−3 for the unshared layers.

A.4.3 Amortized Model Parameters

For each encoder we use a 2-layer neural network with 32 hidden units per layer and tanh nonlinearities
which outputs the mean and log variance of the latent representation of size 16. The latent codes of
the encoder are concatenated and fed into the discriminator which is another 2-layer neural network
with 32 hidden units per layer and tanh nonlinearities.

For image-based tasks, we preprocess the input with 2 convolutional layers (16 4x4 filters, stride
2) before feeding the input into the encoders. For the encoders and discriminator we use the same
architecture as stated above except we use 64 hidden units and a latent size of 32.

We use a learning rate of 1 ∗ 10−4 and optimize the model with ADAM. We found it important to
tune the weight on the KL divergence loss which affects how well the discriminator can over or under
fit.

15

A.4.4 Task Specific EX2Parameters

We found it best to tune the exploration bonus weight β to match the magnitude of the reward of the
task. We used the following EX2hyperparameters for each task, which were obtained via a rough
grid search over possible values:

2D Maze. We use K-Exemplar (K=5) and an exploration bonus weight of 1.0. For the amortized
model we use an exploration bonus weight of 0.01 and KL divergence weight of 0.01.

HalfCheetah. We use K-Exemplar (K=5) and an exploration bonus weight of 0.001. For the
amortized model we use an exploration bonus weight of 0.001 and KL divergence weight of 0.1.

SwimmerGather. We use single exemplars with an exploration bonus weight of 1.0. For the
amortized model we use an exploration bonus weight of 1 ∗ 10−4 and KL divergence weight of 10.

Doom (MyWayHome). We use K-Exemplar (K=5), an exploration bonus weight of 1 ∗ 10−4, and
entropy bonus of 1 ∗ 10−5. For the amortized model we use an exploration bonus weight of 1 ∗ 10−4
and KL divergence weight of 0.01.

Freeway For the amortized model we use an exploration bonus weight of 1∗10−5 and KL divergence
weight of 0.1.

Frostbite For the amortized model we use an exploration bonus weight of 0.001 and KL divergence
weight of 0.1.

Venture For the amortized model we use an exploration bonus weight of 1 ∗ 10−4 and KL divergence
weight of 0.001.

A.5 Learning Curves

Figure 7: 2D Maze

Figure 8: Swimmer Gather

16

Figure 9: SparseHalfCheetah

Figure 10: DoomMyWayHome+

Figure 11: Freeway

17

Figure 12: Frostbite

Figure 13: Venture

18

	Appendix
	Noisy Discriminators
	K-Exemplar Model
	Task Descriptions
	Experiment Hyperparameters
	Policy Model Parameters
	Exemplar Model Parameters
	Amortized Model Parameters
	Task Specific EX2Parameters

	Learning Curves

