
Distral: Robust Multitask Reinforcement Learning
—Supplementary Materials—

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan,
James Kirkpatrick, Raia Hadsell, Nicolas Heess, Razvan Pascanu

DeepMind
London, UK

A Algorithms

A description of all the algorithms tested:

• A3C: A policy is trained separately for each task using A3C.

• A3C_multitask: A single policy is trained using A3C by simultaneously training on all tasks.

• A3C_2col: A policy is trained for each task using A3C, which is parameterized using a two-column
architecture with one column shared across tasks (8).

• KL_1col: Each policy including the distilled policy is parameterized by one network, and trained to
optimize (1) with ↵ = 1, i.e. only using the KL regularization.

• KL+ent_1col: Same as KL_1col but using both KL and entropy regularization. We set ↵ = 0.5 and
did not tune for it in our experiments.

• KL_2col: Same as KL_1col but using the two-column architecture (8) with one shared network
column which also produces the distilled policy ⇡̂0.

• KL+ent_2col: Same as KL+ent_1col but using the two-column architecture.

B Experimental details

B.1 Two room grid world

The agent can stay put or move in each of the four cardinal coordinates. A penalty of �0.1 is incurred for
every time step and a penalty of �0.5 is incurred if the agent runs into the wall. On reaching the goal state the
episode terminates and the agent gets a reward of +1. We used learning rate of 0.1, discount of 0.95 for soft Q
learning, � = 5, and regularized the distilled policy by using a pseudocount of 1 for each action in each state.
The reported results are not sensitive to these settings and we did not tune for them.

B.2 Complex 3D tasks

The three sets of tasks are described in Table 2.

We implemented the updates (9-10) by training a distributed agent a la A3C [20] with 32 workers for each task,
coordinated using parameter servers. The agent receives a RGB observation from the environment in the form of
a 3⇥ 84⇥ 84 tensor. Each network column has the same architecture as in Mnih et al. [20] and consists of two
convolutional layers with ReLU nonlinearities, followed by a fully connected layer with 256 hidden units and
ReLU nonlinearity, which then feeds into an LSTM. Policy logits and values are then read out linearly from the
LSTM. We used RMSProp as an optimizer, and batches of length 20.

We used a set of 9 hyperparameters (1/�, ✏) 2 {3 ·10�4, 10�3, 3 ·10�3}⇥{2 ·10�4, 4 ·10�4, 8 ·10�4} for the
entropy costs and initial learning rate. We kept ↵ = 0.5 throughout all runs of KL+ent_1col and KL+ent_2col

(and, by definition, we have ↵ = 0 for A3C, A3C_multitask, A3C_2col and ↵ = 1 for KL_1col and KL_2col.).
The learning rate was annealed linearly from its initial value ✏ down to ✏/6 over a total of N environment steps
per task, where N = 4 · 108 for the maze and navigation tasks, and N = 6.6 · 108 for the laser-tag tasks. We
used an action-repeat of 4 (each action output by the network is fed 4 times to the environment), so the number
of training steps in each environment is respectively 10

8 and 1.65 · 108. In addition to the updates (9-10), our
implementation had small regularization terms over the state value estimates ˆVi for each task, in the form of L2

12

Num tasks Inter-task
variability

Map/maze layout Objectives and Agent Behaviours

Mazes 8 low Fixed layout for each
task.

Collect a goal object multiple times from
different start positions in the maze.

Navigation 4 medium Procedurally varied on
every episode.

Various objectives requiring memory
and exploration skills, including collect-
ing objects and navigating back to start
location, and finding a goal object from
multiple start positions with doors that
randomly open and close.

Laser-tag 8 high Fixed for some tasks
and procedurally varied
for others.

Tag bots controlled by the OpenArena
AI while collecting objects to increase
score. May require jumping and other
agent behaviours.

Table 2: Details on the various tasks used in Section 4.2.

losses with a coefficient 0.005, to encourage a small amount of transfer of knowledge in value estimates too. We
did not tune for this parameter, and believe it is not essential to our results.

Because of the small values of � used, we parameterized � times the soft advantages using the network outputs
instead, so that (7-8) read as:

� ˆAi(at|st) = f✓i(at|st)� log

X

a

⇡̂↵
0 (a|st) exp(f✓i(a|st)) (11)

⇡̂i(at|st) = ⇡̂↵
0 (at|st) exp(� ˆAi(at|st)) =

exp(↵h✓0(at|st) + f✓i(at|st))P
a0 exp((↵h✓0(a

0|st) + f✓i(a
0|st))

(12)

When reporting results for the navigation and laser-tag sets of tasks, we normalized the results by the best
performance of a standard A3C agent on a task by task basis, to account for different rewards scales across tasks.

13

C Detailed learning curves

Figure 5: Scores on the 8 different tasks of the navigation suite. Top two rows show the results
with the task specific policies, bottom two rows show the results with the distilled policy. For each
algorithm, results for the best set of hyperparameters are reported, as obtained by maximizing the
averaged (over tasks and runs) areas under curves. For each algorithm, the 4 thin curves correspond
to the 4 runs. The average over these runs is shown in bold. The x-axis shows the total number of
training environment steps for each task.

14

Figure 6: Scores on the 4 different tasks of the navigation suite. Top row shows the results with the
task specific policies, bottom row shows the results with the distilled policy. For each algorithm,
results for the best set of hyperparameters are reported, as obtained by maximizing the averaged (over
tasks and seeds) area under curve. For each algorithm, the 4 curves correspond to the 4 different
seeds. The average over these seeds is shown in bold. The x-axis shows the total number of training
environment steps for the corresponding task.

Figure 7: Scores on the 8 different tasks of the laser-tag suite. Only results with the task policies were
computed for this set of tasks. For each algorithm, results for the best set of hyperparameters are
reported, as obtained by maximizing the averaged (over tasks and seeds) area under curve. For each
algorithm, the 4 curves correspond to the 4 different seeds. The average over these seeds is shown in
bold. The x-axis shows the total number of training environment steps for the corresponding task.

15

