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A General Derivation of PASS-GLM

We can generalize the setup described in Section 3 to cover a wide range of GLMs by assuming the
log-likelihood is of the form

log p(y |x,θ) =

K∑
k=1

yαkφ(k)(y
βkx · θ − aky),

where typically αk, βk, ak ∈ {0, 1}. We consider the K = 1 case and drop the k subscripts since
the extension to K > 1 is trivial and serves only to introduce extra notational clutter. Letting
φM (s) =

∑M
m=0 b

(M)
m sm be the order M polynomial approximation to φ(s) = φ(1)(s), we have

that

log p(y |x,θ) ≈ yαφM (yβx · θ − ay)

= yα
M∑
m=0

b(M)
m (yβx · θ − ay)m

= yα
M∑
m=0

b(M)
m

m∑
i=0

(
m

i

)
(yβx · θ)i(ay)m−i

=

M∑
i=0

(yβx · θ)iyα
M∑
m=i

b(M)
m

(
m

i

)
(ay)m−i

=

M∑
i=0

∑
k∈Nd∑
j kj=i

a′(k, i,M, y)(yβx)kθk,

where a′(k, k̄,M, y) := yα
(
k̄
k

)∑M
m=i b

(M)
m

(
m
k̄

)
(ay)m−k̄. Thus, we have an exponential family

model with

t(x, y) =
(
a′
(
k,
∑
jkj ,M, y

)
xk
)
k

and η(θ) = (θk)k,

where k is taken over all k ∈ Nd such that
∑
j kj ≤M .

The following examples show how a variety of GLM models fit into our framework. Throughout,
let s = xn · θ.

Example A.1 (Robust regression). For robust regression, Y = R and the log-likelihood is in the
form φ(s − y), where φ is a choice of “distance” function. For example, we could use either the
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Laplace likelihood

φLaplace(s− y) := −|s− y|
b

,

the Cauchy likelihood

φCauchy(s− y) := − ln

(
1 +

(s− y)2

b2

)
,

the negative Huber loss

φHuber(s− y) :=

{
− 1

2 (s− y)2 |s− y| ≤ b
−b|s− y|+ 1

2b
2 otherwise,

or the negative smoothed Huber loss

φSHuber(s− y) := −b2
(√

1 +
(s− y)2

b2
− 1

)
,

where in each case b serves as a scale parameter.
Example A.2 (Poisson regression). For Poisson regression, Y = N, and the log-likelihood is ys−es,
so φ(1)(s) = s, φ(2)(s) = −es, α1 = 1, and β1 = a1 = α2 = β2 = a2 = 0.
Example A.3 (Gamma regression). For gamma regression, Y = R+, and the log-likelihood is
−νs − νye−s + c(y, ν) if using the log link, where ν is a scale parameter. We can ignore the
c(y, ν) term since it does not depend on θ. Thus, φ(1)(s) = −νs, φ(2)(s) = −νe−s, α2 = 1, and
β1 = a1 = α1 = β2 = a2 = 0.
Example A.4 (Probit regression). For probit regression, Y = {0, 1}, and the log-likelihood is{

ln(1− Φ(s)) z = 0

ln(Φ(s)) z = 1
,

where Φ denotes the standard normal CDF. Thus, φ(1)(s) = ln(1 − Φ(s)), φ(2)(s) = ln(Φ(s)) −
ln(1− Φ(s)), α2 = 1, and β1 = a1 = α1 = β2 = a2 = 0.

B Chebyshev Approximation Results

We begin by summarizing some standard results on the approximation accuracy of Chebyshev poly-
nomials. Let φ : [−1, 1] → R be a continuous function, and let φM be the M -th order Chebyshev
approximation to φ. Let ‖f‖∞ := sups |f(s)| be the L∞ norm of a function f ; let C denote the set
of complex numbers; and let |z| be the absolute value of z ∈ C.
Theorem B.1 (Mason and Handscomb [5, Theorem 5.14]). If φ has k + 1 continuous derivatives,
then ‖φ− φM‖∞ = O(M−k).
Theorem B.2 (Mason and Handscomb [5, Theorem 5.16]). If φ can be extended to an analytic
function on Er := {z ∈ C : |z +

√
z2 − 1 | = r} for r > 1 and C := supz∈Er |φ(z)|, then

‖φ− φM‖∞ ≤
C

r − 1
r−M .

Chebyshev polynomials also provide a uniformly good approximation of the derivative of the func-
tion they are used to approximate.
Theorem B.3. If φ can be extended to an analytic function on Er for r > 1 and C :=
supz∈Er |φ(z)|, then

‖φ′ − φ′M‖∞ ≤ Cr−M
r + 1

(r − 1)4

[
M2r(r + 1) +M(2r2 + r + 1) + r(r + 1)

]
=: B(C, r,M)

Proof. The proof follows the same structure as that for Theorem 5.16 in Mason and Handscomb [5].
For Chebyshev polynomials, ς(ds) = 2

π (1−s2)−1/2ds. Note that φ(s) =
∑∞
m=0(

∫
φψmdς)ψm(s)
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and hence φ′(s) =
∑∞
m=0(

∫
φψmdς)ψ′m(s). Since ψ′m = mUm−1, where {Um}m≥0 are the

Chebyshev polynomials of the second kind,

φ′(s)− φ′M (s) =

∞∑
m=M+1

2m

π

∫ 1

−1

(1− v2)−1/2φ(v)ψm(v)Um−1(s)dv.

Define the conformal mappings s = 1
2 (ξ+ ξ−1) and v = 1

2 (ζ + ζ−1), and φ(v) =: φ̃(ζ) = φ̃(ζ−1).
By assumption, |φ̃(ζ)| ≤ C. Let C1 denote the complex unit circle and for r ∈ R+, let Cr := rC1.
Using the conformal mappings, we have

φ′(s)− φ′M (s)

=

∞∑
m=M+1

m

4iπ

∮
C1
φ̃(ζ)(ζm + ζ−m)

ξm − ξ−m

ξ − ξ−1

dζ

ζ

=

∞∑
m=M+1

m

2iπ

∮
Cr
φ̃(ζ)ζ−m

ξm − ξ−m

ξ − ξ−1

dζ

ζ

=
1

2iπ

∮
Cr

φ̃(ζ)

ξ − ξ−1

(
ξM+1ζ−M−1(1 +M + ξζ−1)

(ξζ−1 − 1)2
− ξ−M−1ζ−M−1(1 +M + ξ−1ζ−1)

(ζ−1ξ−1 − 1)2

)
dζ

ζ

≤ C

2iπ

∮
Cr

ξζ−M−1ξ−M−1

ξ2 − 1

(
ξ2M+2(1 +M + ξζ−1)

(ξζ−1 − 1)2
− (1 +M + ξ−1ζ−1)

(ζ−1ξ−1 − 1)2

)
dζ

ζ
.

Letting η := ξ2 and ψ := ξ−1ζ−1, the absolute value of the integrand is

|ψ|M+1

|η − 1|

∣∣∣∣ηM+1(1 +M − ηψ)

(ηψ − 1)2
− 1 +M − ψ

(ψ − 1)2

∣∣∣∣
= r−M−1 |ηψ − 1|−2|ψ − 1|−2

|η − 1|
∣∣ηM+1(1 +M − ηψ)(ψ − 1)2 − (1 +M − ψ)(ηψ − 1)2

∣∣
≤ r−M−1 (r−1 − 1)−4

|η − 1|

[
|ψ||ηM+2 − 1|+ (M + 1)|ηM+1 − 1|+ 2|ψ|2|ηM+1 − 1|

+ 2(M + 1)|ψ||ηM − 1|+ |ψ|3|ηM − 1|+ (M + 1)|φ|2|ηM−1 − 1|
]

≤ r−M+3

(r − 1)4

[
M + 2

r
+ (M + 1)2 +

2(M + 1)

r2
+

2M(M + 1)

r
+
M

r3
+
M2 − 1

r2

]
= r−M

r + 1

(r − 1)4

[
M2r(r + 1) +M(2r2 + r + 1) + r(r + 1)

]
.

The final inequality follows from the fact that for k ∈ N,

|ηk − 1|/|η − 1| = | sin(k arg(η))/ sin(arg(η)| ≤ k.

The result now follows.

Since φlogit is smooth, we can apply Theorems B.2 and B.3 to obtain exponential convergence rates
of the (derivative of the) Chebyshev approximation. The same is true in the Poisson and smoothed
Huber regression cases.
Corollary B.4. Fix R > 0. If φ(s) = log(1 + e−Rs), s ∈ [−1, 1], then for any r ∈ (1, π/R +√
π2/R2 + 1 ),

‖φ− φM‖∞ ≤
C(r,R)

(r − 1)rM
and ‖φ′ − φ′M‖∞ ≤ B(C(r,R), r,M),

where C(r,R) :=
∣∣∣log

(
1 + e−

1
2R(r−r−1)i

)∣∣∣.
Proof. The function e−Rs is entire while log is analytic except at 0. Thus, we must determine the
minimum value of r such that there exists z ∈ Er such that 1 + e−Rz = 0. Taking z = a + bi, it
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must hold that b ∈ {kπ/R : k ∈ Z} since otherwise e−Rz would contain an imaginary component.
If b = 2kπ/R then e−Rz = e−Ra > 0, so this cannot be a solution to 1 + e−Rz = 0. However,
taking b = (2k + 1)π/R yields 1− e−Ra = 0 =⇒ a = 0. Hence, z = (2k + 1)πi/R and thus

|z +
√
z2 − 1 | = |πi/R+

√
−(2k + 1)2π2/R2 − 1 |

= |(π/R+
√

(2k + 1)2π2/R2 + 1 )i|

= π/R+
√

(2k + 1)2π2/R2 + 1

≥ π/R+
√
π2/R2 + 1 .

Thus we must choose r < π/R +
√
π2/R2 + 1 . For any such r, |φ(z)| is maximized along Er

when z = bi, which implies b = 1
2 (r − r−1) and hence C = C(r,R). The two inequalities now

follow from, respectively, Theorems B.2 and B.3.

Corollary B.5. Fix R > 0. If φ(s) = eRs, s ∈ [−1, 1], then for any r > 1,

‖φ− φM‖∞ ≤
e

1
2R(r+r−1)

(r − 1)rM

‖φ′ − φ′M‖∞ ≤ B(e
1
2R(r+r−1), r,M).

Proof. The proof is similar to that for Corollary B.4. The differences are as follows. The function
e−Rs is entire, so we may choose any r > 1. For any such r, |φ(z)| is maximized along Er when z
is real, which implies z = 1

2 (r + r−1) and hence C = e
1
2R(r+r−1).

Corollary B.6. Fix R > 0. If φ(s) = b2
(√

1 + R2s2

b2 − 1

)
, s ∈ [−1, 1], then for any r ∈

(1, b/R+
√
b2/R2 + 1 ),

‖φ− φM‖∞ ≤
b2
√

1 + {(r2 + 1)/(2rb)}2 − b2

r − 1
r−M

‖φ′ − φ′M‖∞ ≤ B
(
b2
√

1 + {(r2 + 1)/(2rb)}2 − b2, r,M
)
.

Proof. The proof is similar to that for Corollary B.4. The differences are as follows. The square root
function is analytic except at zero, so we must determine the minimum value of r such that there
exists z ∈ Er such that 1 +R2z2/b2 = 0. Solving, we find that z = ib/R. Thus, we have

|z +
√
z2 − 1 | = b/R+

√
b2/R2 + 1

and so must choose 1 < r < b/R +
√
b2/R2 + 1 . For any such r, |φ(z)| is maximized along Er

when z is real, which implies z = r2+1
2r and hence C = b2

(√
1 +

(
r2+1
2rb

)2 − 1

)
.

C Approximation Theorems and Proofs

Theorem C.1. Let Br(θ∗) := {θ ∈ Θ | ‖θ − θ∗‖2 ≤ r}. Assume there exist parameters εN and
%N such that for all θ ∈ BrN (θMAP), where r2

N := 4εN/%N ,

(A) |LD(θ)− L̃D(θ)| ≤ εN and (B) − log πD is %N -strongly convex.1

Furthermore, assume that for all θ ∈ Θ,

(C) log πD is strictly quasi-concave2 and (D) L̃D(θ) ≤ LD(θ) + εN .

1A differentiable function f : Rd → R is %-strongly convex if for all v,w ∈ Rd, f(v) ≥ f(w) +
〈∇f(w),v −w〉+ (%/2)‖v −w‖22.

2An arbitrary function g : Rd → R is strictly quasi-concave if for all v,w ∈ Rd, v 6= w, and t ∈ (0, 1),
g(tv + (1− t)w) > min{g(v), g(w)}.
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Then ‖θMAP − θ̃MAP‖22 ≤ 4εN
%N

.

Remark (Assumptions). The error in the MAP estimate naturally depends on the error of the approx-
imate log-likelihood (Assumption (A)) as well as the flatness of the posterior (Assumption (B)). In
the latter case, if log πD is very flat, then even a small error from using L̃D in place of LD could
lead to a large error in the approximate MAP solution. However, the stronger assumptions, (A) and
(B), need hold only near the MAP solution.
Remark (Strict quasi-concavity). Requiring that log πD be only strictly quasi-concave (rather than
strongly log-concave everywhere) substantially increases the applicability of the result. For instance,
it allows heavy-tailed priors (e.g., Cauchy) as well as sparsity-inducing priors (e.g., Laplace/L1

regularization).

Proof of Theorem C.1. An equivalent condition for f to be strictly quasi-convex is that if f(v) >
f(w) then 〈∇f(w),v − w〉 > 0 [6, Theorem 21.14]. We obtain the result by considering some
θ such that θ /∈ BrN (θMAP). Since $ := log πD is strictly quasi-concave (by Assumption (C)), if
it has a global maximum it is unique (if it had two global maxima, this would immediately yield a
contradiction). By hypothesis θMAP is such a global maximum. Thus, $(θMAP) > $(θ), which
implies

〈∇$(θ),θMAP − θ〉 > 0. (C.1)

Now, fix θ′ such that θ′ /∈ BrN (θMAP). Let r′N := ‖θ′ − θMAP‖2 > rN and θ′′ := rN
r′N

θ′ +

r′N−rN
r′N

θMAP, the projection of θ′ onto BrN (θMAP). Applying the fundamental theorem of calculus
for line integrals on the linear path γ[θ′,θ′′] from θ′ to θ′′, parameterized as θ(t) = tθ′′+(1− t)θ′,
we have

LD(θ′′)− LD(θ′) =

∫
γ[θ′,θ′′]

∇$(θ) · dθ

=

∫ 1

0

∇$(θ(t)) · (θ′′ − θ′) dt

=
r′N − rN
r′N

∫ 1

0

∇$(θ(t)) · (θMAP − θ′) dt

=
r′N − rN
r′N

∫ 1

0

C(t)∇$(θ(t)) · (θMAP − θ(t))dt

> 0,

where C(t) :=
r′N

r′N−tr′N+trN
and the inequality follows from Eq. (C.1). Hence,

$(θ′) < $(θ′′) (C.2)

and

log π0(θ′) + L̃D(θ′) ≤ log π0(θ′) + LD(θ′) + εN by Assumption (D)

< log π0(θ′′) + LD(θ′′) + εN by Eq. (C.2)

≤ log π0(θMAP) + LD(θMAP) + εN −
%Nr

2
N

2
by Assumption (B)

= log π0(θMAP) + LD(θMAP)− εN by definition of rn
≤ log π0(θMAP) + L̃D(θMAP) by Assumption (A).

So θ′ is not a global optimum of log π̃D and hence θ̃MAP ∈ BRN (θMAP).

We present a generalization of Corollary 4.1. Let ‖T‖op := sup v∈Rd
‖v‖2=1

‖T[v]‖op denote the opera-

tor norm of the tensor T (with ‖T‖op = ‖T‖2 if T is a matrix). Recall the Lipschitz operator bound
property

‖∇h(x)‖op = sup
y 6=x

‖h(x)− h(y)‖op
‖x− y‖2

, (C.3)
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which holds for any sufficiently smooth h : Rd → (Rd)⊗k. Recall also that for compatible operators
T and T ′, ‖TT ′‖op ≤ ‖T‖op‖T ′‖op.

Corollary C.2. Assume the tensor defined by Tijk :=
∑N
n=1 xnixnjxnk satisfies ‖T‖op ≤ LN/d2.

For the logistic regression model, assume that ‖∇2LD(θMAP)−1‖2 ≤ cd/N and that ‖xn‖2 ≤ 1 for
all n = 1, . . . , N . Let φM be the order M Chebyshev approximation to φlogit on [−R,R] such that
Eq. (2) holds. Let π̃D(θ) denote the posterior approximation obtained by using φM with a strictly
quasi-log concave prior. Let

ε := min
r∈(1,π/R+

√
π2/R2+1 )

∣∣∣log
(

1 + e−
1
2R(r−r−1)i

)∣∣∣ (r − 1)−1r−M

and α∗ := 1 + b−
√

(b+ 1)2 − 1 , where b := εL2c3

54d . If R− ‖θMAP‖2 ≥ 2
√

cdε
α∗ , then

‖θMAP − θ̃MAP‖22 ≤
4cdε

α∗
≤ 4

27
c4L2ε2 + 8cdε

and Corollary 4.1 follows from the upper bound ‖T‖op ≤ N (using the assumption that ‖xn‖2 ≤ 1).

Proof. By Corollary B.4, for all s ∈ [−R,R], |φlogit(s) − φM (s)| ≤ εN . It is easy to verify
that maxs∈R |φ′′′logit(s)| = 1

6
√

3
and therefore ‖∇3LD(θ)‖op ≤ 1

6
√

3
‖T‖op ≤ LN

6
√

3 d2
. Since by

hypothesis ‖(∇2LD(θMAP))−1‖2 ≤ cd/N , LD(θMAP) is N/(cd)-strongly concave. We can write
∇(∇2LD)−1 = −(∇2LD)−1∇3LD(∇2LD)−1 if we treat the first (∇2LD)−1 as a matrix to matrix
operator, ∇3LD as a vector to matrix operator, and the second (∇2LD)−1 as a vector to vector
operator. Thus

‖∇(∇2LD)−1(θ)‖op ≤ ‖(∇2LD)−1(θ)‖2op‖∇3LD(θ)‖op ≤
c2d2

N2

LN

6
√

3 d2
=

c2L

6
√

3N
.

Using the triangle inequality and Eq. (C.3), we have

‖(∇2LD)−1(θ)‖op ≤ ‖(∇2LD)−1(θMAP)‖op + ‖(∇2LD)−1(θ)− (∇2LD)−1(θMAP)‖op
≤ ‖(∇2LD)−1(θMAP)‖op + ‖∇(∇2LD)−1(θ)‖op‖θ − θMAP‖2

≤ cd

N
+

c2L

6
√

3N
‖θ − θMAP‖2,

so LD(θ) is αN/(cd)-strongly concave for all θ ∈ B∆(θMAP) if

cd

N
+

c2L∆

6
√

3N
≤ cd

Nα
⇐⇒ ∆2 ≤ 108d2(1− α)2

L2c2α2
.

To apply Theorem C.1, we require that ∆2 ≥ 4εcd/α. Combining the two inequalities, we have

4εcd

α
≤ 108d2(1− α)2

L2c2α2
⇐⇒ εc3L2

27d
α ≤ (1− α)2 ⇐⇒ 0 ≤ α2 − (2 + b)α+ 1.

Solving the quadratic implies that the maximal viable α value is α∗ = 1 + b −
√

(b+ 1)2 − 1 ≥
1

2(b+1) .

Requiring R− ‖θMAP‖2 ≥ 2
√

cdε
α∗ together with the hypothesis that ‖xn‖ ≤ 1 ensures that we are

considering only inner products xn · θ ∈ [−R,R]. Since Eq. (2) holds by hypothesis, Assumption
(D) holds. The result now follows from Theorem C.1.

Proof sketch of Corollary 4.3. The proof is similar in spirit to Corollary C.2. The key differences
are that we apply Corollary B.6 and use the condition that a constant fraction of the data satisfies
|xn · θMAP − yn| ≤ b/2 to guarantee Θ(N)-strong log-convexity of − log πD near the MAP.

Recall that a centered random variable X is said to be σ2-subgaussian [1, Section 2.3] if for all
s ∈ R,

E[esX ] ≤ es
2σ2/2.
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Theorem C.3. Assume that

(E) − log π̃D(θ) is %̃-strongly convex,

(F) for all n = 1, . . . , N , ‖xn‖2 ≤ 1,

(G) there exist constants an, b, R, α ∈ R+ such that

‖∇θφ(〈ynxn,θ〉)−∇θφM (〈ynxn,θ〉)‖2 ≤ an + bmax(0, |〈ynxn,θ〉| −R), and

(H) − log πD(θ) is %-strongly convex with mean θ̄.

Let σ1, σ2 be the subgaussianity constants of, respectively, the random variables 〈ynxn, θ̄〉 − δ1
and ‖ynxn‖22 − δ2, where the randomness is over n ∼ Unif{1, . . . , N}. Let δ1 := E[〈ynxn, θ̄〉],
δ2 := E[‖ynxn‖22], and ā :=

∑N
n=1 an. Then there exists an explicit constant ε (equal to zero if

b = 0 and depending on R, %, σ1, σ2, δ1, and δ2 otherwise) such that

dW(πD, π̃D) ≤ %̃−1(ā+Nbε).

Remark (Value of ε). The definition of the constant ε is given in the proof of the theorem.
Remark (Assumptions). Our posterior approximation result primarily depends on the peakedness of
the approximate posterior (Assumption (E)) and the error of the approximate gradients (Assumption
(G)). If the gradients are poorly approximated then the error can be large while if the (approximate)
posterior is flat then even small likelihood errors could lead to large shifts in expected values of the
parameters and hence large Wasserstein error.
Remark (Verifying assumptions). In the corollaries we use Theorem B.3 to control the gradient
error in the case of Chebyshev polynomial approximations, which allows us to satisfy Assumption
(G). Whether Assumption (E) holds will depend on the choices of M , φ, and π0. For example, if
M = 2 and − log π0 is convex, then the assumption holds. This assumption could be relaxed to
only assume, e.g., a “bounded concavity” condition along with strong convexity in the tails. See
Eberle [2], Gorham et al. [3, Section 4], and Huggins and Zou [4, Appendix A] for full details. It is
possible that Assumption (H) could also be weakened. The key is to have some control of the tails
of πD. Both 〈ynxn, θ̄〉 and ‖ynxn‖22 are subgaussian since ynxn is bounded.

Proof of Theorem C.3. By Assumption (G), we have that

err(θ) := ‖∇ log πD(θ)−∇ log π̃D(θ)‖2

≤
N∑
n=1

‖∇θφ(〈ynxn,θ〉)−∇θφM (〈ynxn,θ〉)‖2

≤ ā+

N∑
n=1

bmax(0, |〈ynxn,θ〉| −R).

By Lemma C.4, the random variable W := 〈ynxn,θ〉 − δ1 is (λ, β)-subexponential. Hence for
t ≥ 0,

P(W ≥ t) ∨ P(W − δ ≤ −t) ≤ p̄(t, λ, β) := e
−
(
t2

2λ2
∧ t

2β

)
.

We can now bound πD(err):

πD(err) ≤ aN +

N∑
n=1

Eθ∼πD [bmax(0, |〈ynxn,θ〉| −R)].

= aN + bNEn∼Unif{1,...,N}Eθ∼πD [max(0, |〈ynxn,θ〉| −R))

= aN + bNE[max(0, |W + δ1| −R))]

= aN + bNE[(W + δ1 +R)1(W + δ1 ≤ −R) + (W + δ1 −R)1(W + δ1 ≥ R)].
(C.4)
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For the second term in the expectation, we have

E[(W + δ1 −R)1(W ≥ R− δ1)]

=

∫ ∞
R−δ1

(w + δ1 −R)p(dw)

=

∫ ∞
R−δ

P(W ≥ t) dt

≤ 0 ∨ (δ1 −R) +

∫ ∞
0∨(R−δ1)

p̄(t, λ, β)dt =: B(R, δ1, λ, β),

By symmetry, the first term in the expectation in Eq. (C.4) is bounded by B(R,−δ1, λ, β), so

πD(err) ≤ ā+Nb(B(R, δ1, λ, β) +B(R,−δ1, λ, β)).

Assumption (E) implies that π̃D satisfies Assumption 2.A of Huggins and Zou [4] with C = 1 and
ρ = e−%̃. By Theorem 2 of Gorham et al. [3], it is not necessary for the Lipschitz conditions in
Assumption 2.A of Huggins and Zou [4] to hold. Furthermore, it can easily be seen that 2.B(3) of
Huggins and Zou [4] is not necessary if both πD and π̃D are strongly convex. The remaining portions
of Assumption 2.B of Huggins and Zou [4] are satisfied, however. Thus we can apply Theorem 3.4
from Huggins and Zou [4], which yields

dW(πD, π̃D) ≤ %̃−1πD(err) ≤ %̃−1(ā+Nbε),

where ε := B(R, δ1, λ, β) +B(R,−δ1, λ, β).

Lemma C.4. Under the conditions of Theorem C.3, the random variable 〈ynxn,θ〉 − δ1 is (λ, β)-

subexponential, where λ2 := 4
(

1+δ2
% ∨ σ2

1

)
and β2 :=

2σ2
2

% .

Proof. Let zn = ynxn. For |s| ≤ 1/β, we have

E[es(〈zn,θ〉−δ1)] = E[E[es〈z,θ−θ̄〉 | zn = z]es(〈θ̄,zn〉−δ1)]

≤ E[es
2‖zn‖22/%

′
es(〈θ̄,zn〉−δ1)] Assumption (H)

≤ 0.5E[e2s2‖zn‖22/%
′
+ e2s(〈θ̄,zn〉−δ1)] AM-GM inequality

≤ 0.5[e4s4σ2
2/%

2+2s2δ2/% + e2s2σ2
1 ] subgaussianity

≤ 0.5[e2s2(1+δ2)/% + e2s2σ2
1 ] bound on |s|

≤ es
2λ2/2.

Corollary C.5. Let φ2 be the second-order Chebyshev approximation to φlogit on [−R,R] and let
π̃D(θ) = N(θ | θ̃MAP, Σ̃) denote the posterior approximation obtained by using φ2 with a Gaussian
prior π0(θ) = N(θ |θ0,Σ0). Let θ̄ :=

∫
θπD(dθ), let δ1 := N−1

∑N
n=1〈ynxn, θ̄〉, and let σ1

be the subgaussanity constant of the random variable 〈ynxn, θ̄〉 − δ1, where n ∼ Unif{1, . . . , N}.
Assume that |δ1| ≤ R, that ‖Σ̃‖2 ≤ cd/N , and that ‖xn‖2 ≤ 1 for all n = 1, . . . , N . Then with
σ2

0 := ‖Σ0‖2, we have

dW(πD, π̃D) ≤ cd
(
a(R) +

√
2 σ0e

8(2+σ2
1σ
−2
0 )−

√
2
R−|δ1|
σ0

)
,

where a(R) is bounded by

min
r∈(1,π/R+

√
π2/R2+1 )

∣∣∣log
(

1 + e−
1
2R(r−r−1)i

)∣∣∣ (r + 1)(9r2 + 7r + 2)

r2(r − 1)4
.

Proof. Assumption (E) holds by construction. The bound on

a(R) := sup
s∈[−R,R]

|φ′logit(s)− φ′2(s)|

8



follows immediately from Corollary B.4 in the case of M = 2. Furthermore, since φ′2(s) = b1,1 +
b1,2s, for |s| > R, the additional error is at most |b1,2|(|s| −R). In the case of a Chebyshev approx-
imation, it is easy to verify that |b1,2| ≤ 0.25 for all R (since as R → 0, b1,2 → φ′′logit(0) = −0.25

and−b1,2 is a decreasing function ofR). In short, |φ′logit(s)−φ′2(s)| ≤ a(R)+0.25 max(0, |s|−R)
and therefore, using Assumption (F), we have

‖∇θφ(〈ynxn,θ〉)−∇θφM (〈ynxn,θ〉)‖2
= ‖φ′(〈ynxn,θ〉)ynxn − φ′M (〈ynxn,θ〉)ynxn‖2
≤ a(R) + .25 max(0, |〈ynxn,θ〉| −R).

Hence Assumption (G) holds with an = a(R) and b = 0.25.

Now, clearly − log πD is σ−2
0 -strongly convex. Since ‖xn‖2 ≤ 1, conclude that δ2 ≤ 1 and σ2 ≤

1/2. To upper bound ε, note that

B(R, δ1, λ, β) +B(R,−δ1, λ, β) ≤ 2B(R, |δ1|, λ, β)

and that p̄(t, λ, β) ≤ e
λ2

4β2 e−t/β . Also, λ2 ≤ 4(2σ2
0 + σ2

1) and β2 = σ2
0/2. Using this upper bound

in B(R, |δ1|, λ, β) along with straightforward simplifications yields:

2B(R, |δ1a|, λ, β) ≤ 2βe
λ2

4β2 e−
R−|δ1|
β ≤

√
2 σ0e

8(2+σ2
1σ
−2
0 )e−

√
2
R−|δ1|
σ0 .

The result now follows from Theorem C.3 since − log π̃D is ‖Σ̃‖−1
2 -strongly convex and hence by

assumption N/(cd)-strongly convex.

Corollary C.6. Let fM (s) be the order-M Chebyshev approximation to et on the inter-
val [−R,R], and let π̃D(θ) denote the posterior approximation obtained by using the approximation
log p̃(yn |xn,θ) := ynxn · θ − fM (xn · θ)− log yn! with a log-concave prior on Θ = BR(0). If
infs∈[−R,R] f

′′
M (s) ≥ %̃ > 0 and ‖xn‖2 ≤ 1 for all n = 1, . . . , N , then with τ := ‖

∑N
n=1 xnx>n ‖2,

we have

dW(πD, π̃D) ≤ N

%̃τ
min
r>1

e
1
2R(r+r−1) (r + 1)[M2r(r + 1) +M(2r2 + r + 1) + r(r + 1)]

rM (r − 1)4
.

Note that infs∈[−R,R] f
′′
M (s) ≥ %̃ > 0 holds as long as M is even and sufficiently large.

Proof. Since by hypothesis infs∈[−R,R] f
′′
M (s) ≥ %̃ > 0, the prior is log-concave, and − log π̃D is

%̃τ -strongly convex (i.e., Assumption (E) holds). Using Assumption (F), we have

‖∇θ log p(yn |xn,θ)−∇θ log p̃(yn |xn,θ)‖2
= ‖e〈ynxn,θ〉)ynxn − f ′M (〈ynxn,θ〉)ynxn‖2
≤ sup
s∈[−R,R]

|e−s − f ′M (s)| =: a(R).

which is bounded according to Corollary B.5. Hence Assumption (G) holds with an = a(R) and
b = 0. The result now follows immediately from Theorem C.3.
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