Supplementary Material
Accelerated consensus via Min-Sum Splitting

We present, in order, the proofs of Proposition[T] Proposition [2] and Theorem T}

Proof of Proposition[l] First of all, note that the optimization problem can be casted in the
unconstrained formulation of problem (I)) upon choosing the hard barrier function: ¢y, (2, 2’) := 0
if 2 = 2" and ¢, (2, 2") := 0o otherwise. With this choice, the minimization inside the definition of
the message updates in Algon’thmlﬂadmits the trivial solution 15, = (6 — 1)§3,, + &5, Hence,
Algorithmyields the following update for the messages [1° = (f15,,) (w,v)ee:
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In vector form, this update can be written as i = k(8) + K (5,T)*~1, where k(0)wy = buw +

(1 — 1/8)¢.. From the linearity of the message update it follows that if ¢, (z) = 2% — b,z and if

we choose the initial messages to be quadratic functions, then the messages at any time s > 0 will
remain quadratic. Namely, if we adopt the parametrization (10, (z) = 1 R0, 2% — 70, 2, then we have
8, (2) = 3 RG 2% — 7% 2 with the linear and quadratic parameters updated, respectively, according
to k¥ = (2 1/8)1+K(6,T)R** and #* = h(8)+ K (5, T)#*~1. The belief function reads y‘,(z) =
Pu(2)+6 Zwe/\/(v) Lol (2) = %[1 +9 Zwe./\/'(v) vaRZJu]ZQ —[by+9 Zwe./\/(v) Luuiiyy]2. As
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by assumption 1+0 37, nr(u) Cuo Rl > 0,28 = argmin,ecg pf,(2) =

Proof of Proposztzon@] Recall from Algorithm [I] the definition of the belief function at time
s, 1e., p = ¢, + 5211}6/\/(”) Twofil,, and let u° € RY be the vector whose v-th com-

ponent is pf. Let x* € RY be the vector whose v-th component is given by the function
Xp = Pu — 0D e N(w) Dowhly,,- Let ¢ € RY be the vector whose v-th component is the func-

tion ¢,. By taking the summations of update (I)) over w € AN (v) and v € N (w), respectively,
and by performing the change of variables as prescribed by the definitions of ©® and x° (using
that I' is symmetric), we get that the functions p}’s and x;’s evolve according to the linear sys-
tem (p*, x*)T = K(6,T)(p*~1, x*~1)T, where the matrix K (9,T") is defined as in (8. From the
linearity of the message updates it follows that if we choose the initial messages to be quadratic
functions, then the messages at any time s > 0 will remain quadratic. Namely, if we adopt the
parametrization 19 (z) = 2 R%2% — 0z and X(2) = Q%22 — ¢0z, then 5 (z) = 1 R52* — r5z and
Xi(z) = %Q;‘j 2% — ¢z, where the linear and quadratic parameters are updated according to
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If RY > 0 the final estimates read !, := arg min,cg p,(z) = rf /RE. O

Proof of Theorem([I) We analyze Algorithm [3]with initial conditions R = Q° = 1 and r* = ¢° = b.
By Proposition[2] the output of this algorithm coincides with the output of Algorithm [2]with initial
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conditions R® = 70 = 0. As ' = 4W with W1 = 1, we have diag(I'1) = ~ydiag(1) = ~/, and the
matrix K (5,T) in (3] reads as the matrix K in (6). By the results in [15] (see also [13]), we know
that for the choice of v given in the statement of the theorem the following holds:

1. The matrix K has an eigenvalue 1 and all the remaining 2n — 1 eigenvalues have magnitude
strictly less than one.

2. The second largest eigenvalue in magnitude of K is given by the quantity px defined in the
statement of the theorem.

It can be verified that

(1L,)"K =(1,1)7, K( (1 —17)1 ) - ( (1 —17)1 )

By Lemma 3 in [24], which is a general version of Theorem 1 in [44], we have lim;_,o, W = W,
where W is defined as in (). By taking the limit for ¢ that goes to infinity on the two linear systems
that define the message updates in Algorithm [3|we get, respectively,

(F)- (7). (F)-=(5)

which yield 7°° = bR, ¢> = (1 —7)r>® = bQ>, and R™ = 5321, Q> = (1 — 7)R*. Hence,
we have r2°/R%° = b. The error decomposition
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yields, using that B!, > 1 and b < 1, by the triangle inequality for the /3 norm || - ||,
o~ B < "~ + 1B~ R < 2ma{ e — |, R~ B}

We first bound the term for the quadratic parameters. As
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from which it follows that
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with |1 — R®[3 = J1 - Q%3 = glpn we get [R — R¥| < [(K —

K>)| 2= \/7 Proceeding analogously for the linear parameters, we find ||t — r>°|| < ||[(K —
K°) H\/HTO — 23 + [lg° — ¢ |3. We have ||r® —r°°|| = [|b—bR>|| = [|b—b1+b1—bR>| <
Ib— 51|| +|b][|1 — R*>|| so that ||r0 — r°|| < /n+ ﬁ\/ﬁ = ﬁ\/ﬁ In the same way we get
lg® — gl = [|b— Q|| < ﬁ\/ﬁ All together, ||r* — || < ||(K—K°°)t\|ﬁ\/% Finally,
as v < 2 we obtain [[2* — b1|| < 52 v/2n| (K — K>)*|.

we have

Given that

It can be checked that for z € [0, 1] the following inequalities hold

1—J1-(1-22
1-22< (12 <1-2
1+/1-(1_22)2

Upon choosing py = 1 — 22, we recover the bounds stated at the end of Theorem O



