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Proofs

Proof of Theorem 1
The posterior belief process (ji¢)¢cr, is given by
we=P(O =1F)
LP(O = 1]o(X(P])),S:)
= sy - PO = o (X(P)),t 2 7) + Lipry - PO = 1o (X (PF)),t < 7)
E1pm + Lpery PO = 1o (X(PF)),t < 7), (1)

where we have used the fact that F; = o(X (PJ)) V Sy in (a), and the fact that the event {t > 7}

is F;-measurable in (b), and hence P(© = 1|o(X (P[)),t > 7) = 1. Therefore, we can write the
posterior belief process (1 )cr, in the following form

|1, fort > 7
=19 PO =1|o(X(PF)),t <7), for0<t<r.

Now we focus on computing P(© = 1|o(X(FP[)),t < 7). Note that using Bayes’ rule, we have
that

PO =1,0(X(PF)),t<T)
P(o(X(PF)),t <)
B PO =1,0(X(PF)),t <T)
B Zee{o,l} P(© =0,0(X(P])),t <)
B dP(o(X(P[)),t < 7|© =1)P(© =1)
B Zee{o,l} dP(o(X(P7)),t < 7|0 =0)P(O =0)
dP(o(X(P[)),t < 7|© =1)P(©

PO =1lo(X(P)),t<T)=

1)

pdP(o(X(PF)),t<T7|©®=1)

dP(o (X (PF)),t < /0 = 0)P(© = 0) + dIE”(g(X(Pt”);t <76 =1)P©

(1—=p)dP(o(X(P)),t <7|© =0)+pdP(c(X(P)),t<T7|© =1)

B 1—p dP(o(
- (1 + CdP(o(X(PF)),t < 7|© =1)

(
P\
Pf)) , 2)
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X(PF),t< 7|0 = 0))1
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dBo (P)

where the existence of the Radon-Nykodim derivative 3% () follows from the fact that
1
P,(P[) << P1(Pf). Hence, we have that
{ 1, fort > 1
e = 1p db(Pr)\ "
(1+ = rl(}:})) , for0<t<r.
dP,(P)

Now we focus on evaluating . Using a further application of Bayes’ rule we have that

dPy (PF)

dBo(Pr)\ | dP(o(X(PF)).t < 7|0 = 1)

dPy (PF) - dP(o(X(PF)),t < 1|0 =0)
P(t < X (PF),0 = 1) - dB(X(PF)|© = 1)
= Pt < 7| X(PF),0 = 0) - dB(X(P7)|6 = 0)
_dP(X(P[)|©=1)
o dIP(X(Pfﬂ@ = 0)

where we have used the fact that P(¢ < 7| X (P["),© = 0) = 1. For any partition P/, the likelihood

% is an elementary predictable process that takes an initial value that is equal to

the prior p (when no samples are initially observed), and then takes constant values of %

in the interval between any two samples in the partition (only when a new sample is observed, the
likelihood is updated). Hence, we have that

'P(t<T|X(Pt7T)7®:1)7 3)

ratio

i N(P)-1 x
dP(X(P)|© = 1) bl Y PX(PF)[© =1) 1 pr (k1) <t<PF(R)}-
dP(X(PF)|© = 0) B P(X(PF)|©=0) Te ==

k=1

The process is predictable since the likelihood remains constant as long as no new samples are

= ey —1
observed. Modulated by the survival probability, (%) can be written as
N(P[)-1
PX (PO =1)
Pi(r>tl©@=1)1 x P(r > tlo(X(P[),0=1) 1;px = .
p (T | ) {t<P; (k)}+ ];1 P(X(Ptﬂ')le — 0) (T |U( ( t )7 ) {PF(k)<t<P[(k+1)}

dB,(P7)\ T
dﬂal (Ptﬂ-) )

will have jumps only at the time instances in the partition P;* and at the stopping time 7, i.e. a total
of N(Pf A.) + 1{r<c) jumps at the time indexes in P/, U {7}. O

Under usual regularity conditions on P(7 > ¢|o(X (P),© = 1) it is easy to see that (

Proof of Corollary 1
Recall that from Theorem 1, we know that the posterior belief process can be written as
Mt = 1{7527’} + 1{t<T}P(@ = 1|-/—:.t)

Hence, the expected posterior belief at time ¢ + At given the information in the filtration F, can be
written as

E {Mt-&-At ‘ﬁt] =K [1{t+At27—} + 1rae<nyP(O© = 1Fpsat) ‘]}t}
j:t} +E [1{t+At<r}P(@ = 1|Fiya1)

=PO=1,t+At>7|F)+Pt+At < 7|F)-E [P(@ = 1|Firar)

=E [1{t+At2‘r} -7:}}
‘/.:.t\/{t+At<T}} ,

)

and hence E [/itJrAt

]:'t} can be written as

P(t+At > 7|F;, © = 1) P(O = 1|F)+P(t+At < 7|F;)E []P’(@ =1|Friar)

.7:—t\/{t+At<T}:|,



which is equivalent to

ﬁt] = (1—Si(At) - pue + P(t + At < 7|F) - E [IP(@ = 1Fprae) [Fe vV {t+ At <7}
2

E [,UtJrAt

Furthermore, the term P(t + At < T\]:'t) in the expression above can be expressed as

P(t+ At < 7|F) = P(t + At < 7|F;,© = 1) - P(© = 1|F,) + P(t + At < 7|F;,© = 0) - P(© = 0|.F)
(3)
= Sy(At) - pu + (1= pur).

Therefore, E {,uH_ At

.7:}} can be written as

Fvi{t+ At <7},
“)

Fivi{t+At< T}:| in order to find

]:"t] = (1= S(A) - g + (L — py + Se(AL) - py) - E {P(@ = 1|-7:—t+At)

E [Nt+At

Now it remains to evaluate the term E [IE”(@ = 1|]:'t+m)

E {,umm f}]. We first note that

E {P(G = 1|]}t+At)

Fov{t+At< T}} —=E [IP’(G) = 1o (X7 (PT )t + At < 7)

7.
We start evaluating the above by first looking at the term P(© = 1|o(X7 (P, o)), t + At < 7).

Using Bayes’ rule, we have that

P(O© =1, X7 (P] A,), t + At < 7)
P(XT (Pt +At<T) 7

PO = 1XT(Phal),t + At <7) = (5)

where P(© = 1, X7 (P[, A,),t + At < ) can be expanded using successive applications of Bayes’
rule as
PO=1X"(P[),t<7)-P(X"(P),t<7)-Pt+At<7|©®=1,X"(P]),t<T)
AP(XT(t+ AY)|© =1, X7(P), t+ At < 1),
which is equivalent to

P(© = 1, XT(PFp) t+ At < 7) = iy - Sy(At) - P(X™(PF),t < 7) - dP(XT(t + At)|© = 1, XT(PF),t + At < 7)
(6)

Similarly, it is easy to see that

PO = 0, X7 (Pl ac)t + A < 7) = (1 — ) - BXT(P[),t < 7) - dB(X7(t + AD)|© = 0, X7 (P]), t + At < 7),
@)

where again, we have used the fact that P(t + At < 7|0 = 0, X7 (P]),t < 7) = 1. Now we
re-formulate (8) using Bayes rule to arrive at the following

PO =1,X"(P[ A,),t+ At <7)
P(© = 1| X" (P, t+ At = —
(6 X7 (Plac),t + At <T) S ocqoay P(O =0, X7 (P 5,) t+ AL < 7)’

then using (B) and (1), (B) can be further reduced to P(© = 1|X7 (P A,),t + At < 7) =
pe - Se(AE) - dP(XT(t+ A)|© =1, X7 (PF),t + At < 1)

®)

fie - Se(AL) - dP(X7(t+ A6)|O = 1, X7 (PF),t + At < 7) + (1 — pug) - dP(X7(t + AL)O = 0, X7 (P ).t + At < 7)°
©)

Finally, we use the expression in @ to evaluate the term
E {IP’(@ = 1o (X7(PFa,) t+ At < 7) ‘ft] as follows

E [B(© = o(X7(Pa0)-t + At < 7) | ] =

3



> / = 1XT(PFpy),t + At < 7) - dP(X7(t + At)|© = 0, X (PF),t + At < 1),
0e{0,1}

which, using (9), can be written as

5 / - Sy (AL) - dP(XT(t+ AB|O = 1, XT(PF),t + At < 7) - dP(X7(t + At)|© = 0, XT(PF),t + At < 7)
AT sf At ) dP(X7(t+ AD)|O = 1, X7(PF), ¢t + At < 1)+ (1 — puz) - dP(X7 (¢ + AL)|O© = 0, X7(PF), £ + At

Since
> dP(XT(t+ At)O = 0,X7(P]),t + At < 7) =
0e{0,1}
pie - Sp(A) - dP(XT (t+A1)]|0 = 1, XT(PF), t+At < 7)+(1—py)-dP(XT (t4+A1)|© = 0, X7 (PF), t+At < 7),

then the integral above reduces to
/ut - Se(AL) - dP(XT (t+A)|© = 0, X7 (P, t+At < T) = iy - St(At)-/ dP(XT(t+A)|© = 0, X" (P["), t+At < 1),

and since the conditional density integrates to 1, i.e. [ dP(X7(t + At)|© = 0, X7 (P]),t + At <
7) = 1, then we have that

E [P(@ = 1o(X"(Pfoay)) b+ AL < 7) ‘f}} — 1t - Sy(A).

By substituting the above in (B), we arrive at

B = (0= SuA0) -+ (1= pu + Su(A) - ) - E [P(O = 1| Frya0) | Fo v {t + At < 7}
= (1= Su(At) - pu + (1 — pu + Se(AL) - ) - e - Si(At)
= pue — p Se(At)(1 — Sy(At)). (10)
Since S;(At) > 0,Vt, At € R, then the term p2S;(At)(1 — Sy (At)) > 0, and it follows that

E {MHAt

E |:/’Lt+At ]:;ti| < Mt7Vt7At € R+7

and hence the posterior belief process (/4¢)¢cr, is a supermartingale with respect to the filtration Fi.
O

Proof of Theorem 2

Assume a discrete-time version of the problem, where the decision (éf ,07) are made in time steps
{0, At, 2At, . . .}. Define a value function V : N x [0, 1] — R as a map from the current history to

the risk of the best policy given the history F; as follows:
V(F) 2 inf ,Tﬂzt,P};DPZ’)]E {E(W;@) ‘]}t] )

and define the action-value function as the value function achieved by taking actions (ét, d¢), andthen

following the best policy thereafter. That is, when the decision is to continue (i.e. 6; = (), we have
that

Q(Fs; (B =0,6,=1)) 2 infig 7 5 P DPf,tEPq’Eﬁ)E [[(W; o) ’j—t] ’
and ) )
QUFss (B = 0,6, = 0)) 20l 1. oy pe pr s pr B [z(n; 0) ‘]—‘t] .

Based on Bellmans optimality principle [24], we know that the optimal policy has to satisfy the
following in every time step, i.e.

527* = arginféte{o,l}Q(ft; (ét =0,6)).

Now let us look at the optimal partition on P{E:* on the discrete time steps {0, At, 2At, ...}, and look
at an arbitrary realization for P’T; . Then we pick two consecutive time indexes in {0, At, 2At, .. .},



say n1 At and noAt, with ny < no, for which 6Z{Im = 52;& =1,and 675, = 0,¥n; < n < na.
Since the policy is optimal, we know that

arginfs, are 01} Q(Fnar: (Onar = 0,0,a0)) = 0,01 < n < ny,
and

arginfﬁnzAtE{O,l}Q(fngAt; (0112At = @, 5n2At)) =1,
which is equivalent to

arg inf(SnAte{O,l}E [5(73 0) ’ant} =0,Vn1 <n < ng,

and B
arginfs, ., 0,11 E [é(ﬂ'; O) ‘f71,2At:| =1,

which can be further decomposed into

arginfs aieqo,1}E [“77; 0) ‘U(X(Pﬂlm)) v SnAt:| =0,Vn1 <n <ng,

n

and
arginf;,, »,c (0.0 E [0 0) [o(X (P ) V Sase | = 1,

since both functions E [¢(7;©) |o(X (P 5,)) V Snat| and E [6(m;0) |o(X(PF A,)) V Snoat ]
are .7:'n1 At-measurable, then the decision-maker can compute the optimal decision sequence

{0nac}nZ,, 1 at time nyAt. Since this holds for an arbitrary discretization step At, including
an arbitrarily small step At — 0, it follows that the sensing actions construct a predictable point

process under the optimal policy, which concludes the Theorem. (]

Proof of Theorem 3

We start by proving that the optimal decision rule is 1 {u oy } Fix an optimal stopping time
t=Co+Cy

T« and an optimal partition P”; . The optimal decision rule is given by

0 = arginf, E [((m;0) ]P;; T |

which is equivalent to

which by smoothing can be written as

and hence we have that

O = arg infy E [E [(C’l 1{(97,:0,9:1} +C, 1{9}:1,0:0} +Cq T ) Ly, <1} Fr.. ] +
E |:Cr ]-{T,r* >7} ]:-Tﬂ*:| +E {CSN(P;;* /\’T') ﬁTw* i|:| :
Since the terms E [C’T lir .50} fTﬂ* }, E [Od Tr Ly <1} j:T,r* } and

E |CsN(PE . 5r)

™

-7:—T,,*] are the information and delay costs, which do not depend on the

choice of éﬂ, we have that

O = argint; E {IE {(C1 1. —0.0=1) + Colis 1 0m0)) Line <)

ﬁTﬂ.* i|i| )
which can be reduced to the following

0.~ = arg inf; E [E [(01 1{@,:0,0:1} +C, 1{@7;179:0}) lir . <ny

Fr,. ||

fm} +Co - E {1{@:1,9:0} “Lr<ny

= arginféWIE |:Ol - E [1{9":079:1} . 1{T7r* <r} ]:—T,r* :|:|

= arginféwE [Cl - E [l{éW:O} “Lyg=1y - Y1 <ry

O = arginf; E [E [(c1 105, 2001} + Colgs 1) + CaTe) Lro <oy + Cr Lmnmy + CN(PEL. )

Fr.|+Co Bl - 1{9:0}(1~)1{T,,*g7}

O = arg inféwE [(Cl 1{@7(:079:1} +C, 1{9,,:179:0} +CyTy+) Yr <y +Cr L ooy + CSN(P%T:* /\‘r)} )

Fr,.|]-



Since 1 {0.=0} is an ﬁTw* -measurable function, we have that

HW* :arginfé"IE Cl -E [1{9*7r=0} : 1{9:1} : l{Tw*ST}

ﬁTﬂ*} +C - E [l{e‘ﬁl} " Lio=0p + Yzpu<ry fTw*H

Fr. ]|

= arginf; B C1- 175 o) -E [1{9:1} " Tpe<ny fT«*} tCo1gy 1y E [1{9:0} - 1pe<ny

=arginfy E|C1-1r5 _v - (L= pr.) +Co-1g _py 'NTW*}

= arginf; E |Cy - L6, -0} 1—=pr.)+Co- Leg,—1) 'MT,T*] ; (2)
which is simply minimized by setting 0, = 1 whenever Ci(1 — pr,.) > Copr,., hence we have
that 0, = 1{}.

Now we resume by first defining the value and the action-value functions, and find the policy char-
acteristics under Bellman optimality conditions.

Define a value function V : N x [0, 1] — R as a map from the current history to the risk of the best
policy given the history F; as follows:
V(F) & inf(é,”TﬂzuP}'ﬂDP;’)]E {é(ﬂ'; 0) ‘.7:—,5} ,

and define the action-value function as the value function achieved by taking actions (ét, d¢), and
then following the best policy thereafter, i.e.

Q(]}ﬁ (6%, 0¢)) £ inf(émTﬂZt-t,-éth’:ﬂ3Pg"u{t+5t})E [6(73 0) ‘ﬁt:| .
Bellman optimality condition requires that at any time step ¢, we have

(OF .67 ) = arginfg, 5\ 0.1y, Q(Fts (0, 6¢)).
Recall from the proof of Corollary 1 that the belief process follows the following dynamics

Mt+At =
pe - Se(At) - dP(X7(t+ A)|© =1, X7 (Pf),t+ At < 1)
pe - Se(AL) - dP(XT(t+ AD)|O =1, X7(PF),t + At < 7) + (1 — pz) - dP(X7(t + At)|© = 0, X7 (PF), t + At < 7)’
which depends only on p; and the most recent sample realization in the partition P/, which we
denote as X7 (P ). Hence, the tuple (¢, ¢, X7 (PJ7)) is a Markov process since X 7 (¢) is Markovian,

and the belief process follows the above Markovian dynamics, and time is deterministic. Since the
survival probability depends only on X7 (P/"), we can write the action-value function as

Q(Fs; (01, 8,) £ inf(é,r,T,th+6t,Pq’EﬂDPt"'U{t—&-ét})E [(m; ©) e, XT(PT)],

and consequently, the optimal actions at every time step ¢ following Bellman conditions are given
by

(67 67) = arginfig, 5y c 0.1y m, 1060, 7, 5045,.p, > Proqees B [0 ©) |ue, XT(P)].

Hence, at any time step ¢, we only need to know the tuple (¢, s, X" (P[)) in order to compute
the optimal action-value function, and hence, on the path to the optimal policy, knowing only

(t, e, X7 (PF)) suffice to generate the random process (Tﬂ*,P}’:* ,0.+). Hence, (t, s, X7 (PF))
is a Markov sufficient statistic for (T, P}r; 0pe).
Note that our proof for the optimal decision rule (- implies that the action-value function for
stopping at time ¢, i.e. 0F # () is

Q(t, e, X7(PF); (0r # 0,61)) = Coptr A C1(1 = 1) + Cat + C.N(PF),

whereas the continuation cost at any time step t is given by finding the optimal rendezvous time
infs,er, Q(t, e, X7 (PF)); (6, = 0,6;)). Therefore, the optimal action-value at any time step ¢ is
given by

Q*(t, Ht;XT(PtW); (éf # 0, 5t)) = miﬂ{co,ut/\ol(l—,ut)—FCd t+CsN(Pt”),inf5t€R+Q(t, Ht,XT(PtW); (éf =0, 5t))}-



The equation above determines the stopping and continuation conditions, and using the monotonicity
of the survival function in both time ¢ and the time series realizations X7 (P/"), we can show the
monotonicity of the continuation set C (¢, X7 (P/")) using the same arguments of Theorem 1 in [15].

The optimal rendezvous can be found by optimizing the time interval such that the cost of stopping
in the next time step is minimized. Hence, we have that

51757* = inf(StERJrQ(ta Mt XT(P;T); (ét = 03 5t))
= infs,cp, E [(Coﬂt—i-ét ANCL(1 = piys,) + Cat +0¢) Lipyseary + Crlpppse>ry + CsN(PT) +1 ‘]}t}

. C
= infs,er, ((C1 — Co)P(pepnr > m——) + C1 ) Se(6:) + Cr(1 = 8:(81)), 3)
C,+C4

where P(u A > #lcl) can be written as P(1;(At) > % — pue), where I (AL) = peyar — e
is the information gain. O



