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Proofs

Proof of Theorem 1

The posterior belief process (µt)t∈R+ is given by

µt = P(Θ = 1|F̃t)
(a)
= P(Θ = 1|σ(X(Pπ

t )),St)

= 1{t≥τ} · P(Θ = 1|σ(X(Pπ
t )), t ≥ τ) + 1{t<τ} · P(Θ = 1|σ(X(Pπ

t )), t < τ)

(b)
= 1{t≥τ} + 1{t<τ} · P(Θ = 1|σ(X(Pπ

t )), t < τ), (1)

where we have used the fact that F̃t = σ(X(Pπ
t )) ∨ St in (a), and the fact that the event {t ≥ τ}

is F̃t-measurable in (b), and hence P(Θ = 1|σ(X(Pπ
t )), t ≥ τ) = 1. Therefore, we can write the

posterior belief process (µt)t∈R+ in the following form

µt =

{
1, for t ≥ τ
P(Θ = 1|σ(X(Pπ

t )), t < τ), for 0 ≤ t < τ.

Now we focus on computing P(Θ = 1|σ(X(Pπ
t )), t < τ). Note that using Bayes’ rule, we have

that

P(Θ = 1|σ(X(Pπ
t )), t < τ) =

P(Θ = 1, σ(X(Pπ
t )), t < τ)

P(σ(X(Pπ
t )), t < τ)

=
P(Θ = 1, σ(X(Pπ

t )), t < τ)∑
θ∈{0,1} P(Θ = θ, σ(X(Pπ

t )), t < τ)

=
dP(σ(X(Pπ

t )), t < τ |Θ = 1)P(Θ = 1)∑
θ∈{0,1} dP(σ(X(Pπ

t )), t < τ |Θ = θ)P(Θ = θ)

=
dP(σ(X(Pπ

t )), t < τ |Θ = 1)P(Θ = 1)

dP(σ(X(Pπ
t )), t < τ |Θ = 0)P(Θ = 0) + dP(σ(X(Pπ

t )), t < τ |Θ = 1)P(Θ = 1)

=
p dP(σ(X(Pπ

t )), t < τ |Θ = 1)

(1− p) dP(σ(X(Pπ
t )), t < τ |Θ = 0) + p dP(σ(X(Pπ

t )), t < τ |Θ = 1)

=

(
1 +

1− p

p
· dP(σ(X(Pπ

t )), t < τ |Θ = 0)

dP(σ(X(Pπ
t )), t < τ |Θ = 1)

)−1

=

(
1 +

1− p

p
· dP̃o(P

π
t )

dP̃1(Pπ
t )

)−1

, (2)
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where the existence of the Radon-Nykodim derivative dP̃o(P
π
t )

dP̃1(Pπ
t )

follows from the fact that

P̃o(P
π
t ) << P̃1(P

π
t ). Hence, we have that

µt =

{
1, for t ≥ τ(
1 + 1−p

p · dP̃o(P
π
t )

dP̃1(Pπ
t )

)−1

, for 0 ≤ t < τ.

Now we focus on evaluating dP̃o(P
π
t )

dP̃1(Pπ
t )

. Using a further application of Bayes’ rule we have that(
dP̃o(P

π
t )

dP̃1(Pπ
t )

)−1

=
dP(σ(X(Pπ

t )), t < τ |Θ = 1)

dP(σ(X(Pπ
t )), t < τ |Θ = 0)

=
P(t < τ |X(Pπ

t ),Θ = 1) · dP(X(Pπ
t )|Θ = 1)

P(t < τ |X(Pπ
t ),Θ = 0) · dP(X(Pπ

t )|Θ = 0)

=
dP(X(Pπ

t )|Θ = 1)

dP(X(Pπ
t )|Θ = 0)

· P(t < τ |X(Pπ
t ),Θ = 1), (3)

where we have used the fact that P(t < τ |X(Pπ
t ),Θ = 0) = 1. For any partition Pπ

t , the likelihood
ratio dP(X(Pπ

t )|Θ=1)
dP(X(Pπ

t )|Θ=0) is an elementary predictable process that takes an initial value that is equal to

the prior p (when no samples are initially observed), and then takes constant values of dP(X(Pπ
t )|Θ=1)

dP(X(Pπ
t )|Θ=0)

in the interval between any two samples in the partition (only when a new sample is observed, the
likelihood is updated). Hence, we have that

dP(X(Pπ
t )|Θ = 1)

dP(X(Pπ
t )|Θ = 0)

= p1{t=0} +

N(Pπ
t )−1∑

k=1

P(X(Pπ
t )|Θ = 1)

P(X(Pπ
t )|Θ = 0)

1{Pπ
t (k−1)≤t≤Pπ

t (k)}.

The process is predictable since the likelihood remains constant as long as no new samples are

observed. Modulated by the survival probability,
(

dP̃o(P
π
t )

dP̃1(Pπ
t )

)−1

can be written as

pP(τ > t|Θ = 1)1{t<Pπ
t (k)}+

N(Pπ
t )−1∑

k=1

P(X(Pπ
t )|Θ = 1)

P(X(Pπ
t )|Θ = 0)

P(τ > t|σ(X(Pπ
t ),Θ = 1) 1{Pπ

t (k)≤t≤Pπ
t (k+1)}.

Under usual regularity conditions on P(τ > t|σ(X(Pπ
t ),Θ = 1) it is easy to see that

(
dP̃o(P

π
t )

dP̃1(Pπ
t )

)−1

will have jumps only at the time instances in the partition Pπ
t and at the stopping time τ , i.e. a total

of N(Pπ
Tπ∧τ ) + 1{τ<∞} jumps at the time indexes in Pπ

t∧τ ∪ {τ}. �

Proof of Corollary 1

Recall that from Theorem 1, we know that the posterior belief process can be written as

µt = 1{t≥τ} + 1{t<τ}P(Θ = 1|F̃t).

Hence, the expected posterior belief at time t+∆t given the information in the filtration F̃t can be
written as

E
[
µt+∆t

∣∣∣F̃t

]
= E

[
1{t+∆t≥τ} + 1{t+∆t<τ}P(Θ = 1|F̃t+∆t)

∣∣∣F̃t

]
= E

[
1{t+∆t≥τ}

∣∣∣F̃t

]
+ E

[
1{t+∆t<τ}P(Θ = 1|F̃t+∆t)

∣∣∣F̃t

]
= P(Θ = 1, t+∆t ≥ τ |F̃t) + P(t+∆t < τ |F̃t) · E

[
P(Θ = 1|F̃t+∆t)

∣∣∣F̃t ∨ {t+∆t < τ}
]
,

(1)

and hence E
[
µt+∆t

∣∣∣F̃t

]
can be written as

P(t+∆t ≥ τ |F̃t,Θ = 1)·P(Θ = 1|F̃t)+P(t+∆t < τ |F̃t)·E
[
P(Θ = 1|F̃t+∆t)

∣∣∣F̃t ∨ {t+∆t < τ}
]
,
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which is equivalent to

E
[
µt+∆t

∣∣∣F̃t

]
= (1− St(∆t)) · µt + P(t+∆t < τ |F̃t) · E

[
P(Θ = 1|F̃t+∆t)

∣∣∣F̃t ∨ {t+∆t < τ}
]
.

(2)

Furthermore, the term P(t+∆t < τ |F̃t) in the expression above can be expressed as

P(t+∆t < τ |F̃t) = P(t+∆t < τ |F̃t,Θ = 1) · P(Θ = 1|F̃t) + P(t+∆t < τ |F̃t,Θ = 0) · P(Θ = 0|F̃t)
(3)

= St(∆t) · µt + (1− µt).

Therefore, E
[
µt+∆t

∣∣∣F̃t

]
can be written as

E
[
µt+∆t

∣∣∣F̃t

]
= (1− St(∆t)) · µt + (1− µt + St(∆t) · µt) · E

[
P(Θ = 1|F̃t+∆t)

∣∣∣F̃t ∨ {t+∆t < τ}
]
.

(4)

Now it remains to evaluate the term E
[
P(Θ = 1|F̃t+∆t)

∣∣∣F̃t ∨ {t+∆t < τ}
]

in order to find

E
[
µt+∆t

∣∣∣F̃t

]
. We first note that

E
[
P(Θ = 1|F̃t+∆t)

∣∣∣F̃t ∨ {t+∆t < τ}
]
= E

[
P(Θ = 1|σ(Xτ (Pπ

t+∆t)), t+∆t < τ)
∣∣∣F̃t

]
.

We start evaluating the above by first looking at the term P(Θ = 1|σ(Xτ (Pπ
t+∆t)), t + ∆t < τ).

Using Bayes’ rule, we have that

P(Θ = 1|Xτ (Pπ
t+∆t), t+∆t < τ) =

P(Θ = 1, Xτ (Pπ
t+∆t), t+∆t < τ)

P(Xτ (Pπ
t+∆t), t+∆t < τ)

, (5)

where P(Θ = 1, Xτ (Pπ
t+∆t), t+∆t < τ) can be expanded using successive applications of Bayes’

rule as

P(Θ = 1|Xτ (Pπ
t ), t < τ) · P(Xτ (Pπ

t ), t < τ) · P(t+∆t < τ |Θ = 1, Xτ (Pπ
t ), t < τ)

·dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ),

which is equivalent to

P(Θ = 1, Xτ (Pπ
t+∆t), t+∆t < τ) = µt · St(∆t) · P(Xτ (Pπ

t ), t < τ) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ)

(6)

Similarly, it is easy to see that

P(Θ = 0, Xτ (Pπ
t+∆t), t+∆t < τ) = (1− µt) · P(Xτ (Pπ

t ), t < τ) · dP(Xτ (t+∆t)|Θ = 0, Xτ (Pπ
t ), t+∆t < τ),

(7)

where again, we have used the fact that P(t + ∆t < τ |Θ = 0, Xτ (Pπ
t ), t < τ) = 1. Now we

re-formulate (5) using Bayes rule to arrive at the following

P(Θ = 1|Xτ (Pπ
t+∆t), t+∆t < τ) =

P(Θ = 1, Xτ (Pπ
t+∆t), t+∆t < τ)∑

θ∈{0,1} P(Θ = θ,Xτ (Pπ
t+∆t), t+∆t < τ)

, (8)

then using (6) and (7), (8) can be further reduced to P(Θ = 1|Xτ (Pπ
t+∆t), t+∆t < τ) =

µt · St(∆t) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ)

µt · St(∆t) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ) + (1− µt) · dP(Xτ (t+∆t)|Θ = 0, Xτ (Pπ

t ), t+∆t < τ)
.

(9)

Finally, we use the expression in (9) to evaluate the term
E
[
P(Θ = 1|σ(Xτ (Pπ

t+∆t)), t+∆t < τ)
∣∣∣F̃t

]
as follows

E
[
P(Θ = 1|σ(Xτ (Pπ

t+∆t)), t+∆t < τ)
∣∣∣F̃t

]
=
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∑
θ∈{0,1}

∫
P(Θ = 1|Xτ (Pπ

t+∆t), t+∆t < τ) · dP(Xτ (t+∆t)|Θ = θ,Xτ (Pπ
t ), t+∆t < τ),

which, using (9), can be written as∑
θ∈{0,1}

∫
µt · St(∆t) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ

t ), t+∆t < τ) · dP(Xτ (t+∆t)|Θ = θ,Xτ (Pπ
t ), t+∆t < τ)

µt · St(∆t) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ) + (1− µt) · dP(Xτ (t+∆t)|Θ = 0, Xτ (Pπ

t ), t+∆t < τ)
.

Since ∑
θ∈{0,1}

dP(Xτ (t+∆t)|Θ = θ,Xτ (Pπ
t ), t+∆t < τ) =

µt ·St(∆t) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ)+(1−µt)·dP(Xτ (t+∆t)|Θ = 0, Xτ (Pπ

t ), t+∆t < τ),

then the integral above reduces to∫
µt ·St(∆t) ·dP(Xτ (t+∆t)|Θ = θ,Xτ (Pπ

t ), t+∆t < τ) = µt ·St(∆t)·
∫

dP(Xτ (t+∆t)|Θ = θ,Xτ (Pπ
t ), t+∆t < τ),

and since the conditional density integrates to 1, i.e.
∫
dP(Xτ (t+∆t)|Θ = θ,Xτ (Pπ

t ), t+∆t <
τ) = 1, then we have that

E
[
P(Θ = 1|σ(Xτ (Pπ

t+∆t)), t+∆t < τ)
∣∣∣F̃t

]
= µt · St(∆t).

By substituting the above in (4), we arrive at

E
[
µt+∆t

∣∣∣F̃t

]
= (1− St(∆t)) · µt + (1− µt + St(∆t) · µt) · E

[
P(Θ = 1|F̃t+∆t)

∣∣∣F̃t ∨ {t+∆t < τ}
]

= (1− St(∆t)) · µt + (1− µt + St(∆t) · µt) · µt · St(∆t)

= µt − µ2
tSt(∆t)(1− St(∆t)). (10)

Since St(∆t) ≥ 0, ∀t,∆t ∈ R+, then the term µ2
tSt(∆t)(1− St(∆t)) ≥ 0, and it follows that

E
[
µt+∆t

∣∣∣F̃t

]
≤ µt,∀t,∆t ∈ R+,

and hence the posterior belief process (µt)t∈R+ is a supermartingale with respect to the filtration F̃t.
�

Proof of Theorem 2

Assume a discrete-time version of the problem, where the decision (θ̂πt , δ
π
t ) are made in time steps

{0,∆t, 2∆t, . . .}. Define a value function V : N× [0, 1] → R+ as a map from the current history to
the risk of the best policy given the history F̃t as follows:

V (F̃t) , inf(θ̂π,Tπ≥t,Pπ
Tπ

⊃Pπ
t )E

[
ℓ(π; Θ)

∣∣∣F̃t

]
,

and define the action-value function as the value function achieved by taking actions (θ̂t, δt), andthen
following the best policy thereafter. That is, when the decision is to continue (i.e. θ̂t = ∅), we have
that

Q(F̃t; (θ̂t = ∅, δt = 1)) , inf(θ̂π,Tπ≥t,Pπ
Tπ

⊃Pπ
t ,t∈Pπ

Tπ
)E
[
ℓ(π; Θ)

∣∣∣F̃t

]
,

and
Q(F̃t; (θ̂t = ∅, δt = 0)) , inf(θ̂π,Tπ≥t,Pπ

Tπ
⊃Pπ

t ,t/∈Pπ
Tπ

)E
[
ℓ(π; Θ)

∣∣∣F̃t

]
.

Based on Bellmans optimality principle [24], we know that the optimal policy has to satisfy the
following in every time step, i.e.

δπ
∗

t = arg infδt∈{0,1}Q(F̃t; (θ̂t = ∅, δt)).

Now let us look at the optimal partition on Pπ∗

Tπ∗ on the discrete time steps {0,∆t, 2∆t, . . .}, and look
at an arbitrary realization for Pπ∗

Tπ∗ . Then we pick two consecutive time indexes in {0,∆t, 2∆t, . . .},
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say n1∆t and n2∆t, with n1 < n2, for which δπ
∗

n1∆t = δπ
∗

n2∆t = 1, and δπ
∗

n∆t = 0, ∀n1 < n < n2.
Since the policy is optimal, we know that

arg infδn∆t∈{0,1}Q(F̃n∆t; (θ̂n∆t = ∅, δn∆t)) = 0,∀n1 < n < n2,

and
arg infδn2∆t∈{0,1}Q(F̃n2∆t; (θ̂n2∆t = ∅, δn2∆t)) = 1,

which is equivalent to

arg infδn∆t∈{0,1}E
[
ℓ(π; Θ)

∣∣∣F̃n∆t

]
= 0, ∀n1 < n < n2,

and
arg infδn2∆t∈{0,1}E

[
ℓ(π; Θ)

∣∣∣F̃n2∆t

]
= 1,

which can be further decomposed into

arg infδn∆t∈{0,1}E
[
ℓ(π; Θ)

∣∣∣σ(X(Pπ∗

n1∆t)) ∨ Sn∆t

]
= 0, ∀n1 < n < n2,

and
arg infδn2∆t∈{0,1}E

[
ℓ(π; Θ)

∣∣∣σ(X(Pπ∗

n1∆t)) ∨ Sn2∆t

]
= 1,

since both functions E
[
ℓ(π; Θ)

∣∣σ(X(Pπ∗

n1∆t)) ∨ Sn∆t

]
and E

[
ℓ(π; Θ)

∣∣σ(X(Pπ∗

n1∆t)) ∨ Sn2∆t

]
are F̃n1∆t-measurable, then the decision-maker can compute the optimal decision sequence
{δn∆t}n2

n=n1+1 at time n1∆t. Since this holds for an arbitrary discretization step ∆t, including
an arbitrarily small step ∆t → 0, it follows that the sensing actions construct a predictable point
process under the optimal policy, which concludes the Theorem. �

Proof of Theorem 3

We start by proving that the optimal decision rule is 1{
µt>

C1
Co+C1

}. Fix an optimal stopping time

Tπ∗ and an optimal partition Pπ∗

Tπ∗ . The optimal decision rule is given by

θ̂π∗ = arg infθ̂πE
[
ℓ(π; Θ)

∣∣∣Pπ∗

Tπ∗ , Tπ∗

]
,

which is equivalent to

θ̂π∗ = arg infθ̂πE
[
(C1 1{θ̂π=0,θ=1} + Co 1{θ̂π=1,θ=0} + Cd Tπ∗)1{Tπ∗≤τ} + Cr 1{Tπ∗>τ} + CsN(Pπ∗

Tπ∗∧τ )
]
,

which by smoothing can be written as

θ̂π∗ = arg infθ̂πE
[
E
[
(C1 1{θ̂π=0,θ=1} + Co 1{θ̂π=1,θ=0} + Cd Tπ∗)1{Tπ∗≤τ} + Cr 1{Tπ∗>τ} + CsN(Pπ∗

Tπ∗∧τ )
∣∣∣F̃Tπ∗

]]
,

and hence we have that

θ̂π∗ = arg infθ̂πE
[
E
[
(C1 1{θ̂π=0,θ=1} + Co 1{θ̂π=1,θ=0} + Cd Tπ∗)1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]
+

E
[
Cr 1{Tπ∗>τ}

∣∣∣F̃Tπ∗

]
+ E

[
CsN(Pπ∗

Tπ∗∧τ )
∣∣∣F̃Tπ∗

]]
.

Since the terms E
[
Cr 1{Tπ∗>τ}

∣∣∣F̃Tπ∗

]
, E

[
Cd Tπ∗ 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]
, and

E
[
CsN(Pπ∗

Tπ∗∧τ )
∣∣∣F̃Tπ∗

]
are the information and delay costs, which do not depend on the

choice of θ̂π , we have that

θ̂π∗ = arg infθ̂πE
[
E
[
(C1 1{θ̂π=0,θ=1} + Co 1{θ̂π=1,θ=0})1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]]
,

which can be reduced to the following

θ̂π∗ = arg infθ̂πE
[
E
[
(C1 1{θ̂π=0,θ=1} + Co 1{θ̂π=1,θ=0})1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]]
= arg infθ̂πE

[
C1 · E

[
1{θ̂π=0,θ=1} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]
+ Co · E

[
1{θ̂π=1,θ=0} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]]
= arg infθ̂πE

[
C1 · E

[
1{θ̂π=0} · 1{θ=1} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]
+ Co · E

[
1{θ̂π=1} · 1{θ=0} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]]
.

(1)
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Since 1{θ̂π=θ} is an F̃Tπ∗ -measurable function, we have that

θ̂π∗ = arg infθ̂πE
[
C1 · E

[
1{θ̂π=0} · 1{θ=1} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]
+ C1 · E

[
1{θ̂π=1} · 1{θ=0} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]]
= arg infθ̂πE

[
C1 · 1{θ̂π=0} · E

[
1{θ=1} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]
+ Co · 1{θ̂π=1} · E

[
1{θ=0} · 1{Tπ∗≤τ}

∣∣∣F̃Tπ∗

]]
= arg infθ̂πE

[
C1 · 1{θ̂π=0} · (1− µTπ∗ ) + Co · 1{θ̂π=1} · µTπ∗

]
= arg infθ̂πE

[
C1 · 1{θ̂π=0} · (1− µTπ∗ ) + Co · 1{θ̂π=1} · µTπ∗

]
, (2)

which is simply minimized by setting θ̂π = 1 whenever C1(1 − µTπ∗ ) > CoµTπ∗ , hence we have
that θ̂π = 1{}.

Now we resume by first defining the value and the action-value functions, and find the policy char-
acteristics under Bellman optimality conditions.

Define a value function V : N× [0, 1] → R+ as a map from the current history to the risk of the best
policy given the history F̃t as follows:

V (F̃t) , inf(θ̂π,Tπ≥t,Pπ
Tπ

⊃Pπ
t )E

[
ℓ(π; Θ)

∣∣∣F̃t

]
,

and define the action-value function as the value function achieved by taking actions (θ̂t, δt), and
then following the best policy thereafter, i.e.

Q(F̃t; (θ̂t, δt)) , inf(θ̂π,Tπ≥t+δt,Pπ
Tπ

⊃Pπ
t ∪{t+δt})E

[
ℓ(π; Θ)

∣∣∣F̃t

]
.

Bellman optimality condition requires that at any time step t, we have

(θ̂π
∗

t , δπ
∗

t ) = arg inf(θ̂t,δt)∈{0,1}×R+
Q(F̃t; (θ̂t, δt)).

Recall from the proof of Corollary 1 that the belief process follows the following dynamics

µt+∆t =

µt · St(∆t) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ)

µt · St(∆t) · dP(Xτ (t+∆t)|Θ = 1, Xτ (Pπ
t ), t+∆t < τ) + (1− µt) · dP(Xτ (t+∆t)|Θ = 0, Xτ (Pπ

t ), t+∆t < τ)
,

which depends only on µt and the most recent sample realization in the partition Pπ
t , which we

denote as X̄τ (Pπ
t ). Hence, the tuple (t, µt, X̄

τ (Pπ
t )) is a Markov process since Xτ (t) is Markovian,

and the belief process follows the above Markovian dynamics, and time is deterministic. Since the
survival probability depends only on X̄τ (Pπ

t ), we can write the action-value function as

Q(F̃t; (θ̂t, δt)) , inf(θ̂π,Tπ≥t+δt,Pπ
Tπ

⊃Pπ
t ∪{t+δt})E

[
ℓ(π; Θ)

∣∣µt, X̄
τ (Pπ

t )
]
,

and consequently, the optimal actions at every time step t following Bellman conditions are given
by

(θ̂π
∗

t , δπ
∗

t ) = arg inf(θ̂t,δt)∈{0,1}×R+
inf(θ̂π,Tπ≥t+δt,Pπ

Tπ
⊃Pπ

t ∪{t+δt})E
[
ℓ(π; Θ)

∣∣µt, X̄
τ (Pπ

t )
]
.

Hence, at any time step t, we only need to know the tuple (t, µt, X̄
τ (Pπ

t )) in order to compute
the optimal action-value function, and hence, on the path to the optimal policy, knowing only
(t, µt, X̄

τ (Pπ
t )) suffice to generate the random process (Tπ∗ , Pπ∗

Tπ∗ , θ̂π∗). Hence, (t, µt, X̄
τ (Pπ

t ))

is a Markov sufficient statistic for (Tπ∗ , Pπ∗

Tπ∗ , θ̂π∗).

Note that our proof for the optimal decision rule θ̂π∗ implies that the action-value function for
stopping at time t, i.e. θ̂π

∗

t ̸= ∅ is

Q(t, µt, X̄
τ (Pπ

t ); (θ̂t ̸= ∅, δt)) = Coµt ∧ C1(1− µt) + Cd t+ CsN(Pπ
t ),

whereas the continuation cost at any time step t is given by finding the optimal rendezvous time
infδt∈R+Q(t, µt, X̄

τ (Pπ
t )); (θ̂t = ∅, δt)). Therefore, the optimal action-value at any time step t is

given by

Q∗(t, µt, X̄
τ (Pπ

t ); (θ̂t ̸= ∅, δt)) = min{Coµt∧C1(1−µt)+Cd t+CsN(Pπ
t ), infδt∈R+Q(t, µt, X̄

τ (Pπ
t ); (θ̂t = ∅, δt))}.
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The equation above determines the stopping and continuation conditions, and using the monotonicity
of the survival function in both time t and the time series realizations X̄τ (Pπ

t ), we can show the
monotonicity of the continuation set C(t, X̄τ (Pπ

t )) using the same arguments of Theorem 1 in [15].

The optimal rendezvous can be found by optimizing the time interval such that the cost of stopping
in the next time step is minimized. Hence, we have that

δπ
∗

t = infδt∈R+Q(t, µt, X̄
τ (Pπ

t ); (θ̂t = ∅, δt))

= infδt∈R+E
[
(Coµt+δt ∧ C1(1− µt+δt) + Cd t+ δt) 1{t+δt<τ} + Cr1{t+δt≥τ} + CsN(Pπ

t ) + 1
∣∣∣F̃t

]
= infδt∈R+

(
(C1 − Co)P(µt+∆t ≥

C1

Co + C1
) + C1

)
St(δt) + Cr(1− St(δt)), (3)

where P(µt+∆t ≥ C1

Co+C1
) can be written as P(It(∆t) ≥ C1

Co+C1
−µt), where It(∆t) = µt+∆t−µt

is the information gain. �
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