
Dueling Bandits: Beyond Condorcet Winners to
General Tournament Solutions

Siddartha Ramamohan
Indian Institute of Science
Bangalore 560012, India

siddartha.yr@csa.iisc.ernet.in

Arun Rajkumar
Xerox Research

Bangalore 560103, India
arun_r@csa.iisc.ernet.in

Shivani Agarwal
University of Pennsylvania

Philadelphia, PA 19104, USA
ashivani@seas.upenn.edu

Abstract
Recent work on deriving O(log T ) anytime regret bounds for stochastic dueling
bandit problems has considered mostly Condorcet winners, which do not always
exist, and more recently, winners defined by the Copeland set, which do always
exist. In this work, we consider a broad notion of winners defined by tournament
solutions in social choice theory, which include the Copeland set as a special case
but also include several other notions of winners such as the top cycle, uncovered set,
and Banks set, and which, like the Copeland set, always exist. We develop a family
of UCB-style dueling bandit algorithms for such general tournament solutions, and
show O(log T ) anytime regret bounds for them. Experiments confirm the ability of
our algorithms to achieve low regret relative to the target winning set of interest.

1 Introduction
There has been significant interest and progress in recent years in developing algorithms for dueling
bandit problems [1–11]. Here there are K arms; on each trial t, one selects a pair of arms (it, jt) for
comparison, and receives a binary feedback signal yt ∈ {0, 1} indicating which arm was preferred.
Most work on dueling bandits is in the stochastic setting and assumes a stochastic model – a preference
matrix P of pairwise comparison probabilities Pij – from which the feedback signals yt are drawn;
as with standard stochastic multi-armed bandits, the target here is usually to design algorithms with
O(lnT ) regret bounds, and where possible, O(lnT ) anytime (or ‘horizon-free’) regret bounds, for
which the algorithm does not need to know the horizon or number of trials T in advance.

Early work on dueling bandits often assumed strong conditions on the preference matrix P, such as
existence of a total order, under which there is a natural notion of a ‘maximal’ element with respect to
which regret is measured. Recent work has sought to design algorithms under weaker conditions on
P; most work, however, has assumed the existence of a Condorcet winner, which is an arm i that beats
every other arm j (Pij > 1

2 ∀j 6= i), and which reduces to the maximal element when a total order
exists. Unfortunately, the Condorcet winner does not always exist, and this has motivated a search for
other natural notions of winners, such as Borda winners and the Copeland set (see Figure 1).1 Among
these, the only work that offers anytime O(lnT ) regret bounds is the recent work of Zoghi et al. [11]
on Copeland sets. In this work, we consider defining winners in dueling bandits via the natural notion
of tournament solutions used in social choice theory, of which the Copeland set is a special case.
We develop general upper confidence bound (UCB) style dueling bandit algorithms for a number
of tournament solutions including the top cycle, uncovered set, and Banks set, and prove O(lnT )
anytime regret bounds for them, where the regret is measured relative to the tournament solution of
interest. Our proof technique is modular and can be used to develop algorithms with similar bounds
for any tournament solution for which a ‘selection procedure’ satisfying certain ‘safety conditions’
can be designed. Experiments confirm the ability of our algorithms to achieve low regret relative to
the target winning set of interest.

1Recently, Dudik et al. [10] also studied von Neumann winners, although they did so in a different (contextual)
setting, leading to O(T 1/2) and O(T 2/3) regret bounds.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Algorithm Condition on P Target Winner Anytime?
MultiSBM [5] U-Lin Condorcet winner X

IF [1] TO+SST+STI Condorcet winner ×
BTMB [2] TO+RST+STI Condorcet winner ×
RUCB [6] CW Condorcet winner X

MergeRUCB [7] CW Condorcet winner X
RMED [9] CW Condorcet winner X
SECS [8] UBW Borda winner ×

PBR-SE [4] DBS Borda winner ×
PBR-CO [4] Any P without ties Copeland set ×

SAVAGE-BO [3] Any P without ties Borda winner ×
SAVAGE-CO [3] Any P without ties Copeland set ×
CCB, SCB [11] Any P without ties Copeland set X

UCB-TC Any P without ties Top cycle X
UCB-UC Any P without ties Uncovered set X
UCB-BA Any P without ties Banks set X

Figure 1: Summary of algorithms for stochastic dueling bandit problems that have O(lnT ) regret
bounds, together with corresponding conditions on the underlying preference matrix P, target winners
used in defining regret, and whether the regret bounds are "anytime". The figure on the left shows
relations between some of the commonly studied conditions on P (see Table 1 for definitions). The
algorithms in the lower part of the table (shown in red) are proposed in this paper.

2 Dueling Bandits, Tournament Solutions, and Regret Measures
Dueling Bandits. We denote by [K] = {1, . . . ,K} the set of K arms. On each trial t, the learner
selects a pair of arms (it, jt) ∈ [K] × [K] (with it possibly equal to jt), and receives feedback in
the form of a comparison outcome yt ∈ {0, 1}, with yt = 1 indicating it was preferred over jt and
yt = 0 indicating the reverse. The goal of the learner is to select as often as possible from a set of
‘good’ or ‘winning’ arms, which we formalize below as a tournament solution.

The pairwise feedback on each trial is assumed to be generated stochastically according to a fixed
but unknown pairwise preference model represented by a preference matrix P ∈ [0, 1]K×K with
Pij +Pji = 1 ∀i, j: whenever arms i and j are compared, i is preferred to j with probability Pij , and
j to iwith probability Pji = 1−Pij . Thus for each trial t, we have yt ∼ Bernoulli(Pitjt). We assume
throughout this paper that there are are no “ties” between distinct arms, i.e. that Pij 6= 1

2 ∀i 6= j.2 We
denote by PK the set of all such preference matrices over K arms:

PK =
{
P ∈ [0, 1]K×K : Pij + Pji = 1 ∀i, j ; Pij 6= 1

2 ∀i 6= j
}
.

For any pair of arms (i, j), we will define the margin of (i, j) w.r.t. P as
∆P
ij = |Pij − 1

2 | .
Previous work on dueling bandits has considered a variety of conditions on P; see Table 1 and
Figure 1. Our interest here is in designing algorithms that have regret guarantees under minimal
restrictions on P. To this end, we will consider general notions of winners that are derived from a
natural tournament associated with P, and that are always guaranteed to exist. We will say an arm i
beats an arm j w.r.t. P if Pij > 1

2 ; we will express this as a binary relation �P on [K]:
i �P j ⇐⇒ Pij >

1
2 .

The tournament associated with P is then simply TP = ([K], EP), where EP = {(i, j) : i �P j}.
Two frequently studied notions of winners in previous work on dueling bandits, both of which are
derived from the tournament TP (and which are the targets of previous anytime regret bounds), are
the Condorcet winner when it exists, and the Copeland set in general:
Definition 1 (Condorcet winner). Let P ∈ PK . If there exists an arm i∗ ∈ [K] such that
i∗ �P j ∀j 6= i∗, then i∗ is said to be a Condorcet winner w.r.t. P.
Definition 2 (Copeland set). Let P ∈ PK . The Copeland set w.r.t. P, denoted CO(P), is defined as
the set of all arms in [K] that beat the maximal number of arms w.r.t. P:

CO(P) = arg max
i∈[K]

∑
j 6=i1

(
i �P j

)
.

Here we are interested in more general notions of winning sets derived from the tournament TP.
2The assumption of no ties was also made in deriving regret bounds w.r.t. to the Copeland set in [3, 4, 11],

and exists implicitly in [1, 2] as well.
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Table 1: Commonly studied conditions on the preference matrix P.
Condition on P Property satisfied by P

Utility-based with linear link (U-Lin) ∃u ∈ [0, 1]K : Pij =
1−(ui−uj)

2
∀i, j

Total order (TO) ∃σ ∈ Sn : Pij >
1
2
⇐⇒ σ(i) < σ(j)

Strong stochastic transitivity (SST) Pij >
1
2
, Pjk >

1
2

=⇒ Pik ≥ max(Pij , Pjk)

Relaxed stochastic transitivity (RST) ∃γ ≥ 1 : Pij>
1
2
, Pjk>

1
2

=⇒ Pik− 1
2
≥ 1

γ
max(Pij− 1

2
, Pjk− 1

2
)

Stochastic triangle inequality (STI) Pij >
1
2
, Pjk >

1
2

=⇒ Pik ≤ Pij + Pjk − 1
2

Condorcet winner (CW) ∃i : Pij >
1
2
∀j 6= i

Unique Borda winner (UBW) ∃i :
∑
k 6=i Pik >

∑
k 6=j Pjk ∀j 6= i

Distinct Borda scores (DBS)
∑
k 6=i Pik 6=

∑
k 6=j Pjk ∀i 6= j
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Figure 2: Examples of various tournaments together with their corresponding tournament solutions.
Edges that are not explicitly shown are directed from left to right; edges that are incident on subsets of
nodes (rounded rectangles) apply to all nodes within. Left: A tournament on 5 nodes with gradually
discriminating tournament solutions. Middle: The Hudry tournament on 13 nodes with disjoint
Copeland and Banks sets. Right: A tournament on 8 nodes based on ATP tennis match records.

Tournament Solutions. Tournament solutions have long been used in social choice and voting theory
to define winners in general tournaments when no Condorcet winner exists [12, 13]. Specifically, a
tournament solution is any mapping that maps each tournament on K nodes to a subset of ‘winning’
nodes in [K]; for our purposes, we will define a tournament solution to be any mapping S : PK→2[K]

that maps each preference matrix P (via the induced tournament TP) to a subset of winning arms
S(P) ⊆ [K].3 The Copeland set is one such tournament solution. We consider three additional
tournament solutions in this paper: the top cycle, the uncovered set, and the Banks set, all of which
offer other natural generalizations of the Condorcet winner. These tournament solutions are motivated
by different considerations (ranging from dominance to covering to decomposition into acyclic
subtournaments) and have graded discriminative power, and can therefore be used to match the needs
of different applications; see [12] for a comprehensive survey.
Definition 3 (Top cycle). Let P ∈ PK . The top cycle w.r.t. P, denoted TC(P), is defined as the
smallest set W ⊆ [K] for which i �P j ∀i ∈W, j /∈W .
Definition 4 (Uncovered set). Let P ∈ PK . An arm i is said to cover an arm j w.r.t. P if i �P j
and ∀k : j �P k =⇒ i �P k. The uncovered set w.r.t. P, denoted UC(P), is defined as the set of
all arms that are not covered by any other arm w.r.t. P:

UC(P) =
{
i ∈ [K] : 6 ∃j ∈ [K] s.t. j covers i w.r.t. P

}
.

Definition 5 (Banks set). Let P ∈ PK . A subtournament T = (V,E) of TP, where V ⊆ [K] and
E = EP|V×V , is said to be maximal acyclic if (i) T is acyclic, and (ii) no other subtournament
containing T is acyclic. Denote by MAST(P) the set of all maximal acyclic subtournaments of TP,
and for each T ∈ MAST(P), denote by m∗(T ) the maximal element of T . Then the Banks set w.r.t.
P, denoted BA(P), is defined as the set of maximal elements of all maximal acyclic subtournaments
of TP:

BA(P) =
{
m∗(T ) : T ∈ MAST(P)

}
.

It is known that BA(P) ⊆ UC(P) ⊆ TC(P) and CO(P) ⊆ UC(P) ⊆ TC(P). In general, BA(P)
and CO(P) may intersect, although they can also be disjoint. When P contains a Condorcet winner
i∗, all four tournament solutions reduce to just the singleton set {i∗}. See Figure 2 for examples.

3Strictly speaking, the mapping S must be invariant under permutations of the node labels.
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Regret Measures. When P admits a Condorcet winner i∗, the individual regret of an arm i is usually
defined as rCW

P (i) = ∆P
i∗,i, and the cumulative regret over T trials of an algorithmA that selects arms

(it, jt) on trial t is then generally defined asRCW
T (A) =

∑T
t=1 r

CW
P (it, jt), where the pairwise regret

rCW
P (i, j) is either the average regret 1

2

(
rCW
P (i) + rCW

P (j)
)
, the strong regret max

(
rCW
P (i), rCW

P (j)
)
,

or the weak regret min
(
rCW
P (i), rCW

P (j)
)

[1, 2, 6, 7, 9].4 When the target winner is a tournament
solution S, we can similarly define a suitable notion of individual regret of an arm i w.r.t. S, and then
use this to define pairwise regrets as above.

In particular, for the three tournament solutions discussed above, we will define the following natural
notions of individual regret:

rTC
P (i) =

{
max

i∗∈TC(P)
∆P
i∗,i if i /∈ TC(P)

0 if i ∈ TC(P)
; rUC

P (i) =

{
max

i∗∈UC(P):i∗ covers i
∆P
i∗,i if i /∈ UC(P)

0 if i ∈ UC(P)
;

rBA
P (i) =

{
max

T ∈MAST(P):T contains i
∆P
m∗(T ),i if i /∈ BA(P)

0 if i ∈ BA(P).

In the special case when P admits a Condorcet winner i∗, the three individual regrets above all reduce
to the Condorcet individual regret, rCW

P (i) = ∆P
i∗,i. In each case above, the cumulative regret of an

algorithm A over T trials will then be given by
RS
T (A) =

∑T
t=1r

S
P(it, jt) ,

where the pairwise regret rS
P(i, j) can be the average regret 1

2

(
rS
P(i) + rS

P(j)
)
, the strong regret

max
(
rS
P(i), rS

P(j)
)
, or the weak regret min

(
rS
P(i), rS

P(j)
)
. Our regret bounds will hold for each of

these forms of pairwise regret. In fact, our regret bounds hold for any measure of pairwise regret
rS
P(i, j) that satisfies the following three conditions:

(i) rS
P(·, ·) is normalized: rS

P(i, j) ∈ [0, 1] ∀i, j;
(ii) rS

P(·, ·) is symmetric: rS
P(i, j) = rS

P(j, i) ∀i, j; and

(iii) rS
P(·, ·) is proper w.r.t. S: i, j ∈ S(P) =⇒ rS

P(i, j) = 0.
It is easy to verify that for the three tournament solutions above, the average, strong and weak pairwise
regrets above all satisfy these conditions.5,6

3 UCB-TS: Generic Dueling Bandit Algorithm for Tournament Solutions
Algorithm. In Algorithm 1 we outline a generic dueling bandit algorithm, which we call UCB-TS,
for identifying winners from a general tournament solution. The algorithm can be instantiated to
specific tournament solutions by designing suitable selection procedures SELECTPROC-TS (more
details below). The algorithm maintains a matrix Ut ∈ RK×K+ of upper confidence bounds (UCBs)
U tij on the unknown pairwise preference probabilities Pij . The UCBs are constructed by adding a
confidence term to the current empirical estimate of Pij ; the exploration parameter α > 1

2 controls
the exploration rate of the algorithm via the size of the confidence terms used. On each trial t, the
algorithm selects a pair of arms (it, jt) based on the current UCB matrix Ut using the selection
procedure SELECTPROC-TS; on observing the preference feedback yt, the algorithm then updates
the UCBs for all pairs of arms (i, j) (the UCBs of all pairs (i, j) grow slowly with t so that pairs that
have not been selected for a while have an increasing chance of being explored).

In order to instantiate the UCB-TS algorithm to a particular tournament solution S, the critical step is
in designing the selection procedure SELECTPROC-TS in a manner that yields good regret bounds
for a suitable regret measure w.r.t. S. Below we identify general conditions on SELECTPROC-TS
that allow for O(lnT ) anytime regret bounds to be obtained (we will design procedures satisfying
these conditions for the three tournament solutions of interest in Section 4).

4The notion of regret used in [5] was slightly different.
5It is also easy to verify that defining the individual regrets as the minimum or average margin relative to

all relevant arms in the tournament solution of interest (instead of the maximum margin as done above) also
preserves these properties, and therefore our regret bounds hold for the resulting variants of regret as well.

6One can also consider defining the individual regrets simply in terms of mistakes relative to the target
tournament solution of interest, e.g. rTC

P (i) = 1(i /∈ TC(P)), and define average/strong/weak pairwise regrets
in terms of these; our bounds also apply in this case.

4



Algorithm 1 UCB-TS
1: Require: Selection procedure SELECTPROC-TS
2: Parameter: Exploration parameter α > 1

2

3: Initialize: ∀ (i, j) ∈ [K]× [K]:
N1
ij = 0 // # times (i, j) has been compared; W 1

ij = 0 // # times i has won against j;

U1
ij =

{
1
2 if i = j

1 otherwise
// UCB for Pij .

4: For t = 1, 2, . . . do:
5: • Select (it, jt)← SELECTPROC-TS(Ut)
6: • Receive preference feedback yt ∈ {0, 1}
7: • Update counts: ∀ (i, j) ∈ [K]× [K]:

N t+1
ij =

{
N t
ij + 1 if {i, j} = {it, jt}

N t
ij otherwise

; W t+1
ij =





W t
ij + yt if (i, j) = (it, jt)

W t
ij + (1− yt) if (i, j) = (jt, it)

W t
ij otherwise.

8: • Update UCBs: ∀ (i, j) ∈ [K]× [K]:

U t+1
ij =





1
2 if i = j

1 if i 6= j and N t+1
ij = 0

W t+1
ij

Nt+1
ij

+
√

α ln t
Nt+1

ij

otherwise.

Regret Analysis. We show here that if the selection procedure SELECTPROC-TS satisfies two natural
conditions w.r.t. a tournament solution S, namely the safe identical-arms condition w.r.t. S and the
safe distinct-arms condition w.r.t. S, then the resulting instantiation of the UCB-TS algorithm has an
O(lnT ) regret bound for any regret measure that is normalized, symmetric, and proper w.r.t S. The
first condition ensures that if the UCB matrix U given as input to SELECTPROC-TS in fact forms
an element-wise upper bound on the true preference matrix P and SELECTPROC-TS returns two
identical arms (i, i), then i must be in the winning set S(P). The second condition ensures that if U
upper bounds P and SELECTPROC-TS returns two distinct arms (i, j), i 6= j, then either both i, j are
in the winning set S(P), or the UCBs Uij , Uji are still loose (and (i, j) should be explored further).

Definition 6 (Safe identical-arms condition). Let S : PK→2[K] be a tournament solution. We will
say a selection procedure SELECTPROC-TS : RK×K+ →[K]× [K] satisfies the safe identical-arms
condition w.r.t. S if for all P ∈ PK , U ∈ RK×K+ such that Pij ≤ Uij ∀i, j, we have

SELECTPROC-TS(U) = (i, i) =⇒ i ∈ S(P) .

Definition 7 (Safe distinct-arms condition). Let S : PK→2[K] be a tournament solution. We will
say a selection procedure SELECTPROC-TS : RK×K+ →[K] × [K] satisfies the safe distinct-arms
condition w.r.t. S if for all P ∈ PK , U ∈ RK×K+ such that Pij ≤ Uij ∀i, j, we have
SELECTPROC-TS(U) = (i, j), i 6= j =⇒

{
(i, j) ∈ S(P)× S(P)

}
or
{
Uij + Uji ≥ 1 + ∆P

ij

}
.

In what follows, for K ∈ Z+, α > 1
2 , and δ ∈ (0, 1], we define

C(K,α, δ) =
( (4α− 1)K2

(2α− 1)δ

)1/(2α−1)

.

This quantity, which also appears in the analysis of RUCB [6], acts as an initial time period beyond
which all the UCBs Uij upper bound Pij w.h.p. We have the following result (proof in Appendix A):

Theorem 8 (Regret bound for UCB-TS algorithm). Let S : PK→2[K] be a tournament solution,
and suppose the selection procedure SELECTPROC-TS used in the UCB-TS algorithm satisfies both
the safe identical-arms condition w.r.t. S and the safe distinct-arms condition w.r.t. S. Let P ∈ PK ,
and let rS

P(i, j) be any normalized, symmetric, proper regret measure w.r.t. S. Let α > 1
2 and

δ ∈ (0, 1]. Then with probability at least 1− δ (over the feedback yt drawn randomly from P and
any internal randomness in SELECTPROC-TS), the cumulative regret of the UCB-TS algorithm with
exploration parameter α is upper bounded as

RS
T

(
UCB-TS(α)

)
≤ C(K,α, δ) + 4α (lnT )

( ∑

i<j:(i,j)/∈S(P)×S(P)

rS
P(i, j)

(∆P
ij)

2

)
.
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Figure 3: Inferences about the direction of preference between arms i and j under the true preference
matrix P based on the UCBs Uij , Uji, assuming that Pij , Pji are upper bounded by Uij , Uji.

4 Dueling Bandit Algorithms for Top Cycle, Uncovered Set, and Banks Set
Below we give selection procedures satisfying both the safe identical-arms condition and the safe
distinct-arms condition above w.r.t. the top cycle, uncovered set, and Banks set, which immediately
yield dueling bandit algorithms with O(lnT ) regret bounds w.r.t. these tournament solutions. An
instantiation of our framework to the Copeland set is also discussed in Appendix E.

The selection procedure for each tournament solution is closely related to the corresponding winner
determination algorithm for that tournament solution; however, while a standard winner determination
algorithm would have access to the actual tournament TP, the selection procedures we design can
only guess (with high confidence) the preference directions between some pairs of arms based on the
UCB matrix U. In particular, if the entries of U actually upper bound those of P, then for any pair of
arms i and j, one of the following must be true (see also Figure 3):

• Uij < 1
2 , in which case Pij ≤ Uij < 1

2 and therefore j �P i;
• Uji < 1

2 , in which case Pji ≤ Uji < 1
2 and therefore i �P j;

• Uij ≥ 1
2 and Uji ≥ 1

2 , in which case the direction of preference between i and j in TP is
unresolved.

The selection procedures we design manage the exploration-exploitation tradeoff by adopting an
optimism followed by pessimism approach, similar to that used in the design of the RUCB and CCB
algorithms [6, 11]. Specifically, our selection procedures first optimistically identify a potential
winning arm a based on the UCBs U (by optimistically setting directions of any unresolved edges in
TP in favor of the arm being considered; see Figure 3). Once a putative winning arm a is identified,
the selection procedures then pessimistically find an arm b that has the greatest chance of invalidating
a as a winning arm, and select the pair (a, b) for comparison.

4.1 UCB-TC: Dueling Bandit Algorithm for Top Cycle

The selection procedure SELECTPROC-TC (Algorithm 2), when instantiated in the UCB-TS template,
yields the UCB-TC dueling bandit algorithm. Intuitively, SELECTPROC-TC constructs an optimistic
estimate A of the top cycle based on the UCBs U (line 2), and selects a potential winning arm a from
A (line 3); if there is no unresolved arm against a (line 5), then it returns (a, a) for comparison, else
it selects the best-performing unresolved opponent b (line 8) and returns (a, b) for comparison. We
have the following result (see Appendix B for a proof):
Theorem 9 (SELECTPROC-TC satisfies safety conditions w.r.t. TC). SELECTPROC-TC satisfies
both the safe identical-arms condition and the safe distinct-arms condition w.r.t. TC.

By virtue of Theorem 8, this immediately yields the following regret bound for UCB-TC:
Corollary 10 (Regret bound for UCB-TC algorithm). Let P ∈ PK . Let α > 1

2 and δ ∈ (0, 1].
Then with probability at least 1− δ, the cumulative regret of UCB-TC w.r.t. the top cycle satisfies

RTC
T

(
UCB-TC(α)

)
≤ C(K,α, δ) + 4α (lnT )

( ∑

i<j:(i,j)/∈TC(P)×TC(P)

rTC
P (i, j)

(∆P
ij)

2

)
.

4.2 UCB-UC: Dueling Bandit Algorithm for Uncovered Set

The selection procedure SELECTPROC-UC (Algorithm 3), when instantiated in the UCB-TS template,
yields the UCB-UC dueling bandit algorithm. SELECTPROC-UC relies on the property that an
uncovered arm beats every other arm either directly or via an intermediary [12]. SELECTPROC-UC
optimistically identifies such a potentially uncovered arm a based on the UCBs U (line 5); if it can be
resolved that a is indeed uncovered (line 7), then it returns (a, a), else it selects the best-performing
unresolved opponent b when available (line 11), or an arbitrary opponent b otherwise (line 13), and
returns (a, b). We have the following result (see Appendix C for a proof):
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Algorithm 2 SELECTPROC-TC
1: Input: UCB matrix U ∈ RK×K+
2: Let A ⊆ [K] be any minimal set satisfying
Uij ≥ 1

2 ∀i ∈ A, j /∈ A
3: Select any a ∈ argmaxi∈A minj 6∈A Uij
4: B ← {i 6= a : Uai ≥ 1

2 ∧ Uia ≥ 1
2}

5: if B = ∅ then
6: Return (a, a)
7: else
8: Select any b ∈ argmaxi∈B Uia
9: Return (a, b)

10: end if

Algorithm 3 SELECTPROC-UC
1: Input: UCB matrix U ∈ RK×K+
2: for i = 1 to K do
3: y(i)←∑

j 1(Uij ≥ 1
2 ) +∑

j,k 1(Uij ≥ 1
2 ∧ Ujk ≥ 1

2 )
4: end for
5: Select any a ∈ argmaxi y(i)
6: B ← {i 6= a : Uai ≥ 1

2 ∧ Uia ≥ 1
2}

7: if
(
∀i 6= a : (Uia <

1
2 ) ∨

(∃j : Uij <
1
2 ∧ Uja < 1

2 )
)

then
8: Return (a, a)
9: else

10: if B 6= ∅ then
11: Select any b ∈ argmaxi∈B Uia
12: else
13: Select any b 6= a
14: end if
15: Return (a, b)
16: end if

Algorithm 4 SELECTPROC-BA
1: Input: UCB matrix U ∈ RK×K+
2: Select any j1 ∈ [K]
3: J ← {j1} // Initialize candidate Banks

trajectory
4: s← 1 // Initialize size of candidate

Banks trajectory
5: traj_found = FALSE
6: while NOT(traj_found) do
7: C ← {i /∈ J : Uij >

1
2 ∀j ∈ J }

8: if C = ∅ then
9: traj_found = TRUE

10: break
11: else
12: js+1 ∈ argmaxi∈C(minj∈J Uij)
13: J ← J ∪ {js+1}
14: s← s+ 1
15: end if
16: end while
17: if

(
∀1 ≤ q < r ≤ s: Ujq,jr < 1

2

)
then

18: a← js
19: Return (a, a)
20: else
21: Select any (q̃, r̃) ∈ arg max

(q,r):1≤q<r≤s
Ujq,jr

22: (a, b)← (jq̃, jr̃)
23: Return (a, b)
24: end if

Theorem 11 (SELECTPROC-UC satisfies safety conditions w.r.t. UC). SELECTPROC-UC satis-
fies both the safe identical-arms condition and the safe distinct-arms condition w.r.t. UC.

Again, by virtue of Theorem 8, this immediately yields the following regret bound for UCB-UC:
Corollary 12 (Regret bound for UCB-UC algorithm). Let P ∈ PK . Let α > 1

2 and δ ∈ (0, 1].
Then with probability at least 1− δ, the cumulative regret of UCB-UC w.r.t. the uncovered set satisfies

RUC
T

(
UCB-UC(α)

)
≤ C(K,α, δ) + 4α (lnT )

( ∑

i<j:(i,j)/∈UC(P)×UC(P)

rUC
P (i, j)

(∆P
ij)

2

)
.

4.3 UCB-BA: Dueling Bandit Algorithm for Banks Set
The selection procedure SELECTPROC-BA (Algorithm 4), when instantiated in the UCB-TS template,
yields the UCB-BA dueling bandit algorithm. Intuitively, SELECTPROC-BA first constructs an
optimistic candidate maximal acyclic subtournament (set J ; also called a Banks trajectory) based on
the UCBs U (lines 2–16). If this subtournament is completely resolved (line 17), then its maximal
arm a is picked and (a, a) is returned; if not, an unresolved pair (a, b) is returned that is most likely
to fail the acyclicity/transitivity property. We have the following result (see Appendix D for a proof):
Theorem 13 (SELECTPROC-BA satisfies safety conditions w.r.t. BA). SELECTPROC-BA satis-
fies both the safe identical-arms condition and the safe distinct-arms condition w.r.t. BA.

Again, by virtue of Theorem 8, this immediately yields the following regret bound for UCB-BA:
Corollary 14 (Regret bound for UCB-BA algorithm). Let P ∈ PK . Let α > 1

2 and δ ∈ (0, 1].
Then with probability at least 1− δ, the cumulative regret of UCB-BA w.r.t. the Banks set satisfies

RBA
T

(
UCB-BA(α)

)
≤ C(K,α, δ) + 4α (lnT )

( ∑

i<j:(i,j)/∈BA(P)×BA(P)

rBA
P (i, j)

(∆P
ij)

2

)
.
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Figure 4: Regret performance of our algorithms compared to BTMB, RUCB, SAVAGE-CO, and
CCB. Results are averaged over 10 independent runs; light colored bands represent one standard
error. Left: Top cycle regret of UCB-TC on PMSLR. Middle: Uncovered set regret of UCB-UC on
PTennis. Right: Banks set regret of UCB-BA on PHudry. See Appendix F.2 for additional results.

5 Experiments
Here we provide an empirical evaluation of the performance of the proposed dueling bandit algorithms.
We used the following three preference matrices in our experiments, one of which is synthetic and
two real-world, and none of which posesses a Condorcet winner:

• PHudry ∈ P13: This is constructed from the Hudry tournament shown in Figure 2(b); as noted
earlier, this is the smallest tournament whose Copeland set and Banks set are disjoint [14].
Details of this preference matrix can be found in Appendix F.1.1.
• PTennis ∈ P8: This is constructed from real data collected from the Association of Tennis

Professionals’ (ATP’s) website on outcomes of tennis matches played among 8 well-known
professional tennis players. The tournament associated with PTennis is shown in Figure 2(c);
further details of this preference matrix can be found in Appendix F.1.2.
• PMSLR ∈ P16: This is constructed from real data from the Microsoft Learning to Rank

(MSLR) Web10K data set. Further details can be found in Appendix F.1.3.

We compared the performance of our algorithms, UCB-TC, UCB-BA, and UCB-UC, with four
previous dueling bandit algorithms: BTMB [2], RUCB [6], SAVAGE-CO [3], and CCB [11].7 In each
case, we assessed the algorithms in terms of average pairwise regret relative to the target tournament
solution of interest (see Section 2), averaged over 10 independent runs. A sample of the results
is shown in Figure 4; as can be seen, the proposed algorithms UCB-TC, UCB-UC, and UCB-BA
generally outperform existing baselines in terms of minimizing regret relative to the top cycle, the
uncovered set, and the Banks set, respectively. Additional results, including results with the Copeland
set variant of our algorithm, UCB-CO, can be found in Appendix F.2.

6 Conclusion
In this paper, we have proposed the use of general tournament solutions as sets of ‘winning’ arms
in stochastic dueling bandit problems, with the advantage that these tournament solutions always
exist and can be used to define winners according to criteria that are most relevant to a given dueling
bandit setting. We have developed a UCB-style family of algorithms for such general tournament
solutions, and have shown O(lnT ) anytime regret bounds for the algorithm instantiated to the top
cycle, uncovered set, and Banks set (as well as the Copeland set; see Appendix E).

While our approach has an appealing modular structure both algorithmically and in our proofs, an
open question concerns the optimality of our regret bounds in their dependence on the number of
arms K. For the Condorcet winner, the MergeRUCB algorithm [7] has an anytime regret bound of
the form O(K lnT ); for the Copeland set, the SCB algorithm [11] has an anytime regret bound of the
form O(K lnK lnT ). In the worst case, our regret bounds are of the form O(K2 lnT ). Is it possible
that for the top cycle, uncovered set, and Banks set, one can also show an Ω(K2 lnT ) lower bound
on the regret? Or can our regret bounds or algorithms be improved? We leave a detailed investigation
of this issue to future work.

Acknowledgments. Thanks to the anonymous reviewers for helpful comments and suggestions. SR
thanks Google for a travel grant to present this work at the conference.

7For all the UCB-based algorithms (including our algorithms, RUCB, and CCB), we set the exploration
parameter α to 0.51; for SAVAGE-CO, we set the confidence parameter δ to 1/T ; and for BTMB, we set δ to
1/T and chose γ to satisfy the γ-relaxed stochastic transitivity property for each preference matrix.
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