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Abstract

Previous studies have proposed image-based clutter measures that correlate with
human search times and/or eye movements. However, most models do not take
into account the fact that the effects of clutter interact with the foveated nature of
the human visual system: visual clutter further from the fovea has an increasing
detrimental influence on perception. Here, we introduce a new foveated clutter
model to predict the detrimental effects in target search utilizing a forced fixation
search task. We use Feature Congestion (Rosenholtz et al.) as our non foveated
clutter model, and we stack a peripheral architecture on top of Feature Congestion
for our foveated model. We introduce the Peripheral Integration Feature Congestion
(PIFC) coefficient, as a fundamental ingredient of our model that modulates clutter
as a non-linear gain contingent on eccentricity. We show that Foveated Feature
Congestion (FFC) clutter scores (r(44) = −0.82 ± 0.04, p < 0.0001) correlate
better with target detection (hit rate) than regular Feature Congestion (r(44) =
−0.19± 0.13, p = 0.0774) in forced fixation search; and we extend foveation to
other clutter models showing stronger correlations in all cases. Thus, our model
allows us to enrich clutter perception research by computing fixation specific clutter
maps. Code for building peripheral representations is available1.

1 Introduction
What is clutter? While it seems easy to make sense of a cluttered desk vs an uncluttered desk at a
glance, it is hard to quantify clutter with a number. Is a cluttered desk, one stacked with papers? Or is
an uncluttered desk, one that is more organized irrelevant of number of items? An important goal in
clutter research has been to develop an image based computational model that outputs a quantitative
measure that correlates with human perceptual behavior [19, 12, 24, 21]. Previous studies have
created models that output global or regional metrics to measure clutter perception. Such measures
are aimed to predict the influence of clutter on perception. However, one important aspect of human
visual perception is that it is not space invariant: the fovea processes visual information with high
spatial detail while regions away from the central fovea have access to lower spatial detail. Thus,
the influence of clutter on perception can depend on the retinal location of the stimulus and such
influences will likely interact with the information content in the stimulus.

The goal of the current paper is to develop a foveated clutter model that can successfully predict
the interaction between retinal eccentricity and image content in modulating the influence of clutter
on perceptual behavior. We introduce a foveated mechanism based on the peripheral architecture
proposed by Freeman and Simoncelli [9] and stack it into a current clutter model (Feature Conges-
tion [23, 24]) to generate a clutter map that arises from a calculation of information loss with retinal
eccentricity but is multiplicatively modulated by the original unfoveated clutter score. The new

1Piranhas Toolkit: https://github.com/ArturoDeza/Piranhas
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Figure 1: The Feature Congestion pipeline as explained in Rosenholtz et al. [24]. A color, contrast
and orientation feature map for each spatial pyramid is extracted, and the max value of each is
computed as the final feature map. The Feature Congestion map is then computed by a weighted sum
over each feature map. The Feature Congestion score is the mean value of the map.

measure is evaluated in a gaze-contingent psychophysical experiment measuring target detection in
complex scenes as a function of target retinal eccentricity. We show that the foveated clutter models
that account for loss of information in the periphery correlates better with human target detection
(hit rate) across retinal eccentricities than non-foveated models. Although the model is presented in
the context of Feature Congestion, the framework can be extended to any previous or future clutter
metrics that produce clutter scores that are computed from a global pixel-wise clutter map.

2 Previous Work
Previous studies have developed general measures of clutter computed for an entire image and do
not consider the space-variant properties of the human visual system. Because our work seeks to
model and assess the interaction between clutter and retinal location, experiments manipulating
the eccentricity of a target while observers hold fixation (gaze contingent forced fixation) are most
appropriate to evaluate the model. To our knowledge there has been no systematic evaluation of
fixation dependent clutter models with forced fixation target detection in scenes. In this section, we
will give an overview of state-of-the-art clutter models, metrics and evaluations.

2.1 Clutter Models

Feature Congestion: Feature Congestion, initially proposed by [23, 24] produces both a pixel-wise
clutter score map as a well as a global clutter score for any input image or Region of Interest (ROI).
Each clutter map is computed by combining a Color map in CIELab space, an orientation map [14],
and a local contrast map at multiple scales through Gaussian Pyramids [5]. One of the main advan-
tages Feature Congestion has is that each pixel-wise clutter score (Fig. 1) and global score can be
computed in less than a second. Furthermore, this is one of the few models that can output a specific
clutter score for any pixel or ROI in an image. This will be crucial for developing a foveated model
as explained in Section 4.
Edge Density: Edge Density computes a ratio after applying an Edge Detector on the input im-
age [19]. The final clutter score is the ratio of edges to total number of pixels present in the image.
The intuition for this metric is straightforward: “the more edges, the more clutter” (due to objects for
example).
Subband Entropy: The Subband Entropy model begins by computing N steerable pyramids [25] at
K orientations across each channel from the input image in CIELab color space. Once each N ×K
subband is collected for each channel, the entropy for each oriented pyramid is computed pixelwise
and they are averaged separately. Thus, Subband Entropy wishes to measure the entropy of each
spatial frequency and oriented filter response of an image.
Scale Invariance: The Scale Invariant Clutter Model proposed by Farid and Bravo [4] uses graph-
based segmentation [8] at multiple k scales. A scale invariant clutter representation is given by the
power law coefficient that matches the decay of number of regions with the adjusted scale parameter.
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Figure 2: Experiment 1: Forced Fixation Search flow diagram. A naive observer begins by fixating
the image at a location that is either 1, 4, 9 or 15 deg away from the target (the observer is not aware
of the possible eccentricities). After fixating on the image for a variable amount of time (100, 200,
400, 900 or 1600 ms), the observer must make a decision on target detection.

ProtoObject Segmentation: ProtoObject Segmentation proposes an unsupervised metric for clut-
ter scoring [27, 28]. The model begins by converting the image into HSV color space, and then
proceeds to segment the image through superpixel segmentation [17, 16, 1]. After segmentation,
mean-shift [11] is applied on all cluster (superpixel) medians to calculate the final amount of repre-
sentative colors present in the image. Next, superpixels are merged with one another contingent on
them being adjacent, and being assigned to the same mean-shift HSV cluster. The final score is a
ratio between initial number of superpixels and final number of superpixels.
Crowding Model: The Crowding Model developed by van der Berg et al. [26] is the only model
to have used losses in the periphery due to crowding as a clutter metric. It decomposes the image
into 3 different scales in CIELab color space. It then produces 6 different orientation maps for each
scale given the luminance channel; a contrast map is also obtained by difference of Gaussians on the
previously mentioned channel. All feature maps are then pooled with Gaussian kernels that grow
linearly with eccentricity, KL-divergence is then computed between the pre and post pooling feature
maps to get information loss coefficients, all coefficients are averaged together to produce a final
clutter score. We will discuss the differences of this model to ours in the Discussion (Section 5).
Texture Tiling Model: The Texture Tiling Model (TTM) is a recent perceptual model that accounts
for losses in the periphery [22, 13] through psyhophysical experiments modelling visual search [7]:
feature search, conjunction search, configuration search and asymmetric search. In essence, the
Mongrels proposed by Rosenholtz et al. that simulate peripheral losses are very similar to the
Metamers proposed by Freeman & Simoncelli [9]. We do not include comparisons to the TTM model
since it requires additional psychophysics on the Mongrel versions of the images.

2.2 Clutter Metrics
Global Clutter Score: The most basic clutter metric used in clutter research is the original clutter
score that every model computes over the entire image. Edge Density & Proto-Object Segmentation
output a ratio, while Subband Entropy and Feature Congestion output a score. However, Feature
Congestion is the only model that outputs a dense pixelwise clutter map before computing a global
score (Fig. 1). Thus, we use Feature Congestion clutter maps for our foveated clutter model.
Clutter ROI: The second most used clutter metric is ROI (Region of Interest)-based, as shown in the
work of Asher et al. [3]. This metric is of interest when an observer is engaging in target search, vs
making a human judgement (Ex: “rate the clutter of the following scenes”).

2.3 Clutter Evaluations
Human Clutter Judgements: Multiple studies of clutter, correlate their metrics with rankings/ratings
of clutter provided by human participants. Ideally, if clutter model A is better than clutter model B,
then the correlation of model scores and human rankings/ratings should be higher for model A than
for model B. [28, 19, 26]
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Response Time: Highly cluttered images will require more time for target search, hence more time
to arrive to a decision of target present/absent. Under the previous assumption, a high correlation
value between response time and clutter score are a good sign for a clutter model. [24, 4, 26, 3, 12]
Target Detection (Hit Rate, False Alarms, Performance): In general, when engaging in target
search for a fixed amount of time across all trial conditions, an observer will have a lower hit rate and
higher false alarm rate for a highly cluttered image than an uncluttered image. [24, 3, 12]

3 Methods & Experiments
3.1 Experiment 1: Forced Fixation Search

A total of 13 subjects participated in a Forced Fixation Search experiment where the goal was to
detect a target in the subject’s periphery and identify if there was a target (person) present or absent.
Participants had variable amounts of time (100, 200, 400, 900, 1600 ms) to view each clip that was
presented in a random order at a variable degree of eccentricities that the subjects were not aware of
(1 deg, 4 deg, 9 deg, 15 deg). They were then prompted with a Target Detection rating scale where
they had to rate from a scale from 1-10 by clicking on a number reporting how confident they were
on detecting the target. Participants have unlimited time for making their judgements, and they did
not take more than 10 seconds per judgment. There was no response feedback after each trial. Trials
were aborted when subjects broke fixation outside of a 1 deg radius around the fixation cross.

Each subject did 12 sessions that consisted of 360 unique images. Every session also presented the
images with aerial viewpoints from different vantage points (Example: session 1 had the target at
12 o’clock - North, while session 2 had the target at 3 o’clock - East). To control for any fixational
biases, all subjects had a unique fixation point for every trial for the same eccentricity values. All
images were rendered with variable levels of clutter. Each session took about an hour to complete.
The target was of size 0.5 deg×0.5 deg, 1 deg×1 deg, 1.5 deg×1.5 deg, depending on zoom level.

For our analysis, we only used the low zoom and 100 ms time condition since there was less ceiling
effects across all eccentricities.

Stimuli Creation: A total of 273 videos were created each with a total duration of 120 seconds,
where a ‘birds eye’ point-of-view camera rotated slowly around the center. While the video was
in rotating motion, there was no relative motion between any parts of the video. From the original
videos, a total of 360× 4 different clips were created. Half of the clips were target present, while the
other half were target absent. These short and slowly rotating clips were used instead of still images
in our experiment, to simulate slow real movement from a pilot point of view. All clips were shown
to participants in random order.

Apparatus: An EyeLink 1000 system (SR Research) was used to collect Eye Tracking data at a
frequency of 1000Hz. Each participant was at a distance of 76 cm from a LCD screen on gamma
display, so that each pixel subtended a visual angle of 0.022 deg /px. All video clips were rendered
at 1024× 760 pixels (22.5 deg×16.7 deg) and a frame rate of 24fps. Eye movements with velocity
over 22 deg /s and acceleration over 4000 deg /s2 were qualified as saccades. Every trial began with
a fixation cross, where each subject had to fixate the cross with a tolerance of 1 deg.

4 Foveated Feature Congestion
A regular Feature Congestion clutter score is computed by taking the mean of the Feature Congestion
map of the image or of a target ROI [12]. We propose a Foveated Feature Congestion (FFC) model
that outputs a score which takes into account two main terms: 1) a regular Feature Congestion (FC)
score and 2) a Peripheral Integration Feature Congestion (PIFC) coefficient that accounts the lower
spatial resolution of the visual periphery that are detrimental for target detection. The first term is
independent of fixation, while the second term will act as a non-linear gain that will either reduce or
amplify the clutter score depending on fixation distance from the target.

In this Section we will explain how to compute a PIFC, which will require creating a human-like
peripheral architecture as explained in Section 4.1. We then present our Foveated Feature Congestion
(FFC) clutter model in Section 4.2. Finally, we conclude by making a quantiative evaluation of the
FFC (Section 4.3) in its ability to predict variations of target detectability across images and retinal
eccentricity of the target.
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(b) Peripheral Architecture.
Figure 3: Construction of a Peripheral Architecture a la Freeman & Simoncelli [9] using the functions
described in Section 4.1 are shown in Fig. 3(a). The blue region in the center of Fig. 3(b), represents
the fovea where all information is preserved. Outer regions (in red), represent different parts of the
periphery at multiple eccentricities.

4.1 Creating a Peripheral Architecture
We used the Piranhas Toolkit to create a Freeman and Simoncelli [9] peripheral architecture. This
biologically inspired model has been tested and used to model V1 and V2 responses in human and
non-human primates with high precision for a variety of tasks [20, 10, 18, 2]. It is described by a
set of pooling (linear) regions that increase in size with retinal eccentricity. Each pooling region is
separable with respect to polar angle hn(θ) and log eccentricity gn(e), as described in Eq. 2 and
Eq. 3 respectively. These functions are multiplied for every angle and eccentricity (θ, e) and are
plotted in log polar coordinates to create the peripheral architecture as seen in Fig. 3.

f(x) =


cos2(π2 (

x−(t0−1)/2
t0

)); −(1 + t0)/2 < x ≤ (t0 − 1)/2

1; (t0 − 1)/2 < x ≤ (1− t0)/2
−cos2(π2 (

x−(1+t0)/2
t0

)) + 1; (1− t0)/2 < x ≤ (1 + t0)/2

(1)

hn(θ) = f
(θ − (wθn+ wθ(1−t0)

2 )

wθ

)
;wθ =

2π

Nθ
;n = 0, ..., Nθ − 1 (2)

gn(e) = f
( log(e)− [log(e0) + we(n+ 1)]

we

)
;we =

log(er)− log(e0)

Ne
;n = 0, ..., Ne − 1 (3)

The parameters we used match a V1 architecture with a scale of s = 0.25 , a visual radius of
er = 24deg, a fovea of 2 deg, with e0 = 0.25 deg 2, and t0 = 1/2. The scale defines the number of
eccentricities Ne, as well as the number of polar pooling regions Nθ from 〈0, 2π].
Although observers saw the original stimuli at 0.022 deg/pixel, with image size 1024 × 760; for
modelling purposes: we rescaled all images to half their size so the peripheral architecture could fit
all images under any fixation point. To preserve stimuli size in degrees after rescaling our images,
our foveal model used an input value of 0.044 deg/pixel (twice the value of experimental settings).
Resizing the image to half its size also allows the peripheral architecture to consume less CPU
computation time and memory.

4.2 Creating a Foveated Feature Congestion Model
Intuitively, a foveated clutter model that takes into account target search should score very low when
the target is in the fovea (near zero), and very high when the target is in the periphery. Thus, an
observer should find a target without difficulty, achieving a near perfect hit rate in the fovea, yet
the observer should have a lower hit rate in the periphery given crowding effects. Note that in the

2We remove regions with a radius smaller than the foveal radius, since there is no pooling in the fovea.
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Figure 4: Foveated Feature Congestion flow diagram: In this example, the point of fixation is at
15 deg away from the target (bottom right corner of the input image). A Feature Congestion map of
the image (top flow), and a Foveated Feature Congestion map (bottom flow) are created. The PIFC
coefficient is computed around an ROI centered at the target (bottom flow; zoomed box). The Feature
Congestion score is then multiplied by the PIFC coefficient, and the Foveated Feature Congestion
score is returned. Sample PIFC’s across eccentricities can be seen in the Supplementary Material.

periphery, not only should it be harder to detect a target, but it is also likely to confuse the target
with another object or region affine in shape, size, texture and/or pixel value (false alarms). Under
this assumption, we wish to modulate a clutter score (Feature Congestion) by a multiplicative factor,
given the target and fixation location. We call this multiplicative term: the PIFC coefficient, which is
defined over a 6 deg×6 deg ROI around the location of target t. The target itself was removed when
processing the clutter maps since it indirectly contributes to the ROI clutter score [3]. The PIFC aims
at quantifying the information loss around the target region due to peripheral processing.

To compute the PIFC, we use the before mentioned ROI, and calculate a mean difference from the
foveated clutter map with respect to the original non-foveated clutter map. If the target is foveated,
there should be little to no difference between a foveated map and the original map, thus setting the
PIFC coefficient value to near zero. However, as the target is farther away from the fovea, the PIFC
coefficient should be higher given pooling effects in the periphery. To create a foveated map, we use
Feature Congestion and apply max pooling on each pooling region after the peripheral architecture
has been stacked on top of the Feature Congestion map. Note that the FFC map values will depend on
the fixation location as shown in Fig. 4. The PIFC map is the result of subtracting the foveated map
from the unfoveated map in the ROI, and the score is a mean distance value between these two maps
(we use L1-norm, L2-norm or KL-divergence). Computational details can be seen in Algorithm 1.
Thus, we can resume our model in Eq. 4:

FFCf,tI = FCI × PIFCfROI(t) (4)

where FCI is the Feature Congestion score [24] of image I which is computed by the mean of the
Feature Congestion map RFC , and FFCf,tI is the Foveated Feature Congestion score of the image I ,
depending on the point of fixation f and the location of the target t.

4.3 Foveated Feature Congestion Evaluation
A visualization of each image and its respective Hit Rate vs Clutter Score across both foveated and
unfoveated models can be visualized in Fig 5. Qualitatively, it shows the importance of a PIFC
weighting term to the total image clutter score when performing our forced fixation search experiment.
Futhermore, a quantitative bootstrap correlation analysis comparing classic metrics (Image, Target,
ROI) against foveal metrics (FFC1, FFC2 and FFC3) shows that hit rate vs clutter scores are greater
for those foveated models with a PIFC: Image: (r(44) = −0.19 ± 0.13, p = 0.0774), Target:
(r(44) = −0.03± 0.14, p = 0.4204), ROI: (r(44) = −0.25± 0.14, p = 0.0392), FFC1 (L1-norm):
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Algorithm 1 Computation of Peripheral Integration Feature Congestion (PIFC) Coefficient
1: procedure COMPUTE PIFC OF ROI OF IMAGE I ON FIXATION f
2: Create a Peripheral Architecture A : (Nθ, Ne)
3: Offset image I in Peripheral Architecture by fixation f : (fx, fy).
4: Compute Regular Feature Congestion (RFC) map of image I
5: Set Peripheral Feature Congestion (P fFC) ⊂ IR2

+ map to zero.
6: Copy Feature Congestion values in fovea r0: P fFC(r0) = (RFC(r0))
7: for each pooling region ri overlapping I , s.t. 1 ≤ i ≤ Nθ ×Ne do
8: Get Regular Feature Congestion (FC) values in ri
9: Set Peripheral FC value to max Regular FC value: P fFC(ri) = max(RFC(ri))

10: end for
11: Crop PIFC map to ROI: pfFC = P fFC(ROI)
12: Crop FC map to ROI: rFC = RFC(ROI)

13: Choose Distance metric D between rFC and pfFC map
14: Compute Coefficient = mean(D(rFC , p

f
FC))

15: return Coefficient
16: end procedure
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(b) Foveated Feature Congestion with image ID’s
Figure 5: Fig. 5(a) shows the current limitations of global clutter metrics when engaging in Forced
Fixation Search. The same image under different eccentricities has the same clutter score yet possess
a different hit rate. Our proposed foveated model (Fig. 5(b)), compensates this difference through the
PIFC coefficient, and modulates each clutter score depending on fixation distance from target.

(r(44) = −0.82±0.04, p < 0.0001), FFC2 (L2-norm): (r(44) = −0.79±0.06, p < 0.0001), FFC3

(KL-divergence): (r(44) = −0.82± 0.04, p < 0.0001).

Notice that there is no difference in correlations between using the L1-norm, L2-norm or KL-
divergence distance for each model in terms of the correlation with hit rate. Table ??(Supp. Mat.)
also shows the highest correlation with a 6 × 6 deg ROI window across all metrics. Note that the
same analysis can not be applied to false alarms, since it is indistinguishable to separate a false
alarm at 1 deg from 15 deg (the target is not present, so there is no real eccentricity away from
fixation). However as mentioned in the Methods section, fixation location for target absent trials
in the experiment were placed assuming a location from its matching target present image. It is
important that target present and absent fixations have the same distributions for each eccentricity.

5 Discussion
In general, images that have low Feature Congestion have less gain in PIFC coefficients as eccentricity
increases. While images with high clutter have higher gain in PIFC coefficients. Consequently, the
difference of FFC between different images increases nonlinearly with eccentricity, as observed in
Fig. 6. This is our main contribution, as these differences in clutter score as a function of eccentricity
do not exist for regular Feature Congestion, and these differences in scores should be able to correlate
with human performance in target detection.
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(b) PIFC (L1-norm) vs Eccentricity.
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Figure 6: Feature Congestion (FC) vs Foveated Feature Congestion (FFC). In Fig. 6(a) we see
that clutter stays constant across different eccentricities for a forced fixation task. Our FFC model
(Fig. 6(c)) enriches the FC model, by showing how clutter increases as a function of eccentricity
through the PIFC in Fig. 6(b).
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Figure 7: Dense and Foveated representations of multiple models assuming a center point of fixation.

Our model is also different from the van der Berg et al. [26] model since our peripheral architecture
uses: a biologically inspired peripheral architecture with log polar regions that provide anisotropic
pooling [15] rather than isotropic gaussian pooling as a linear function of eccentricity [26, 6]; we used
region-based max pooling for each final feature map instead of pixel-based mean pooling (gaussians)
per each scale (which allows for stronger differences); this final difference also makes our model
computationally more efficient running at 700ms per image, vs 180s per image for the Crowding
model (×250 speed up). A home-brewed Crowding Model applied to our forced fixation experiment
resulted in a correlation of (r(44) = −0.23± 0.13, p = 0.0469), equivalent to using a non foveated
metric such as regular Feature Congestion (r(44) = −0.19± 0.13, p = 0.0774).

We finally extended our model to create foveated(FoV) versions of Edge Density(ED) [19], Sub-
band Entropy(SE) [25, 24] and ProtoObject Segmentation(PS) [28] showing that correlations for
all foveated versions are stronger than non-foveated versions for the same task: rED = −0.21,
rED+FoV = −0.76, rSE = −0.19, rSE+FoV = −0.77, rPS = −0.30, but rPS+FoV = −0.74.
Note that the highest foveated correlation is FC: rFC+FoV = −0.82, despite rFC = −0.19 under a
L1-norm loss of the PIFC. Feature Congestion has a dense representation, is more bio-inspired than
the other models, and outperforms in the periphery. See Figure 7. An overview of creating dense and
foveated versions for previously mentioned models can be seen in the Supp. Material.

6 Conclusion
In this paper we have introduced a peripheral architecture that shows detrimental effects of different
eccentricities on target detection, that helps us model clutter for forced fixation experiments. We
introduced a forced fixation experimental design for clutter research; we defined a biologically
inspired peripheral architecture that pools features in V1; and we stacked the previously mentioned
peripheral architecture on top of a Feature Congestion map to create a Foveated Feature Congestion
(FFC) model – and we extended this pipeline to other clutter models. We showed that the FFC
model better explains loss in target detection performance as a function of eccentricity through the
introduction of the Peripheral Integration Feature Congestion coefficient which varies non linearly.

8



Acknowledgements
We would like to thank Miguel Lago and Aditya Jonnalagadda for useful proof-reads and revisions,
as well as Mordechai Juni, N.C. Puneeth, and Emre Akbas for useful suggestions. This work has been
sponsored by the U.S. Army Research Office and the Regents of the University of California, through
Contract Number W911NF-09-0001 for the Institute for Collaborative Biotechnologies, and that the
content of the information does not necessarily reflect the position or the policy of the Government or
the Regents of the University of California, and no official endorsement should be inferred.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels. Technical report,

2010.
[2] E. Akbas and M. P. Eckstein. Object detection through exploration with a foveated visual field. arXiv

preprint arXiv:1408.0814, 2014.
[3] M. F. Asher, D. J. Tolhurst, T. Troscianko, and I. D. Gilchrist. Regional effects of clutter on human target

detection performance. Journal of vision, 13(5):25–25, 2013.
[4] M. J. Bravo and H. Farid. A scale invariant measure of clutter. Journal of Vision, 8(1):23–23, 2008.
[5] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code. Communications, IEEE

Transactions on, 31(4):532–540, 1983.
[6] R. Dubey, C. S. Soon, and P.-J. B. Hsieh. A blurring based model of peripheral vision predicts visual

search performances. Journal of Vision, 14(10):935–935, 2014.
[7] M. P. Eckstein. Visual search: A retrospective. Journal of Vision, 11(5):14–14, 2011.
[8] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. International

Journal of Computer Vision, 59(2):167–181, 2004.
[9] J. Freeman and E. P. Simoncelli. Metamers of the ventral stream. Nature neuroscience, 14(9):1195–1201,

2011.
[10] J. Freeman, C. M. Ziemba, D. J. Heeger, E. P. Simoncelli, and J. A. Movshon. A functional and perceptual

signature of the second visual area in primates. Nature neuroscience, 16(7):974–981, 2013.
[11] K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a density function, with applications in

pattern recognition. Information Theory, IEEE Transactions on, 21(1):32–40, 1975.
[12] J. M. Henderson, M. Chanceaux, and T. J. Smith. The influence of clutter on real-world scene search:

Evidence from search efficiency and eye movements. Journal of Vision, 9(1):32–32, 2009.
[13] S. Keshvari and R. Rosenholtz. Pooling of continuous features provides a unifying account of crowding.

Journal of Vision, 16(39), 2016.
[14] M. S. Landy and J. R. Bergen. Texture segregation and orientation gradient. Vision research, 31(4):679–691,

1991.
[15] D. M. Levi. Visual crowding. Current Biology, 21(18):R678–R679, 2011.
[16] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi. Turbopixels: Fast

superpixels using geometric flows. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
31(12):2290–2297, 2009.

[17] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpixel segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2097–2104. IEEE, 2011.

[18] J. A. Movshon and E. P. Simoncelli. Representation of naturalistic image structure in the primate visual
cortex. In Cold Spring Harbor symposia on quantitative biology, volume 79, pages 115–122. Cold Spring
Harbor Laboratory Press, 2014.

[19] A. Oliva, M. L. Mack, M. Shrestha, and A. Peeper. Identifying the perceptual dimensions of visual
complexity of scenes.

[20] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet
coefficients. International Journal of Computer Vision, 40(1):49–70, 2000.

[21] R. Pramod and S. Arun. Do computational models differ systematically from human object perception?
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1601–1609,
2016.

[22] R. Rosenholtz, J. Huang, A. Raj, B. J. Balas, and L. Ilie. A summary statistic representation in peripheral
vision explains visual search. Journal of vision, 12(4):14–14, 2012.

[23] R. Rosenholtz, Y. Li, J. Mansfield, and Z. Jin. Feature congestion: a measure of display clutter. In
Proceedings of the SIGCHI conference on Human factors in computing systems, pages 761–770. ACM,
2005.

[24] R. Rosenholtz, Y. Li, and L. Nakano. Measuring visual clutter. Journal of vision, 7(2):17–17, 2007.
[25] E. P. Simoncelli and W. T. Freeman. The steerable pyramid: A flexible architecture for multi-scale

derivative computation. In icip, page 3444. IEEE, 1995.
[26] R. van den Berg, F. W. Cornelissen, and J. B. Roerdink. A crowding model of visual clutter. Journal of

Vision, 9(4):24–24, 2009.
[27] C.-P. Yu, W.-Y. Hua, D. Samaras, and G. Zelinsky. Modeling clutter perception using parametric proto-

object partitioning. In Advances in Neural Information Processing Systems, pages 118–126, 2013.
[28] C.-P. Yu, D. Samaras, and G. J. Zelinsky. Modeling visual clutter perception using proto-object segmenta-

tion. Journal of vision, 14(7):4–4, 2014.

9


