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Abstract

In this paper, we prove a conjecture published in 1989 and also partially address
an open problem announced at the Conference on Learning Theory (COLT) 2015.
With no unrealistic assumption, we first prove the following statements for the
squared loss function of deep linear neural networks with any depth and any
widths: 1) the function is non-convex and non-concave, 2) every local minimum is
a global minimum, 3) every critical point that is not a global minimum is a saddle
point, and 4) there exist “bad” saddle points (where the Hessian has no negative
eigenvalue) for the deeper networks (with more than three layers), whereas there
is no bad saddle point for the shallow networks (with three layers). Moreover, for
deep nonlinear neural networks, we prove the same four statements via a reduction
to a deep linear model under the independence assumption adopted from recent
work. As a result, we present an instance, for which we can answer the following
question: how difficult is it to directly train a deep model in theory? It is more dif-
ficult than the classical machine learning models (because of the non-convexity),
but not too difficult (because of the nonexistence of poor local minima). Further-
more, the mathematically proven existence of bad saddle points for deeper models
would suggest a possible open problem. We note that even though we have ad-
vanced the theoretical foundations of deep learning and non-convex optimization,
there is still a gap between theory and practice.

1 Introduction

Deep learning has been a great practical success in many fields, including the fields of computer
vision, machine learning, and artificial intelligence. In addition to its practical success, theoretical
results have shown that deep learning is attractive in terms of its generalization properties (Livni
et al., 2014; Mhaskaret al., 2016). That is, deep learning introduces good function classes that
may have a low capacity in the VC sense while being able to represent target functions of interest
well. However, deep learning requires us to deal with seemingly intractable optimization problems.
Typically, training of a deep model is conducted via non-convex optimization. Because finding a
global minimum of ageneralnon-convex function is an NP-complete problem (Murty & Kabadi,
1987), a hope is that a function induced by a deep model has some structure that makes the non-
convex optimization tractable. Unfortunately, it was shown in 1992 that training a very simple
neural network is indeed NP-hard (Blum & Rivest, 1992). In the past, such theoretical concerns in
optimization played a major role in shrinking the field of deep learning. That is, many researchers
instead favored classical machining learning models (with or without a kernel approach) that require
only convex optimization. While the recent great practical successes have revived the field, we do
not yet know what makes optimization in deep learning tractable in theory.

In this paper, as a step toward establishing the optimization theory for deep learning, we prove a
conjecture noted in (Goodfellowet al., 2016) for deeplinear networks, and also address an open
problem announced in (Choromanskaet al., 2015b) for deepnonlinear networks. Moreover, for
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both the conjecture and the open problem, we prove more general and tighter statements than those
previously given (in the ways explained in each section).

2 Deep linear neural networks

Given the absence of a theoretical understanding of deep nonlinear neural networks,Goodfellow
et al. (2016) noted that it is beneficial to theoretically analyze the loss functions of simpler models,
i.e., deeplinear neural networks. The function class of a linear multilayer neural network only
contains functions that are linear with respect to inputs. However, their loss functions are non-
convex in the weight parameters and thus nontrivial.Saxeet al. (2014) empirically showed that
the optimization of deeplinear models exhibits similar properties to those of the optimization of
deepnonlinear models. Ultimately, for theoretical development, it is natural to start with linear
models before working with nonlinear models (as noted inBaldi & Lu, 2012), and yet even for
linear models, the understanding is scarce when the models becomedeep.

2.1 Model and notation

We begin by defining the notation. LetH be the number of hidden layers, and let(X,Y ) be the
training data set, withY ∈ Rdy×m and X ∈ Rdx×m, wherem is the number of data points.
Here, dy ≥ 1 and dx ≥ 1 are the number of components (or dimensions) of the outputs and
inputs, respectively. LetΣ = Y XT (XXT )−1XY T . We denote the model (weight) parameters by
W , which consists of the entries of the parameter matrices corresponding to each layer:WH+1 ∈
Rdy×dH , . . . ,Wk ∈ Rdk×dk−1 , . . . ,W1 ∈ Rd1×dx . Here,dk represents the width of thek-th layer,
where the0-th layer is the input layer and the(H + 1)-th layer is the output layer (i.e.,d0 = dx

anddH+1 = dy). Let Idk
be thedk × dk identity matrix. Letp = min(dH , . . . , d1) be the smallest

width of a hidden layer. We denote the(j, i)-th entry of a matrixM by Mj,i. We also denote the
j-th row vector ofM by Mj,∙ and thei-th column vector ofM by M∙,i.

We can then write the output of a feedforward deep linearmodel,Y (W,X) ∈ Rdy×m, as

Y (W,X) = WH+1WHWH−1 ∙ ∙ ∙ W2W1X.

We consider one of the most widely used loss functions, squared error loss:

L̄(W ) =
1
2

m∑

i=1

‖Y (W,X)∙,i − Y∙,i‖
2
2 =

1
2
‖Y (W,X) − Y ‖2

F ,

where‖∙‖F is the Frobenius norm. Note that2m L̄(W ) is the usualmeansquared error, for which
all of our results hold as well, since multiplyinḡL(W ) by a constant inW results in an equivalent
optimization problem.

2.2 Background

Recently,Goodfellowet al. (2016) remarked that whenBaldi & Hornik (1989) proved Proposition
2.1for shallow linear networks, they stated Conjecture2.2without proof for deep linear networks.

Proposition 2.1 (Baldi & Hornik, 1989: shallow linear network)Assume thatH = 1 (i.e.,
Y (W,X) = W2W1X), assume thatXXT and XY T are invertible, assume thatΣ hasdy dis-
tinct eigenvalues, and assume thatp < dx, p < dy anddy = dx (e.g., an autoencoder). Then, the
loss functionL̄(W ) has the following properties:

(i) It is convex in each matrixW1 (or W2) when the otherW2 (or W1) is fixed.

(ii) Every local minimum is a global minimum.

Conjecture 2.2 (Baldi & Hornik, 1989: deeplinear network)Assume the same set of conditions as
in Proposition2.1except forH = 1. Then, the loss function̄L(W ) has the following properties:

(i) For any k ∈ {1, . . . , H + 1}, it is convex in each matrixWk when for allk′ 6= k, Wk′ is
fixed.

(ii) Every local minimum is a global minimum.
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Baldi & Lu (2012) recently provided a proof for Conjecture2.2 (i), leaving the proof of Conjecture
2.2 (ii) for future work. They also noted that the case ofp ≥ dx = dx is of interest, but requires
further analysis, even for a shallow network withH = 1. An informal discussion of Conjecture2.2
can be found in (Baldi, 1989). In AppendixD, we provide a more detailed discussion of this subject.

2.3 Results

We now state our main theoretical results for deep linear networks, which imply Conjecture2.2 (ii)
as well as obtain further information regarding the critical points with more generality.

Theorem 2.3 (Loss surface ofdeeplinear networks)Assume thatXXT andXY T are of full rank
with dy ≤ dx and Σ hasdy distinct eigenvalues. Then, for any depthH ≥ 1 and for any layer
widths and any input-output dimensionsdy, dH , dH−1, . . . , d1, dx ≥ 1 (the widths can arbitrarily
differ from each other and fromdy anddx), the loss function̄L(W ) has the following properties:

(i) It is non-convex and non-concave.

(ii) Every local minimum is a global minimum.

(iii) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(WH ∙ ∙ ∙W2) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvalue.1

Corollary 2.4 (Effect of deepness on the loss surface)Assume the same set of conditions as in
Theorem2.3 and consider the loss function̄L(W ). For three-layer networks (i.e.,H = 1), the
Hessian at any saddle point has at least one (strictly) negative eigenvalue. In contrast, for networks
deeper than three layers (i.e.,H ≥ 2), there exist saddle points at which the Hessian does not have
any negative eigenvalue.

The assumptions of having full rank and distinct eigenvalues in the training data matrices in Theorem
2.3are realistic and practically easy to satisfy, as discussed in previous work (e.g.,Baldi & Hornik,
1989). In contrast to related previous work (Baldi & Hornik, 1989; Baldi & Lu, 2012), we do not
assume the invertibility ofXY T , p < dx, p < dy nordy = dx. In Theorem2.3, p ≥ dx is allowed,
as well as many other relationships among the widths of the layers. Therefore, we successfully
proved Conjecture2.2 (ii) and a more general statement. Moreover, Theorem2.3 (iv) and Corollary
2.4provide additional information regarding the important properties of saddle points.

Theorem2.3presents an instance of a deep model that would be tractable to train with direct greedy
optimization, such as gradient-based methods. If there are “poor” local minima with large loss values
everywhere, we would have to search the entire space,2 the volume of which increases exponentially
with the number of variables. This is a major cause of NP-hardness for non-convex optimization. In
contrast, if there are no poor local minima as Theorem2.3(ii) states, then saddle points are the main
remaining concern in terms of tractability.3 Because the Hessian of̄L(W ) is Lipschitz continuous, if
the Hessian at a saddle point has a negative eigenvalue, it starts appearing as we approach the saddle
point. Thus, Theorem2.3 and Corollary2.4 suggest that for 1-hidden layer networks, training can
be done in polynomial time with a second order method or even with a modified stochastic gradient
decent method, as discussed in (Ge et al., 2015). For deeper networks, Corollary2.4 states that
there exist “bad” saddle points in the sense that the Hessian at the point has no negative eigenvalue.
However, we know exactly when this can happen from Theorem2.3 (iv) in our deep models. We
leave the development of efficient methods to deal with such a bad saddle point in general deep
models as an open problem.

3 Deep nonlinear neural networks

Now that we have obtained a comprehensive understanding of the loss surface of deeplinear models,
we discuss deepnonlinearmodels. For a practical deep nonlinear neural network, our theoretical
results so far for the deep linear models can be interpreted as the following: depending onthe

1If H = 1, to be succinct, we defineWH ∙ ∙ ∙W2 = W1 ∙ ∙ ∙W2 , Id1 , with a slight abuse of notation.
2Typically, we do this by assuming smoothness in the values of the loss function.
3Other problems such as the ill-conditioning can make it difficult to obtain a fast convergence rate.
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nonlinear activation mechanism and architecture, training would not be arbitrarily difficult. While
theoretical formalization of this intuition is left to future work, we address a recently proposed open
problem for deep nonlinear networks in the rest of this section.

3.1 Model

We use the same notation as for the deep linear models, defined in the beginning of Section2.1. The
output of deep nonlinear neural network,Ŷ (W,X) ∈ Rdy×m, is defined as

Ŷ(W,X) = qσH+1(WH+1σH(WHσH−1(WH−1 ∙ ∙ ∙ σ2(W2σ1(W1X)) ∙ ∙∙))),

whereq ∈ R is simply a normalization factor, the value of which is specified later. Here,σk :
Rdk×m → Rdk×m is the element-wise rectified linear function:

σk











b11 . . . b1m

...
...

...
bdk1 ∙ ∙ ∙ bdkm









 =






σ̄(b11) . . . σ̄(b1m)

...
...

...
σ̄(bdk1) ∙ ∙ ∙ σ̄(bdkm)




 ,

whereσ̄(bij) = max(0, bij). In practice, we usually setσH+1 to be an identity map in the last layer,
in which case all our theoretical results still hold true.

3.2 Background

Following the work byDauphinet al. (2014), Choromanskaet al. (2015a) investigated the connec-
tion between the loss functions of deep nonlinear networks and a function well-studied via random
matrix theory (i.e., the Hamiltonian of the spherical spin-glass model). They explained that their
theoretical results relied on severalunrealisticassumptions. Later,Choromanskaet al.(2015b) sug-
gested at the Conference on Learning Theory (COLT) 2015 that discarding these assumptions is an
important open problem. The assumptions were labeled A1p, A2p, A3p, A4p, A5u, A6u, and A7p.

In this paper, we successfully discard most of these assumptions. In particular, we only use a weaker
version of assumptions A1p and A5u. We refer to the part of assumption A1p (resp. A5u) that
corresponds only to themodelassumption as A1p-m (resp. A5u-m). Note that assumptions A1p-m
and A5u-m are explicitly used in the previous work (Choromanskaet al., 2015a) and included in
A1p and A5u (i.e., we arenot making new assumptions here).

As the modelŶ (W,X) ∈ Rdy×m represents a directed acyclic graph, we can express an output
from one of the units in the output layer as

Ŷ (W,X)j,i = q
Ψ∑

p=1

[Xi](j,p)[Zi](j,p)

H+1∏

k=1

w
(k)
(j,p). (1)

Here,Ψ is the total number of paths from the inputs to eachj-th output in the directed acyclic graph.
In addition, [Xi](j,p) ∈ R represents the entry of thei-th sample input datum that is used in the

p-th path of thej-th output. For each layerk, w
(k)
(j,p) ∈ R is the entry ofWk that is used in thep-th

path of thej-th output. Finally,[Zi](j,p) ∈ {0, 1} represents whether thep-th path of thej-th output
is active ([Zi](j,p) = 1) or not ([Zi](j,p) = 0) for each samplei as a result of the rectified linear
activation.

Assumption A1p-m assumes that theZ ’s are Bernoulli random variables with the same probability
of success,Pr([Zi](j,p) = 1) = ρ for all i and(j, p). Assumption A5u-m assumes that theZ ’s are
independent from the inputX ’s and parametersw’s. With assumptions A1p-m and A5u-m, we can
writeEZ [Ŷ (W,X)j,i] = q

∑Ψ
p=1[Xi](j,p)ρ

∏H+1
k=1 w

(k)
(j,p).

Choromanskaet al. (2015b) noted that A6u is unrealistic because it implies that the inputs are not
shared among the paths. In addition, Assumption A5u is unrealistic because it implies that the
activation of any path is independent of the input data. To understand all of the seven assumptions
(A1p, A2p, A3p, A4p, A5u, A6u, and A7p), we note thatChoromanskaet al. (2015b,a) used these
seven assumptions to reduce their loss functions of nonlinear neural networks to:

Lprevious(W ) =
1

λH/2

λ∑

i1,i2,...,iH+1=1

Xi1,i2,...,iH+1

H+1∏

k=1

wik
subject to

1
λ

λ∑

i=1

w2
i = 1,

4



whereλ ∈ R is a constant related to the size of the network. For our purpose, the detailed definitions
of the symbols are not important (X andw are defined in the same way as in equation1). Here,
we point out thatthe target functionY has disappeared in the lossLprevious(W ) (i.e., the loss value
does not depend on the target function). That is, whatever the data points ofY are, their loss values
are the same. Moreover,the nonlinear activation function has disappeared inLprevious(W ) (and the
nonlinearity is not taken into account inX or w). In the next section, by using only a strict subset
of the set of these seven assumptions, we reduce our loss function to a more realistic loss function
of an actual deep model.

Proposition 3.1 (High-level description of a main result inChoromanskaet al., 2015a) Assume
A1p (including A1p-m), A2p, A3p, A4p, A5u (including A5u-m), A6u, and A7p (Choromanska
et al., 2015b). Furthermore, assume thatdy = 1. Then, the expected loss of each sample datum,
Lprevious(W ), has the following property: above a certain loss value, the number of local minima
diminishes exponentially as the loss value increases.

3.3 Results

We now state our theoretical result, which partially address the aforementioned open problem. We
consider loss functions for all the data points and all possible output dimensionalities (i.e., vectored-
valued output). More concretely, we consider the squared error loss with expectation,L(W ) =
1
2‖EZ [Ŷ (W,X) − Y ]‖2

F .

Corollary 3.2 (Loss surface of deep nonlinear networks)Assume A1p-m and A5u-m. Letq = ρ−1.
Then, we can reduce the loss function of the deep nonlinear modelL(W ) to that of the deep linear
modelL̄(W ). Therefore, with the same set of conditions as in Theorem2.3, the loss function of the
deep nonlinear model has the following properties:

(i) It is non-convex and non-concave.

(ii) Every local minimum is a global minimum.

(iii) Every critical point that is not a global minimum is a saddle point.

(iv) The saddle points have the properties stated in Theorem2.3(iv) and Corollary2.4.

Comparing Corollary3.2 and Proposition3.1, we can see that we successfully discarded assump-
tions A2p, A3p, A4p, A6u, and A7p while obtaining a tighter statement in the following sense:
Corollary3.2states with fewer unrealistic assumptions that there is no poor local minimum, whereas
Proposition3.1roughly asserts with more unrealistic assumptions that the number of poor local min-
imum may be not too large. Furthermore, our modelŶ is strictly more general than the model an-
alyzed in (Choromanskaet al., 2015a,b) (i.e., this paper’s model class contains the previous work’s
model class but not vice versa).

4 Proof Idea and Important lemmas

In this section, we provide overviews of the proofs of the theoretical results. Our proof approach
largely differs from those in previous work (Baldi & Hornik, 1989; Baldi & Lu, 2012; Choromanska
et al., 2015a,b). In contrast to (Baldi & Hornik, 1989; Baldi & Lu, 2012), we need a different
approach to deal with the “bad” saddle points that start appearing when the model becomes deeper
(see Section2.3), as well as to obtain more comprehensive properties of the critical points with
more generality. While the previous proofs heavily rely on the first-order information, the main
parts of our proofs take advantage of the second order information. In contrast,Choromanskaet al.
(2015a,b) used the seven assumptions to relate the loss functions of deep models to a function
previously analyzed with a tool of random matrix theory. With no reshaping assumptions (A3p, A4p,
and A6u), we cannot relate our loss function to such a function. Moreover, with no distributional
assumptions (A2p and A6u) (except the activation), our Hessian is deterministic, and therefore, even
random matrix theory itself is insufficient for our purpose. Furthermore, with no spherical constraint
assumption (A7p), the number of local minima in our loss function can be uncountable.

One natural strategy to proceed toward Theorem2.3and Corollary3.2would be to use the first-order
and second-order necessary conditions of local minima (e.g., the gradient is zero and the Hessian is
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positive semidefinite).4 However, are the first-order and second-order conditions sufficient to prove
Theorem2.3 and Corollary3.2? Corollaries2.4 show that the answer is negative fordeepmodels
with H ≥ 2, while it is affirmative for shallow models withH = 1. Thus, for deep models, a simple
use of the first-order and second-order information is insufficient to characterize the properties of
each critical point. In addition to the complexity of the Hessian of thedeepmodels, this suggests that
we must strategically extract the second order information. Accordingly, in section4.2, we obtain
an organized representation of the Hessian in Lemma4.3 and strategically extract the information
in Lemmas4.4and4.6. With the extracted information, we discuss the proofs of Theorem2.3and
Corollary3.2 in section4.3.

4.1 Notations

Let M ⊗ M ′ be the Kronecker product ofM andM ′. LetDvec(W T
k )f(∙) = ∂f(∙)

∂vec(W T
k

)
be the partial

derivative off with respect tovec(WT
k ) in the numerator layout. That is, iff : Rdin → Rdout , we

haveDvec(W T
k )f(∙) ∈ Rdout×(dkdk−1). Let R(M) be the range (or the column space) of a matrix

M . Let M− be any generalized inverse ofM . When we write a generalized inverse in a condition
or statement, we mean it for any generalized inverse (i.e., we omit the universal quantifier over
generalized inverses, as this is clear). Letr = (Y (W,X) − Y )T ∈ Rm×dy be an error matrix.
Let C = WH+1 ∙ ∙ ∙ W2 ∈ Rdy×d1 . When we writeWk ∙ ∙ ∙Wk′ , we generally intend thatk > k′

and the expression denotes a product overWj for integerk ≥ j ≥ k′. For notational compactness,
two additional cases can arise: whenk = k′, the expression denotes simplyWk, and whenk < k′,
it denotesIdk

. For example, in the statement of Lemma4.1, if we setk := H + 1, we have that
WH+1WH ∙ ∙ ∙WH+2 , Idy .

In Lemma4.6 and the proofs of Theorems2.3, we use the following additional notation. We de-
note an eigendecomposition ofΣ asΣ = UΛUT , where the entries of the eigenvalues are ordered
asΛ1,1 > ∙ ∙ ∙ > Λdy,dy with corresponding orthogonal eigenvector matrixU = [u1, . . . , udy ].
For eachk ∈ {1, . . . dy}, uk ∈ Rdy×1 is a column eigenvector. Let̄p = rank(C) ∈
{1, . . . , min(dy, p)}. We define a matrix containing the subset of thep̄ largest eigenvectors as
Up̄ = [u1, . . . , up̄]. Given any ordered setIp̄ = {i1, . . . , ip̄ | 1 ≤ i1 < ∙ ∙ ∙ < ip̄ ≤ min(dy, p)},
we define a matrix containing the subset of the corresponding eigenvectors asUIp̄

= [ui1 , . . . , uip̄
].

Note the difference betweenUp̄ andUIp̄
.

4.2 Lemmas

As discussed above, we extracted the first-order and second-order conditions of local minima as
the following lemmas. The lemmas provided here are also intended to be our additional theoretical
results that may lead to further insights. The proofs of the lemmas are in the appendix.

Lemma 4.1 (Critical point necessary and sufficient condition)W is a critical point ofL̄(W ) if and
only if for all k ∈ {1, ..., H + 1},

(
Dvec(W T

k )L̄(W )
)T

=
(
WH+1WH ∙ ∙ ∙Wk+1 ⊗ (Wk−1 ∙ ∙ ∙W2W1X)T

)T
vec(r) = 0.

Lemma 4.2 (Representation at critical point)If W is a critical point ofL̄(W ), then

WH+1WH ∙ ∙ ∙ W2W1 = C(CT C)−CT Y XT (XXT )−1.

Lemma 4.3 (Block Hessian with Kronecker product)Write the entries of∇2L̄(W ) in a block form
as

∇2L̄(W ) =








Dvec(W T
H+1)

(
Dvec(W T

H+1)
L̄(W )

)T

∙ ∙ ∙ Dvec(W T
1 )

(
Dvec(W T

H+1)
L̄(W )

)T

...
...

...

Dvec(W T
H+1)

(
Dvec(W T

1 )L̄(W )
)T

∙ ∙ ∙ Dvec(W T
1 )

(
Dvec(W T

1 )L̄(W )
)T








.

4For a non-convex andnon-differentiablefunction, we can still have a first-order and second-order necessary
condition (e.g.,Rockafellar & Wets, 2009, theorem 13.24, p. 606).
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Then, for anyk ∈ {1, ..., H + 1},

Dvec(W T
k )

(
Dvec(W T

k )L̄(W )
)T

=
(
(WH+1 ∙ ∙ ∙Wk+1)

T (WH+1 ∙ ∙ ∙Wk+1) ⊗ (Wk−1 ∙ ∙ ∙W1X)(Wk−1 ∙ ∙ ∙W1X)T
)
,

and, for anyk ∈ {2, ..., H + 1},

Dvec(W T
k )

(
Dvec(W T

1 )L̄(W )
)T

=
(
CT (WH+1 ∙ ∙ ∙Wk+1) ⊗ X(Wk−1 ∙ ∙ ∙W1X)T

)
+

[(Wk−1 ∙ ∙ ∙W2)
T ⊗ X] [Idk−1 ⊗ (rWH+1 ∙ ∙ ∙Wk+1)∙,1 . . . Idk−1 ⊗ (rWH+1 ∙ ∙ ∙Wk+1)∙,dk ] .

Lemma 4.4 (Hessian semidefinite necessary condition)If ∇2L̄(W ) is positive semidefinite or neg-
ative semidefinite at a critical point, then for anyk ∈ {2, ..., H + 1},

R((Wk−1 ∙ ∙ ∙W3W2)
T ) ⊆ R(CT C) or XrWH+1WH ∙ ∙ ∙Wk+1 = 0.

Corollary 4.5 If ∇2L̄(W ) is positive semidefinite or negative semidefinite at a critical point, then
for anyk ∈ {2, ..., H + 1},

rank(WH+1WH ∙ ∙ ∙Wk) ≥ rank(Wk−1 ∙ ∙ ∙W3W2) or XrWH+1WH ∙ ∙ ∙Wk+1 = 0.

Lemma 4.6 (Hessian positive semidefinite necessary condition)If ∇2L̄(W ) is positive semidefinite
at a critical point, then

C(CT C)−CT = Up̄U
T
p̄ or Xr = 0.

4.3 Proof sketches of theorems

We now provide the proof sketch of Theorem2.3and Corollary3.2. We complete the proofs in the
appendix.

4.3.1 Proof sketch of Theorem2.3 (ii)

By case analysis, we show that any point that satisfies the necessary conditions and the definition of
a local minimum is a globalminimum.

CaseI: rank(WH ∙ ∙ ∙W2) = p anddy ≤ p: If dy < p, Corollary 4.5 with k = H + 1 implies
the necessary condition of local minima thatXr = 0. If dy = p, Lemma4.6 with k = H + 1
andk = 2, combined with the fact thatR(C) ⊆ R(Y XT ), implies the necessary condition that
Xr = 0. Therefore, we have the necessary condition of local minima,Xr = 0 . Interpreting
conditionXr = 0, we conclude thatW achievingXr = 0 is indeed a globalminimum.

CaseII: rank(WH ∙ ∙ ∙W2) = p and dy > p: From Lemma4.6, we have the necessary condi-
tion that C(CT C)−CT = Up̄U

T
p̄ or Xr = 0. If Xr = 0, using the exact same proof as in

Case I, it is a global minimum. Suppose then thatC(CT C)−CT = Up̄U
T
p̄ . From Lemma4.4

with k = H + 1, we conclude that̄p , rank(C) = p. Then, from Lemma4.2, we write
WH+1 ∙ ∙ ∙W1 = UpU

T
p Y XT (XXT )−1, which is the orthogonal projection onto the subspace

spanned by thep eigenvectors corresponding to thep largest eigenvalues following the ordinary
least square regression matrix. This is indeed the expression of a globalminimum.

CaseIII: rank(WH ∙ ∙ ∙W2) < p: We first show that ifrank(C) ≥ min(p, dy), every local min-
imum is a global minimum. Thus, we consider the case whererank(WH ∙ ∙ ∙W2) < p and
rank(C) < min(p, dy). In this case, by induction onk = {1, . . . , H+1}, we prove that we can have
rank(Wk ∙ ∙ ∙W1) ≥ min(p, dy) with arbitrarily small perturbation of each entry ofWk, . . . ,W1

without changing the value of̄L(W ). Once this is proved, along with the results of Case I and Case
II, we can immediately conclude that any point satisfying the definition of a local minimum is a
global minimum.

We first prove the statement for the base case withk = 1 by using an expression ofW1 that is
obtained by a first-order necessary condition: for an arbitraryL1,

W1 = (CT C)−CT Y XT (XXT )−1 + (I − (CT C)−CT C)L1.
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By using Lemma4.6 to obtain an expression ofC, we deduce that we can haverank(W1) ≥
min(p, dy) with arbitrarily small perturbation of each entry ofW1 without changing the loss value.

For the inductive step withk ∈ {2, . . . , H + 1}, from Lemma4.4, we use the following necessary
condition for the Hessian to be (positive or negative) semidefinite at a critical point: for anyk ∈
{2, . . . , H + 1},

R((Wk−1 ∙ ∙ ∙W2)
T ) ⊆ R(CT C) or XrWH+1 ∙ ∙ ∙Wk+1 = 0.

We use the inductive hypothesis to conclude that the first condition is false, and thus the second
condition must be satisfied at a candidate point of a local minimum. From the latter condition, with
extra steps, we can deduce that we can haverank(WkWk−1 ∙ ∙ ∙W1) ≥ min(p, dx) with arbitrarily
small perturbation of each entry ofWk while retaining the same loss value.

We conclude the induction, proving that we can haverank(C) ≥ rank(WH+1 ∙ ∙ ∙W1) ≥
min(p, dx) with arbitrarily small perturbation of each parameter without changing the value of
L̄(W ). Upon such a perturbation, we have the case whererank(C) ≥ min(p, dy), for which we
have already proven that every local minimum is a global minimum. Summarizing the above, any
point that satisfies the definition (and necessary conditions) of a local minimum is indeed a global
minimum. Therefore, we conclude the proof sketch of Theorem2.3 (ii) .

4.3.2 Proof sketch of Theorem2.3 (i), (iii) and (iv)
We can prove the non-convexity and non-concavity of this function simply from its Hessian (The-
orem2.3 (i)). That is, we can show that in the domain of the function, there exist points at which
the Hessian becomes indefinite. Indeed, the domain contains uncountably many points at which the
Hessian is indefinite.

We now consider Theorem2.3 (iii ): every critical point that is not a global minimum is a saddle
point. Combined with Theorem2.3 (ii) , which is proven independently, this is equivalent to the
statement that there are no local maxima. We first show that ifWH+1 ∙ ∙ ∙W2 6= 0, the loss function
always has some strictly increasing direction with respect toW1, and hence there is no local maxi-
mum. If WH+1 ∙ ∙ ∙W2 = 0, we show that at a critical point, if the Hessian is negative semidefinite
(i.e., a necessary condition of local maxima), we can haveWH+1 ∙ ∙ ∙W2 6= 0 with arbitrarily small
perturbation without changing the loss value. We can prove this by induction onk = 2, . . . , H + 1,
similar to the induction in the proof of Theorem2.3(ii) . This means that there is no local maximum.

Theorem2.3 (iv) follows Theorem2.3 (ii)-(iii) and the analyses for Case I and Case II in the proof
of Theorem2.3 (ii) ; whenrank(WH ∙ ∙ ∙W2) = p, if ∇2L̄(W ) � 0 at a critical point,W is a global
minimum.

4.3.3 Proof sketch of Corollary3.2
Since the activations are assumed to be random and independent, the effect of nonlinear activations
disappear by taking expectation. As a result, the loss functionL(W ) is reduced toL̄(W ).

5 Conclusion
In this paper, we addressed some open problems, pushing forward the theoretical foundations of
deep learning and non-convex optimization. For deeplinear neural networks, we proved the afore-
mentioned conjecture and more detailed statements with more generality. For deepnonlinearneural
networks, when compared with the previous work, we proved a tighter statement (in the way ex-
plained in section3) with more generality (dy can vary) and with strictly weaker model assumptions
(only two assumptions out of seven). However, our theory does not yet directly apply to the prac-
tical situation. To fill the gap between theory and practice, future work would further discard the
remaining two out of the seven assumptions made in previous work. Our new understanding of the
deep linear models at least provides the following theoretical fact: the bad local minima would arise
in a deep nonlinear model butonly as an effect of adding nonlinear activationsto the corresponding
deeplinear model. Thus, depending on the nonlinear activation mechanism and architecture, we
would be able to efficiently traindeepmodels.
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