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Abstract

In this paper, we prove a conjecture published in 1989 and also partially address
an open problem announced at the Conference on Learning Theory (COLT) 2015.
With no unrealistic assumption, we first prove the following statements for the
squared loss function of deep linear neural networks with any depth and any
widths: 1) the function is non-convex and non-concave, 2) every local minimum is
a global minimum, 3) every critical point that is not a global minimum is a saddle
point, and 4) there exist “bad” saddle points (where the Hessian has no negative
eigenvalue) for the deeper networks (with more than three layers), whereas there
is no bad saddle point for the shallow networks (with three layers). Moreover, for
deep nonlinear neural networks, we prove the same four statements via a reduction
to a deep linear model under the independence assumption adopted from recent
work. As a result, we present an instance, for which we can answer the following
question: how difficult is it to directly train a deep model in theory? It is more dif-
ficult than the classical machine learning models (because of the non-convexity),
but not too difficult (because of the nonexistence of poor local minima). Further-
more, the mathematically proven existence of bad saddle points for deeper models
would suggest a possible open problem. We note that even though we have ad-
vanced the theoretical foundations of deep learning and non-convex optimization,
there is still a gap between theory and practice.

1 Introduction

Deep learning has been a great practical success in many fields, including the fields of computer
vision, machine learning, and artificial intelligence. In addition to its practical success, theoretical
results have shown that deep learning is attractive in terms of its generalization projavies (
et_all, 2014 Mhaskaret al, 2Z016. That is, deep learning introduces good function classes that
may have a low capacity in the VC sense while being able to represent target functions of interest
well. However, deep learning requires us to deal with seemingly intractable optimization problems.
Typically, training of a deep model is conducted via non-convex optimization. Because finding a

global minimum of ageneralnon-convex function is an NP-complete problekiufty & Kabadi,

1987, a hope is that a function induced by a deep model has some structure that makes the non-
convex optimization tractable. Unfortunately, it was shown in 1992 that training a very simple
neural network is indeed NP-harBlim & Rivest T992. In the past, such theoretical concerns in
optimization played a major role in shrinking the field of deep learning. That is, many researchers
instead favored classical machining learning models (with or without a kernel approach) that require
only convex optimization. While the recent great practical successes have revived the field, we do

not yet know what makes optimization in deep learning tractable in theory.

In this paper, as a step toward establishing the optimization theory for deep learning, we prove a
conjecture noted inGgoodfellowet all, 2016 for deeplinear networks, and also address an open
problem announced irChoromanskat all, 207151 for deepnonlinear networks. Moreover, for
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both the conjecture and the open problem, we prove more general and tighter statements than those
previously given (in the ways explained in each section).

2 Deep linear neural networks

Given the absence of a theoretical understanding of deep nonlinear neural nefémokgelow

et all (2016 noted that it is beneficial to theoretically analyze the loss functions of simpler models,
i.e., deeplinear neural networks. The function class of a linear multilayer neural network only
contains functions that are linear with respect to inputs. However, their loss functions are non-
convex in the weight parameters and thus nontrivishxeet all (2014) empirically showed that

the optimization of deefinear models exhibits similar properties to those of the optimization of
deepnonlinear models. Ultimately, for theoretical development, it is natural to start with linear
models before working with nonlinear models (as note@aidi_ & 1T, 2017, and yet even for
linear models, the understanding is scarce when the models betampe

2.1 Model and notation

We begin by defining the notation. Lé&f be the number of hidden layers, and (&f, V") be the
training data set, wit ¢ R%>™ and X € R%*™, wherem is the number of data points.
Here,d, > 1 andd, > 1 are the number of components (or dimensions) of the outputs and
inputs, respectively. Let = YXT(XXT)~1 XY 7. We denote the model (weight) parameters by
W, which consists of the entries of the parameter matrices corresponding to eachidgyer: €
Rvxdu W, € R&xde—1 W, € Rh>xd= Here,d, represents the width of theth layer,
where the0-th layer is the input layer and thgf + 1)-th layer is the output layer (i.edy = d.
anddg1 = dy). Let Iy, be thed, x dj, identity matrix. Letp = min(dg, . ..,d;) be the smallest
width of a hidden layer. We denote tlig ¢)-th entry of a matrixM by M; ;. We also denote the
Jj-th row vector ofM by M; . and thei-th column vector of\/ by M. ;.

We can then write the output of a feedforward deep limeadel,Y (W, X) € R%*™ as

YW, X) =Wy WegWg_q--- WoW X.
We consider one of the most widely used loss functions, squared error loss:

_ 1< 1
L) = 5 SIV W, X). - Vil = SIV (W X) - Y3,
=1

where||-|| p is the Frobenius norm. Note th& (W) is the usuameansquared error, for which

all of our results hold as well, since multiplying( W) by a constant i}’ results in an equivalent
optimization problem.

2.2 Background

Recently Goodfellowef all (2016 remarked that wheBaldi-& Hornik (1989 proved Proposition
1 for shallow linear networks, they stated Conjectiiz2without proof for deep linear networks.

Proposition 2.1 (Baldi—& _Hornik, T989 shallow linear network)Assume thatd = 1 (i.e,
Y(W,X) = WoW;X), assume thal X7 and XY are invertible, assume tha& hasd, dis-
tinct eigenvalues, and assume that d,, p < d, andd, = d, (e.g., an autoencoder). Then, the
loss functionZ (W) has the following properties:

(i) Itis convex in each matri¥/; (or W) when the othefV, (or W) is fixed.

(i) Every local minimum is a global minimum.
Conjecture 2.2 (Baldix Hornik, T989 deeplinear network)Assume the same set of conditions as
in PropositionZ71 except forH = 1. Then, the loss functiof(1V) has the following properties:

() Foranyk € {1,...,H + 1}, itis convex in each matri{/, when for allk’ # k, Wy is
fixed.

(i) Every local minimum is a global minimum.



Baldi'& T (2012 recently provided a proof for Conjectuge2 (i), leaving the proof of Conjecture
22 (ii) for future work. They also noted that the casepof d, = d, is of interest, but requires
further analysis, even for a shallow network with= 1. An informal discussion of Conjectutz2
can be found inKaldl, T989. In AppendixD, we provide a more detailed discussion of this subject.

2.3 Results

We now state our main theoretical results for deep linear networks, which imply ConjEcii¢
as well as obtain further information regarding the critical points with more generality.

Theorem 2.3 (Loss surface ofleeplinear networks)Assume thak X7 and XY are of full rank
with d, < d, and X hasd, distinct eigenvalues. Then, for any degth> 1 and for any layer
widths and any input-output dimensioig, dg, dgr—1, - . .,d1,d,; > 1 (the widths can arbitrarily
differ from each other and fromd, andd,,), the loss functior (W) has the following properties:

(i) Itis non-convex and non-concave.
(ii) Every local minimum is a global minimum.
(iif) Every critical point that is not a global minimum is a saddle point.

(iv) If rank(Wpg --- W5) = p, then the Hessian at any saddle point has at least one (strictly)
negative eigenvaluk.

Corollary 2.4 (Effect of deepness on the loss surfagesume the same set of conditions as in
TheoremZ=3 and consider the loss functioi(W). For three-layer networks (i.ed = 1), the
Hessian at any saddle point has at least one (strictly) negative eigenvalue. In contrast, for networks
deeper than three layers (i.d > 2), there exist saddle points at which the Hessian does not have
any negative eigenvalue.

The assumptions of having full rank and distinct eigenvalues in the training data matrices in Theorem

3 are realistic and practically easy to satisfy, as discussed in previous workB@ad & Hornik,
1989. In contrast to related previous workdldi & Hornik, T989 Baldi & Tul, 2017, we do not
assume the invertibility oK Y?', p < d,,, p < d,, nord, = d,. In TheorenZ3, p > d,, is allowed,
as well as many other relationships among the widths of the layers. Therefore, we successfully
proved ConjecturE2 (ii) and a more general statement. Moreover, Thed&kiv) and Corollary

24 provide additional information regarding the important properties of saddle points.

TheorenZ3 presents an instance of a deep model that would be tractable to train with direct greedy
optimization, such as gradient-based methods. If there are “poor” local minima with large loss values
everywhere, we would have to search the entire sp#te yolume of which increases exponentially

with the number of variables. This is a major cause of NP-hardness for non-convex optimization. In
contrast, if there are no poor local minima as TheoBe&(ii) states, then saddle points are the main
remaining concern in terms of tractabiltyBecause the Hessian 6{17) is Lipschitz continuous, if

the Hessian at a saddle point has a negative eigenvalue, it starts appearing as we approach the saddle
point. Thus, Theorerda=3 and CorollaryZ4a suggest that for 1-hidden layer networks, training can

be done in polynomial time with a second order method or even with a modified stochastic gradient
decent method, as discussed ge(et_all, 20T%. For deeper networks, CorollaBi4 states that

there exist “bad” saddle points in the sense that the Hessian at the point has no negative eigenvalue.
However, we know exactly when this can happen from ThedZ&{iv) in our deep models. We

leave the development of efficient methods to deal with such a bad saddle point in general deep
models as an open problem.

3 Deep nonlinear neural networks

Now that we have obtained a comprehensive understanding of the loss surfacelofetrapodels,
we discuss deeponlinearmodels. For a practical deep nonlinear neural network, our theoretical
results so far for the deep linear models can be interpreted as the following: depending on

YIf H = 1, to be succinct, we defind’g - -- Wa = W1 - - - Wa £ I, with a slight abuse of notation.
2Typically, we do this by assuming smoothness in the values of the loss function.
30ther problems such as the ill-conditioning can make it difficult to obtain a fast convergence rate.



nonlinear activation mechanism and architecture, training would not be arbitrarily difficult. While
theoretical formalization of this intuition is left to future work, we address a recently proposed open
problem for deep nonlinear networks in the rest of this section.

3.1 Model

We use the same notation as for the deep linear models, defined in the beginning of Baciitve
output of deep nonlinear neural netwolk(IV, X) € R4 *™ is defined as

YW, X) = qop1(Wap10u0(Whog—1(Wy—1 - - - 02(Wao1 (W1 X)) - ),

whereq € R is simply a normalization factor, the value of which is specified later. Hege;
Rd>xm _, Rdexm jg the element-wise rectified linear function:

b1 ... bim 5’(611) ce 5'(b1m)
ol | o =l s
bdkl te bdkm 5(bdk1) e 5'(bdkm)

whereg (b;;) = max(0, b;;). In practice, we usually set;,; to be an identity map in the last layer,
in which case all our theoretical results still hold true.

3.2 Background

Following the work byDauphinefall (2014, Choromanskat all (Z015) investigated the connec-

tion between the loss functions of deep nonlinear networks and a function well-studied via random
matrix theory (i.e., the Hamiltonian of the spherical spin-glass model). They explained that their
theoretical results relied on seveualrealisticassumptions. Late€horomanskat all (2?0151 sug-

gested at the Conference on Learning Theory (COLT) 2015 that discarding these assumptions is an
important open problem. The assumptions were labeled Alp, A2p, A3p, Adp, A5u, A6u, and A7p.

In this paper, we successfully discard most of these assumptions. In particular, we only use a weaker
version of assumptions Alp and A5u. We refer to the part of assumption Alp (resp. A5u) that
corresponds only to theodelassumption as Alp-m (resp. A5u-m). Note that assumptions Alp-m
and A5u-m are explicitly used in the previous wotkhpromanskaet all, P0T53 and included in

Alp and A5u (i.e., we araot making new assumptions here).

As the modelY(W, X) € R¥*™ represents a directed acyclic graph, we can express an output
from one of the units in the output layer as
v H+1

YW, X)j0=a) [XilgwnlZilun H w(“)) @)
p=1

Here,V is the total number of paths from the inputs to eg¢h output in the directed acyclic graph.
In addition, [X;](; ) € R represents the entry of thieth sample input datum that is used in the

p-th path of thej-th output. For each layék, w; )) € R is the entry ofi¥;, that is used in the-th
path of thej-th output. Finally[Z;]; ,y € {0,1} represents whether theth path of thej-th output

is active (Z;](;,,) = 1) or not (Z;](;,y = 0) for each samplé as a result of the rectified linear
activation.

Assumption Alp-m assumes that th& are Bernoulli random variables with the same probability
of successPr([Zi](;» = 1) = pfor alli and(j,p). Assumption ASu-m assumes that thts are
independent from the input’s and parameters’s. Wlth assumptions Alp-m and A5u-m, we can

. - ] H+1
W”teEZ[Y(VV’X)j,i}:qu 1[Xil Gy p TTi= + (”))

Choromanskaf all (20150 noted that A6u is unrealistic because it implies that the inputs are not
shared among the paths. In addition, Assumption A5u is unrealistic because it implies that the
activation of any path is independent of the input data. To understand all of the seven assumptions
(Alp, A2p, A3p, Adp, A5u, A6u, and A7p), we note tHahoromanskat all (Z0T5h&) used these
seven assumptions to reduce their loss functions of nonlinear neural networks to:
1 A H+1
Acpreviouiw) = \H/2 Z Xiy yia,. SEH 41 H w;, sSubjectto— Zw =1,

i1ineyigp1=1 k=1 i=1



where) € R is a constant related to the size of the network. For our purpose, the detailed definitions
of the symbols are not importank(andw are defined in the same way as in equailpnHere,

we point out thathe target functiort” has disappeared in the lo€evioud W) (i.€., the loss value

does not depend on the target function). That is, whatever the data polntaref their loss values

are the same. Moreovehe nonlinear activation function has disappeareigevioud V) (and the
nonlinearity is not taken into account i or w). In the next section, by using only a strict subset

of the set of these seven assumptions, we reduce our loss function to a more realistic loss function
of an actual deep model.

Proposition 3.1 (High-level description of a main result @horomanskaet_all, 20153 Assume
Alp (including Alp-m), A2p, A3p, Adp, A5u (including A5u-m), A6u, and Khoromanska

et al, Z0T58. Furthermore, assume thaf, = 1. Then, the expected loss of each sample datum,
Lorevioud W), has the following property: above a certain loss value, the number of local minima
diminishes exponentially as the loss value increases.

3.3 Results

We now state our theoretical result, which partially address the aforementioned open problem. We
consider loss functions for all the data points and all possible output dimensionalities (i.e., vectored-
valued output). More concretely, we consider the squared error loss with expectatidn, =

EZ[Y (W, X) - Y]|I%.

Corollary 3.2 (Loss surface of deep nonlinear networRssume Alp-m and A5u-m. lget= p— 1.
Then, we can reduce the loss function of the deep nonlinear nigilé) to that of the deep linear
modelL(W). Therefore, with the same set of conditions as in The@#&the loss function of the
deep nonlinear model has the following properties:

(i) Itis non-convex and non-concave.
(i) Every local minimum is a global minimum.
(iii) Every critical point that is not a global minimum is a saddle point.
(iv) The saddle points have the properties stated in The@®&x(iv) and CorollaryZ—2.

Comparing Corollary82 and Propositiof8~1, we can see that we successfully discarded assump-
tions A2p, A3p, Adp, A6bu, and A7p while obtaining a tighter statement in the following sense:
CorollaryB2 states with fewer unrealistic assumptions that there is no poor local minimum, whereas
PropositioriZroughly asserts with more unrealistic assumptions that the number of poor local min-
imum may be not too large. Furthermore, our moidk strictly more general than the model an-
alyzed in Choromanskaf all, 20T5560) (i.e., this paper’s model class contains the previous work’s
model class but not vice versa).

4 Proof Idea and Important lemmas

In this section, we provide overviews of the proofs of the theoretical results. Our proof approach
largely differs from those in previous worBaldi & Hornik, 1989 Baldi& 1 U, P012 Choromanska

ef_all, P0T536). In contrast to Baldi-& Hornik, T989 Baldi & 11, ?0T7, we need a different
approach to deal with the “bad” saddle points that start appearing when the model becomes deeper
(see Sectioz33), as well as to obtain more comprehensive properties of the critical points with
more generality. While the previous proofs heavily rely on the first-order information, the main
parts of our proofs take advantage of the second order information. In cobifmshmanskaf all
(?01530) used the seven assumptions to relate the loss functions of deep models to a function
previously analyzed with a tool of random matrix theory. With no reshaping assumptions (A3p, A4p,
and A6u), we cannot relate our loss function to such a function. Moreover, with no distributional
assumptions (A2p and A6u) (except the activation), our Hessian is deterministic, and therefore, even
random matrix theory itself is insufficient for our purpose. Furthermore, with no spherical constraint
assumption (A7p), the number of local minima in our loss function can be uncountable.

One natural strategy to proceed toward TheoPEdand CorollaryfB2would be to use the first-order
and second-order necessary conditions of local minima (e.g., the gradient is zero and the Hessian is



positive semidefinite). However, are the first-order and second-order conditions sufficient to prove
TheoremZ=3 and Corollary3=2? CorollariedZ-4 show that the answer is negative fisepmodels

with H > 2, while it is affirmative for shallow models withl = 1. Thus, for deep models, a simple

use of the first-order and second-order information is insufficient to characterize the properties of
each critical point. In addition to the complexity of the Hessian oftbepmodels, this suggests that

we must strategically extract the second order information. Accordingly, in séEidpwe obtain

an organized representation of the Hessian in Ler@@and strategically extract the information

in LemmadZ4 anddB. With the extracted information, we discuss the proofs of Thedehand
CorollaryB22in sectionz=3.

4.1 Notations

Let M @ M’ be the Kronecker product dff andM’. LetD .y f() = 5 97C)_ pe the partial

vee(W;I)
derivative off with respect tovec(W,I') in the numerator layout. That s, ff : Rdi» — Rdout, we
haveD,..qyr) f(-) € Réuex(ddi=1) | et R(M) be the range (or the column space) of a matrix
M. Let M~ be any generalized inverse df. When we write a generalized inverse in a condition
or statement, we mean it for any generalized inverse (i.e., we omit the universal quantifier over
generalized inverses, as this is clear). ket (Y(W,X) — Y)T € R™*dv be an error matrix.
LetC = Wy --- Wy € RwX4, When we writel}, - - - Wy, we generally intend that > &’
and the expression denotes a product é¥erfor integerk > j > k. For notational compactness,
two additional cases can arise: whier= £/, the expression denotes simpk,, and wherk < £/,
it denotesl,, . For example, in the statement of Lem#&3d, if we setk := H + 1, we have that
WhsiWey - Whys £ 1,

In LemmaZ3® and the proofs of Theorenis3, we use the following additional notation. We de-
note an eigendecomposition Bfas>X = UAUT, where the entries of the eigenvalues are ordered
asAy1 > -+ > Ay, a, With corresponding orthogonal eigenvector matrix= [ul,...,udy].

For eachk € {1,...d,}, wz € R%*! is a column eigenvector. Let = rank(C) €
{1,...,min(d,,p)}. We define a matrix containing the subset of théargest eigenvectors as
Us = [u1,...,up). Given any ordered sél; = {i1,...,i5 | 1 < iy < -+ < iy < min(dy,p)},
we define a matrix containing the subset of the corresponding eigenvectdrs asfu;,, . . ., u;,).
Note the difference betwedr, andUz, .

4.2 Lemmas

As discussed above, we extracted the first-order and second-order conditions of local minima as
the following lemmas. The lemmas provided here are also intended to be our additional theoretical
results that may lead to further insights. The proofs of the lemmas are in the appendix.

Lemma 4.1 (Critical point necessary and sufficient conditid#i)is a critical point of £(W) if and
onlyifforall k € {1,...,H + 1},

_ T T
(Dvec(wg)ﬁ(W)) = (Wys1Wh - Wiy @ (Wi - WaW1. X)) vec(r) = 0.
Lemma 4.2 (Representation at critical poirif) 1 is a critical point of £(1V), then
WyaWy - WolWy = C(CTC)~cTy xT(xxT)~L.

Lemma 4.3 (Block Hessian with Kronecker produdtrite the entries o¥2L(W) in a block form
as

_ T _ T

DveC(W§+1) (DveC(W};Jrl)‘C(W)) T Dvec(WlT) (Dvec(W§+1)£(W))
VAL(W) = : - :
_ T _ T

DVeC(WE+1) (Dvec(WlT)‘C(W)) T ’Dvec(WlT) <Dvec(W1T)£(W)>

“For a non-convex anton-differentiabldunction, we can still have a first-order and second-order necessary
condition (e.g.Rockafellar & Wets?009 theorem 13.24, p. 606).




Then, foranyk € {1,..., H + 1},

_ T

Dvec(Wg) (Dvec(WkT)ﬁ(W)>

= ((Whsr - Wig1)" Wegr - Wig1) @ Wiy - Wi X)(Wimy - Wi X))
and, foranyk € {2,..., H + 1},

_ T
Dvec(W,;F) (IDvec(WlT)E(W))
= (CT"(Wpgy1 - W) @ X(Wi—y - - W X)) +
(Wi W) @ X] [T, @ rWrga - Wia)on oo Lay, @ ((Waga - Wiga) . a] -
Lemma 4.4 (Hessian semidefinite necessary conditiériy> £ (W) is positive semidefinite or neg-
ative semidefinite at a critical point, then for ahye {2, ..., H + 1},
R(Wy_1--- WsWo)T) CR(CTC) or XrWy Wy -+ Wiy1 = 0.
Corollary 4.5 If V2£(W) is positive semidefinite or negative semidefinite at a critical point, then
foranyk € {2,..., H + 1},
rank(WH+1WH s Wk) > rank(Wk,l s W3W2) or XTWH+1WH s Wk+1 =0.

Lemma 4.6 (Hessian positive semidefinite necessary conditibR) £ (1) is positive semidefinite
at a critical point, then

ccre)y-ct =UU; or Xr=0.
4.3 Proof sketches of theorems

We now provide the proof sketch of Theor& and Corollary32 We complete the proofs in the
appendix.

4.3.1 Proof sketch of Theoreni=3 (ii)

By case analysis, we show that any point that satisfies the necessary conditions and the definition of
a local minimum is a globahinimum.

Casel: rank(Wg ---Wy) =p andd, < p: If d, < p, CorollaryEB with £ = H + 1 implies
the necessary condition of local minima th&i = 0. If d, = p, Lemma&B with & = H + 1
andk = 2, combined with the fact thaR(C) C R(Y X7T), implies the necessary condition that
Xr = 0. Therefore, we have the necessary condition of local minifa,= 0 . Interpreting
conditionXr = 0, we conclude thalll” achievingXr = 0 is indeed a globahinimum.

Casell: rank(Wg ---Ws) =p andd, > p: From LemmalZ®, we have the necessary condi-
tion that C(CTC)~CT = UzUL or Xr = 0. If Xr = 0, using the exact same proof as in
Case |, it is a global minimum. Suppose then th4C7'C)~C" = UzU}. From LemmaZ2
with k¥ = H + 1, we conclude thap £ rank(C) = p. Then, from Lemmd&2 we write
Wiy Wi = UU'YXT(XXT)~!, which is the orthogonal projection onto the subspace
spanned by the eigenvectors corresponding to thdargest eigenvalues following the ordinary
least square regression matrix. This is indeed the expression of a giobalum.

Caselll: rank(Wpg - -- Ws) < p: We first show that ifrank(C') > min(p,d,), every local min-
imum is a global minimum. Thus, we consider the case wherk(Wy ---W5) < p and
rank(C') < min(p, d,). Inthis case, by inductiondn= {1, ..., H+1}, we prove that we can have
rank(Wy, --- W1) > min(p, d,) with arbitrarily small perturbation of each entry &fy,...,W;
without changing the value a(W). Once this is proved, along with the results of Case | and Case
II, we can immediately conclude that any point satisfying the definition of a local minimum is a
global minimum.

We first prove the statement for the base case with 1 by using an expression 6 that is
obtained by a first-order necessary condition: for an arbitfary

W, =Ty oy xT(xxT)=' + (I - (cTc)~cTO)L,.



By using LemmaZ8 to obtain an expression @, we deduce that we can havenk(WV/;) >
min(p, d,,) with arbitrarily small perturbation of each entry Bf; without changing the loss value.

For the inductive step witk € {2,..., H + 1}, from LemmaZ3, we use the following necessary
condition for the Hessian to be (positive or negative) semidefinite at a critical point: fok any
{2,....H +1},

R((Wk,1 s WQ)T) - R(CTC) or X?“WH+1 cee Wk+1 =0.
We use the inductive hypothesis to conclude that the first condition is false, and thus the second
condition must be satisfied at a candidate point of a local minimum. From the latter condition, with
extra steps, we can deduce that we can hauk(W;Wj_1 --- W) > min(p, d,;) with arbitrarily
small perturbation of each entry @f;, while retaining the same loss value.

We conclude the induction, proving that we can hawek(C) > rank(Wgyi---Wp) >
min(p, d,) with arbitrarily small perturbation of each parameter without changing the value of
L(W). Upon such a perturbation, we have the case whetk(C') > min(p, d, ), for which we

have already proven that every local minimum is a global minimum. Summarizing the above, any
point that satisfies the definition (and necessary conditions) of a local minimum is indeed a global
minimum. Therefore, we conclude the proof sketch of Thedeesiii) .

4.3.2 Proof sketch of Theoren®=3 (i), (iii) and (iv)

We can prove the non-convexity and non-concavity of this function simply from its Hessian (The-
oremPZ3 (i)). That is, we can show that in the domain of the function, there exist points at which
the Hessian becomes indefinite. Indeed, the domain contains uncountably many points at which the
Hessian is indefinite.

We now consider Theorei®3 (iii): every critical point that is not a global minimum is a saddle
point. Combined with Theore3 (ii), which is proven independently, this is equivalent to the
statement that there are no local maxima. We first show th&if.; - - - Wa # 0, the loss function
always has some strictly increasing direction with respeét’toand hence there is no local maxi-
mum. If Wy, --- Wo = 0, we show that at a critical point, if the Hessian is negative semidefinite
(i.e., a necessary condition of local maxima), we can R&yg, ; - - - W5 # 0 with arbitrarily small
perturbation without changing the loss value. We can prove this by inductién=o8, ..., H + 1,
similar to the induction in the proof of Theord® (ii) . This means that there is no local maximum.

TheoremZ3 (iv) follows TheoreniZ3 (ii)-(iii) and the analyses for Case | and Case Il in the proof
of TheorenZ3 (ii) ; whenrank(Wy; - - - W) = p, if V2L(W) = 0 at a critical point}V is a global
minimum.

4.3.3 Proof sketch of Corollary32

Since the activations are assumed to be random and independent, the effect of nonlinear activations
disappear by taking expectation. As a result, the loss funati{d#) is reduced ta(W).

5 Conclusion

In this paper, we addressed some open problems, pushing forward the theoretical foundations of
deep learning and non-convex optimization. For déggar neural networks, we proved the afore-
mentioned conjecture and more detailed statements with more generality. Foridieparneural
networks, when compared with the previous work, we proved a tighter statement (in the way ex-
plained in sectiofd) with more generalityd,, can vary) and with strictly weaker model assumptions
(only two assumptions out of seven). However, our theory does not yet directly apply to the prac-
tical situation. To fill the gap between theory and practice, future work would further discard the
remaining two out of the seven assumptions made in previous work. Our new understanding of the
deep linear models at least provides the following theoretical fact: the bad local minima would arise
in a deep nonlinear model banhly as an effect of adding nonlinear activatidnghe corresponding
deeplinear model. Thus, depending on the nonlinear activation mechanism and architecture, we
would be able to efficiently traideepmodels.
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