Supplementary Material

7 More examples of Assumption 1.2

Assumption 1.3 is one simple example of a support change model that ensures that, if M>; =
Iz, the assumption on My ; given in Assumption 1.2 holds. If instead of one object, there are £
objects, and each of their supports satisfies Assumption 1.3, then again, with some modifications, it
is possible to show that both the PCA-missing and PCA-SDDC problems satisfy Assumption 1.2.
Moreover, notice that Assumption 1.3 does not require the entries in 7; to be contiguous at all (they
need not correspond to the support of one or a few objects). Similarly, we can replace the condition

that 7; be constant for at most 3 time instants in Assumption 1.3 by |[{t : Ty = T[k]}\ < B.

Thirdly, the requirement of the object(s) always moving in one direction may seem too stringent.
As explained in [4, Lemma 9.4], a Bernoulli-Gaussian “constant velocity with random acceleration”
motion model will also work whp. It allows the object to move at each frame with probability p
and not move with probability 1 — p independent of past or future frames; when the object moves,
it moves with an iid Gaussian velocity that has mean 1.1s/p and variance o%; o2 needs to be upper
bounded and p needs to be lower bounded.

Lastly, if s < cja for ¢; < 1, another model that works is that of an object of length s or less
moving by at least one pixel and at most b pixels at each time [4, Lemma 9.5].

8 Proof of Theorem 2.1

This result also follows as a corollary of Theorem 3.3. We prove it separately first since its proof
is short and and less notation-ally intensive. It will help understand the proof of Theorem 3.3 much
more easily. Both results rely on the sin § theorem reviewed next.

8.1 sin6 theorem

Davis and Kahan’s sin # theorem [19] studies the rotation of eigenvectors by perturbation.

Theorem 8.1 (sin 0 theorem [19]). Consider two Hermitian matrices D and D. Suppose that D
can be decomposed as

p-[E B || 4 } }

AL || B

where [E E | | is an orthonormal matrix. Suppose that D can be decomposed as
A 0 ][ F }

D=[F Filly A || p

where [F' F\] is another orthonormal matrix and is such that rank(F') = rank(E). Let H :=
D — D denote the perturbation. If Apin(A) > Amax(A 1), then
IH|

I = FEDBI S 5208 (A L)

Let » = rank(F). Suppose that F' is the matrix of top r eigenvectors of D. Then A and A | are
diagonal and Apmax(A L) = Ary1(D) < Ay1 (D) + ||H|. The inequality follows using Weyl’s
inequality. Suppose also that Apin (A) > Amax(A1). Then, (i) A\-(D) = Anin(A) and A1 (D) =
Amax (A1) and (ii) range( E) is equal to the span of the top r eigenvectors of D. Thus, Apax(A L) <
Amax (A1) + || H||. With this we have the following corollary.

Corollary 8.2. Consider a Hermitian matrix D and its perturbed version D. Suppose that D can

be decomposed as
A 0 E'
D:[EEL][O AJ_:||:EL/:|

where E is a basis matrix. Let F' denote the matrix containing the top rank(E) eigenvectors of D.
Let H := D — D denote the perturbation. If Amin(A) — Amax (A1) — ||H|| > 0, then

] |
)\min(A) - /\max(Al) - HHH

and range(E) is equal to the span of the top rank(E) eigenvectors of D.

I(I - FF)E| <

10



8.2 Proof of Theorem 2.1 .
We use the sinf theorem [19] from Corollary 8.2. Apply it with D = éZt vy, and

D = iZt £,8,. Thus, F = P. Recall that a; = P’¢;. Then, D can be decomposed as
P(é > ;ata;/ )P + P, OP|, and sowehave E = P, A = é > ;ata; and A; = 0. Moreover,
it is easy to see that the perturbation H := é Yo yyr — i > Ll satisfies

1 1 1
=azftw£+&2wt4+a2wtwg. 7)
t t t
Thus,
SE(P, P)
2|5 2 bewi | + [l 5 2, wewi|
TN e ety) - (2l X bewi|l + (15 3, wewi])

if the denominator is positive.

Remark 8.3. Because w; is correlated with £y, the L.w) terms are the dominant ones in the per-
turbation expression given in (7). If they were uncorrelated, these two terms would be close to zero
whp due to law of large numbers and the wyw), term would be the dominant one.

In the next lemma, we bound the terms in the bound on SE(P, P) using the matrix Hoeffding
inequality [20].
Lemma 8.4. Let ¢ = 0.017¢A ™.

1. With probability at least 1 — 2n exp (—aW),

Hé Xt:ét’wtlﬂ < q/\+\/§+ €= [qf\/EJr 0.01r¢)A™

2. With probability at least 1 — 2n exp(—m),

1
155wl < 22t e = (272 + 0.01rgA
a4 a a
3. With probability at least 1 — 2n exp(fﬁ)

Zm’ (1= (rO))A™ —e

Proof. This follows by using Lemma 9.6 given later with Gy = P, Gaet = [}, Gundet = [.]»
gdetEO’TCEO’Tcur:T,gEf,XEO,ﬁE].. X

Using this lemma to bound the subspace error terms, followed by using the bounds on 3/« and ¢,
we conclude the following: w.p. at least 1 — 2n exp (—aW) —2n exp(—%) -
2n exp(—ﬁ),
SE(P, P)
201/ 2 + 22 +0.03r¢
1—(r{)?>—-0.01r¢ — 2qf\/§+ q2f§ + 0.03r¢)

< 0.75(1 — r{)r¢ + 0.03r¢ <
1—1r(

<

Using the bound o > «vy from the theorem, the probability of the above event is at least 1 — 61719,
We get this by bounding each of the three negative terms in the probability expression by —2n719,
We work this out for the first term: adQ(nqu)z > (820})1 1 T(T(g’;? m) ( f)%é’fﬁ;fgg = 11logn.

Thus, 2n exp (— ) < 2nexp(—1llogn) < 2n~10,

57
O[32('r]rq)\+)2
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9 Proof of Theorem 3.3

We explain the overall idea of the proof next. In Sec. 9.2, we give a sequence of lemmas in general-
ized form (so that they can apply to various other problems). The proof of Theorem 3.3 is given in
Sec. 9.3 and follows easily by applying these. One of the lemmas of Sec. 9.2 is proved in Sec. 10
while the others are proved there itself.

9.1 Overall idea . . L R R

We need to bound SE(P, P). From Algorithm 1, P = [G1,Ga,...,Gy] where Gy, is the matrix
of top 7, eigenvectors of ﬁk defined in Algorithm 1. Also, P = [G1, Go, . .., Gy] where G}, is a
basis matrix with r;, columns.

Definition 9.1. Define ¢, := SE([G4,Gs,...,Gr],Gr) and {; = 0. Define G o= e Let
To = 0.

It is easy to see that

k=1
9 9
<Y SE((G1,Ga, . GH,GR) = G ®)
k=1 k=1
The first inequality is triangle inequality, the second follows because [G‘ LGy, .. . G %) is orthogonal

to [ék+1, ... Gyl. Since r = ), 7y, if we can show that ¢}, < C,j = 11 for all k we will be done.

We bound (; using induction. The base case is easy and follows just from the definition, {, =
SE([.],[]) = 0 = r¢¢. For bounding (j, assume that for all i = 1,2,...,k — 1, {; < r;¢. This
implies that

SE([Gly GQ7 ey ék—1]7 [Gla G2a ey Gk—lD
k-1
< ZSE([Gl,Gz, oG], GY)

=1

k—1 k—1
<G> ¢ ©)
i=1 i=1

Using this, we will first show that 7;, = 7, and then we will use this and the sin 6 result to bound

Ck-
Before proceeding further, we simplify notation.
Definition 9.2.
1. Let
Gaet := [G1,Ga, ..., Gi_1], Geur = G,
Gundet = [Grs1, ... Gy

2. Similarly, let Gaet i = [él, ég, ce ék—ﬂ, Gew = Gy
3. Let Gaet := G1 U Ga - UGy 1 and Geur = G

4. Let ey, = r = rank(Gy) and Teyy 1= 7.

5. Let \},

cur

6. Lett, = ka.

= )\;r, A

cur

— )\ + . \*+
T )\k ) )\undet T )\k+1

9.2 Main lemmas - generalized form

In this section, we give a sequence of lemmas that apply to a generic problem where y; = £; +
w; = £y + ML, with £, satisfying Assumption 1.1; M, satisfying Assumption 1.2; and with
P split into three parts as P = [Gact, Geurs Gundet])- We can correspondingly split A as A =
diag(Adet7 Acum Aundet)~
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We are given édet that was computed using (some or all) y;’s for ¢t < ¢, and that satisfies (4ot < 7C.
The goal is to estimate range(Gl,,) and bound the estimation error. This is done by first estimating

Teur and then computing G, as the top 7, eigenvectors of
tita

1
D= Z Ty,y,' 0. (10)

t=t,+1

To bound the estimation error, we first show that, whp, ¢y = 7rcyr and so chr = Geur; and then we
use this to show that (cyr < 7.

Definition 9.3.
1. Define ¥ := I — G e Gaet'-
2. Define Caer, := SE(Get, Gaer) = | ¥Glaet|| and (., = ¢
3. Define Ceur := SE([Gaet, Geur], Geur)-

4. Let (OGeyr) Qk E .. Ry, denote its reduced QR decomposition. Thus E.,. is a basis
matrix whose span equals that of (¥ Gy,) and Ry, is a square upper triangular matrix
with || Rewy || = | P Genr]| < 1.

5. Let )‘jur = Amax(-Acur)y >‘c_ur = )\min (Acur): )\jndct = Amax(Aundet)~

6. Let reyy = rank(Geyy). Clearly, reye < 7.

Remark 9.4. In special cases, Gyey (and hence Gdct ) could be empty; and/or G nqet could be
empty.

e Since A contains eigenvalues in decreasing order, when Gpqet 1S not empty, A\~ <

Mot < Acur < M S AT
o When Gundet is empty, A 4o = 0and A~ < A, <AL, < AT
Using || Rew:|| = @G| < 1,
Ceur = (T = G Geu ) ¥ Glors
= [|(I = GewGew') Ecur Rews|

S ”(I - écurécurl)Ecur” == SE(écur, Ecur)-
Thus, to bound (., we need to bound SE(CAT”CIH, E..,). écur is the matrix of top 7, eigenvectors
of D. From its definition, E.,, is a basis matrix with 7., columns. Suppose for a moment that
Teur = Teur- Then, in order to bound SE(CAJCHI., E..,), we can use the sin 0 result, Corollary 8.2. To
do this, we need to define a matrix D so that, under appropriate assumptions, the span of its top 7cyr
eigenvectors equals range(E.,,). For the simple EVD proof, we used X St WL W as the

. LoV . . i=t.+1
matrix . However, this will not work now since E,;, is not orthonormal to W G ge; 01 t0 WG yndet -

But, instead we can use
! !
D =FE.AE ;' + Ecy, 1 Al Ecyr, 1", Where

teta
A= Ecur/(a Z \Iletejt\ll)ECur and
t=t.+1
1 teta
A = 17/,‘311r7L/(a t_tz;H \IJEtKQ‘I’)Ecur,L (11D

Now, by construction, D is in the desired form.

With the above choice of D, H := D — D satisfies' H = terml + terml’ + term2 +
term3 + term3’ where terml := 13 Wlhw, P, term2 = 13 Ww,w,¥ and term3 =

EcurEcurl (i Zt ‘Ileteé ‘I’)Ecur7LEcur,J_/~

'This follows easily by writing H = (D — 1 3, W£,,%) + (1 3, W24 ¥ — D) and using the fact
that M = (EE' + E\E,"YM(EE' + EL.E,") for L}, We,0,%.
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Thus, using the above along with Corollary 8.2, we can conclude the following.
Fact 9.5.

1. If{'ﬁcur = Tcurs and )\min(A) - )\max(AJ_) - ||H|| > 0’
1H]| |
Ami1r1(14) - Amax(AL) - ||H||

Ccur < SE(écun Ecur) <

2. Let Q := EcurEcur’(i Y VL, W) Eyy | Ecy,, . We have

1 1
1= < 2]~ > Tl + IS > wwl| +2|Qll.
t t

The next lemma bounds the RHS terms in the above lemma and a few other quantities needed for
showing 7cyr = Teur-

Lemma 9.6. (1) Assume that y; = £y +w; = £y + M £, with £, satisfying Assumption 1.1 and M
satisfying Assumption 1.2.

(2) Assume that we are given G‘det that was computed using (some or all) y,’s for t < t, and that
satisfies Cqet < 7C.

Define g := M/ Acur X = Aot/ Aaur- Set € := 0.017¢urCA Sy
Then, the following hold:

1. Let p1 := 2n exp(7$ where byrop = nrq((rOAT + AL, + (rO) VAT A +
prob
VAT Mdur). Conditioned on {(aer < rC}, with probability at least 1 — p;

IS e < a(rON + 2y 2+

t
< [q(rC)f\/§+ qg\/§+ 0.017cur ¢ A g

2. Let ps :=2n exp(fMW). Conditioned on {(qet < 7(}, with probability (w.p.) at
least 1 — po,
p 7

1
HE zt:wtwt’ﬂ < qu/\Jr +e< [a [+ 0.01rew (Ao, -

3. Letps :==2n exp(—%) With byrob = 1nr((r¢)*AT + A&, + 2(rQ) VAT Adw). Condi-
prob
tioned on {Caet < r(}, with probability at least 1 — ps,

1
HEcurEcur/(a‘I’et‘ei‘I’)Ecur,J_EcunJ_/”
2
< I\t + _O7 AP+
— (TC) 1_ (T<)2 undet €
(r¢)?
V1=(r¢)?

4. Conditioned on {Caet < r(}, w.p. at least 1 — ps,
Amin(A) > (1 = (r)*)A;

cur

=[1—(r¢)? = 0.01rewC] N,

cur

<[(rO)?f + X 4 0.017cu (A, -

— €

5. Conditioned on {Caet < r(}, w.p. at least 1 — ps,
Amax(AL) < ((rO)*AT + Al qee) + €

undet

< [(’I‘C)2f +Xx+ O-OlrcurC])‘c_ur‘
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6. Conditioned on {(aet < (Y}, with probability at least 1 — ps,

)\max(AJ_) > (1 - (TC)Q - %))‘Indet - ¢

7. Conditioned on {(get < 7C}, w.p. at least 1 — ps,

Amax(A) (1 - (TC) ) cur — €
= [(1 - (TC) )g - 0'0]~Tcurd>‘c_ur'

8. Conditioned on {(aet < 1C}, w.p. at least 1 — ps,

)‘maX(A) < )\;::r ( C) ( C) undet te

1 2<2
<lg+ rQ)?f+ r f) R SX + 0.01rcu (I A,

Proof. The proof is in Section 10. X

Corollary 9.7. Consider the setting of Lemma 9.6. Assume

1. r(r¢) < 0.0001, and r(r¢)f < 0.01. Since reyr < v, this implies that r,;¢ < 0.0001,
and

2 2
(I1—rcurl—x) : (reur€)®  (reur$)
2. B< (%) min <4_1ng2 el ) Q.

Using these and using g > 1, g < f, x < 1 (these hold by definition), with probability at least
L —p1—p2—4ps,

|H| < [2.02qg\/E ﬁq2f+008rcurg“] s

< [0.75(1 = 7¢ = X)TewrC + 0.087curC] Az
< 0.837curC A
Amax(A1) < [X +0.02rcur(] Ay,
Amax(AL) = [X = 0.02rcuw (A
mm(A) > [1 = 0.01017curC] Acuyrs
max(A) < [g 4 0.02027cur (A ¢y
mdx(A) > [g = 0.02rcur] Ay

Lemma 9.8. Consider the setting of Corollary 9.7. In addition, also assume that
1. g =1.01g 4 0.0001 and

. g—0.0001 0.08
2. x < min (m 0.0001,1 — reye € — m)

Let \; := )\z(lA)) Then, with probability at least 1 — p; — pa — 4ps, the following hold.

1. When G et Is not empty: <g, 3 M > G, and 5\Tm+1 > Athresh-
Tcur Tcur+1
2. When Gunget Is empty: —~1— < g and )\Tmﬂ < Athresh < )\Twr.
o H 0.087cur
3' If'rcur = Tcurs then Ccur S Amin(A)_A‘llnax”(AL)_”HH é 0~75Tcur<— + ﬁ é Tcur(’

Proof.
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Fact 9.9. From the bound on x, x < 1—0.0001 < 1—r¢y, (. Thus, using Corollary 9.7, Apin(A) >
Amax (A1) and 50 Ar,.(D) = Anin(A), Aou11(D) = Amax(AL), and A\ (D) = Apax(A).
Recall: \i(.) is the same as Amax(.)-

Proof of item 1. Recall that D and D are defined in (10) and (11). Using Weyl’s inequality, Fact
9.9, and Corollary 9.7, with the probability given there,

M Anax(A) + [ HI _ g+ 0.86rcu¢
= Amin(A) = [H[ = 1—0.85rcu

Tcur

and
M Amax(A) — [H|| g~ 085reng
Aowt1 Amax(AL) +[H[ ™ X+ 0.85rcurC
Thus, if
9+ 085renC _ » 9= 0857w a2)
1 —0.857cu:C X + 0.857r¢ur(

holds, we will be done. The above requires x to be small enough so that the lower bound is not larger
than the upper bound and it requires § to be appropriately set. Both are ensured by the assumptions
in the lemma.

Since Glundet is not empty, A = YA, > A~ Thus, using Weyl’s inequality followed by

Corollary 9.7, with the probability given there,

Arewrt1 = )\Tcllr+1(D) - ||H|| = )‘maX(AJ_) - ”H”
> [x — 0.02r¢urC] gy — 0-837rcurC Ay,
2 (1 - 0~85rcurC))\_ > Athresh

Proof of item 2. Since G ypq4et 1S empty, AT = 0 and so x = 0. Thus, using Corollary 9.7, with

det
probability given there, e

Arcwrtl € Are1(D) + [ H| = Amax(AL) + [ H]|
<04 0.02rer(A” + || H|| < 0.857rcuCA~

< )\thresha
Mrewe 2 Are (D) = [ H| = Amin(A) — [|H]|
> Aoy — 0.0857curCAnye > (1 — 0.857¢ueC)A™
> /\thres}u
and R
A>\1 S )\max(A) + ”H” S g -+ 0'85rcur< S g
o = Amin(A) — [HI[ = 1= 0.85r0,C

Proof of item 3. Using Fact 9.5 and Corollary 9.7, since ¢,y = 7cyr 1S assumed, we get

[0.75(1 — Tewr( — X)rcurc + O'O8TCUYC])‘;ur

cur S
¢ Acur[1 — 0.01017¢y, ¢ — x — 0.027¢y:¢ — 0.83r(]
< 0.75(1 — r¢ — X)7rcurC + 0.087 ¢y ¢ < o (13)
(]- - TewrC — X)
The last inequality used the bound on . X

9.3 Proof of Theorem 3.3

The theorem is a direct consequence of using (9) and applying Lemma 9.8 for each of the k steps
with the substitutions given in Definition 9.2; along with picking « appropriately. A detailed proof
isin Sec. 11.
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10 Proof of Hoeffding lemma, Lemma 9.6
The following lemma, which is a modification of [3, Lemma 8.15], will be used in our proof. It is
proved in Sec. 11. The proof uses [3, Lemma 2.10].

Lemma 10.1. Given (qor < 7C.

1. [ WGaes|| < ¢ and || ¥ G| < 1.
2. V 1- (TC)Q S Ji(Rcur) = Ui(‘I’chr) S 1 and V 1- (TC)z S Ui(‘IlGundet) S 1

3. ||Ecur,‘IlGundet|| S

X = [‘I’Gdet ‘I’chr ‘I’Gundet]
Adet O 0 ]

/

0 Acur

‘I’Gdet
UG eur ]

0 Aundet ‘I’Gundet

0
with )\max(Adet) < A )‘c_ur S )\min<Acur) S )\max(Acur) S )‘j—ur’ )\max(Aundet) S
)\+

undet*

5. Using the first four claims, it is easy to see that
(Ll) ”Ecur l/‘Ijz\PECur L” < (TC) )\+ + Aundet

() B s WS B < (1PN + A

(c) [®Z[| < (rOAT 4+ A, and [¥EM /|| < q((rOAT +AE,)
(d) | My 2| < g\t and | My ;M /|| < ¢?AT

If‘édet = Gyet = [.], then all the terms containing (r() disappear.
6~ Amin (A + B) Z Amln(14) + )\min (B)

7. Let a; := Pl‘etr Qi det = Gdet Etr Qt cur ‘= chr et and Q¢ undet = Gundet,‘et' Also let
Qt rest <= [at,curly Q¢ undet ] Then Hat reat” < T?’]Acur and ||at,det||2 S Ha't”2 S TWAJF‘

8 Urnin(-Ecur,L/‘IlG"undet)2 >1- (TC)Q - \/%T)Q
The following corollaries of the matrix Hoeffding inequality [20], proved in [3], will be used in the
proof.

Corollary 10.2. Given an a-length sequence {Z,} of random Hermitian matrices of size n X n, a
rv. X, and a set C of values that X can take. For all X € C, (i) Z;’s are conditionally independent
given X; (ii) P(bI = Zy <X boI|X) = 1 and (iii) bsI < E[é >+ Zi| X] 2 byl. Forany e > 0,
forall X € C,

1 —ae?
P max | —_ Z S X 21_ o/ 1 \2 |
(e (352) terfr) 21 (557255)

[ (252) 2=l = 1-me (1725,

Corollary 10.3. Given an a-length sequence {Zt} of random matrices of size n1 X no. For all
X E C, (i) Z;’s are conditionally independent given X; (ii) P(||Z:|| < b1|X) = 1 and (iii)
|E[L2 >, Z,|X]|| < bo. Foranye >0, forall X € C,

(i

<b +6’X >1— (ny +n)ex ( %2)
2 1 2 p 32b1
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Proof of Lemma 9.6. Recall that we are given édet that was computed using (some or all) y,’s for
t < t, and that satisfies (4ot < r(. From (2), y; is a linear function of £;. Thus, we can let
X := {£1,05,...£;, } denote all the random variables on which the event {(4ot < 7} depends.
In each item of this proof, we need to lower bound the probability of the desired event conditioned
on (get < r(. To do this, we first lower bound the probability of the event conditioned on X
that is such that X € {(get < r(}. We get a lower bound that does not depend on X as long as
X € {lget < r(}. Thus, the same probability lower bound holds conditioned on {(4et < r(}.

Fact 10.4. For an event £ and random variable X, P(E|X) > p for all X € C implies that
PEX €C) > p.

Proof of Lemma 9.6, item 1. Let

1 1
t = — Plw, = — We. 0, M,/ M,
erm o ; + W o ; tLt 1,t 2,t

Since W is a function of X, since £;’s used in the summation above are independent of X and
E[¢.,] = X,

1
E[term|X] = — > wEM, /My,
t

Next, we use Cauchy-Schwartz for matrices:

«@ 2 (0% «
D OXYY | < Amax (Z XtXt’> Amas (Z Ym) (14)
t=1 t=1 t=1

Using (14), with X; = ¥XM;, and Y; = M., followed by using ||§Zt X X[ <
max; || X¢||, Assumption 1.2 with A; = I, and Lemma 10.1,

IE[term|X]|| < mtaXH‘I’EMl,t/”\/E
< q((rOAT + /\iur)\/z

for all X € {Cqet < 7¢}. To bound |¥lwi|, rewrite it as Wlhw;, = [PGaetrdet +
‘IlGreSta’tyfeSt][a;,detG:iet + a:&,restG;est}M{,tMé,t' Thus, using || My || < 1, |MyP|| < q <1,
and Lemma 10.1,

e < qra((rQ)NT + Ak + (PO VA A + VA ML)

holds w.p. one when {(get < r(}.

Finally, conditioned on X, the individual summands in term are conditionally independent. Using
matrix Hoeffding, Corollary 10.3, followed by Fact 10.4, the result follows.

Proof of Lemma 9.6, item 2.
1 1
E[a 2 ’UJ{UJ“X] = a ; M2,tM17t2M1,t/M27tl
By Lemma 10.1, || M ;XM ;'|| < ¢?\T. Thus, using Assumption 1.2 with A; = M ;XM 4/,
1 B
L~ zt:wtwé\XHI < qu’w'
Using Assumption 1.2 and Lemma 10.1,

lwewi|| = || Mz, My 1 Py < g*nra*.

Conditional independence of the summands holds as before. Thus, using Corollary 10.3 and Fact
10.4, the result follows.
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Proof of Lemma 9.6, item 3.
1
E[a ; EcurEcur/‘I’Et‘et/‘I’Ecur,J_Ecur,J_/ || |X]
= EcurEcur/‘I’E‘I’Ecur,J_Ecur,J_/

Using Lemma 10.1, ||ECurEcur"I’E‘I’Ecur,LEcur,l’|| < (TC)2A++\/%/\indet when {(get
7C}. Also, | Eew' WL W Ey, ||| < || WL,/ T < nr((rQ)?AT + M, + 2(rO) VAT M) =
bprob holds w.p. one when {(qet < r(}. In the above bound, the first inequality is used to get a loose
bound, but one that will also apply for the proofs of the later items given below. The rest is the same
as in the proofs of the earlier parts.

IN

Proof of Lemma 9.6, item 4. Using Ostrowski’s theorem,
)\min(E[A|X]) = )\min(Ecur/\Il(E)\IlECur)
> Amin (Bewr ¥ Genr Acur Geur' OBy, )
= Amin(ReurAcur Reur')
> Amin (Reur Reur ) Amin (Acur) > (1= (r¢)*) A,

cur

for all X € {Cqet < r(}. Ostrowski’s theorem is used to get the second-last inequality, while
Lemma 10.1 helps get the last one.

As in the proof of item 3, || Ecy W' W E || < || WL,/ ¥|| < byrop holds w.p. one when
{Caet < r(}. Conditional independence of the summands holds as before. Thus, by matrix Hoeffd-
ing, Corollary 10.2, the result follows.

Proof of Lemma 9.6, item 5. By Lemma 10.1,
Amax(E[AJ_‘X]) = )\max(Ecur,J_/‘I’E‘I’Ecur,J_)
< ((TC)Q)‘JF + )‘j;ndet)

when {(get < r(}. The rest of the proof is the same as that of the previous part.

Proof of Lemma 9.6, item 6. Using  Ostrowski’s  theorem,

)\max (E[AJ_ |X]) 2 )\max (EcurA,J_l‘IlGundetAundet Gundet/‘I’Ecur,J_) 2

)\min(Ecur,J_/‘I’Gundet Gundet/‘I’Ecur,J_))\max(Aundet)- By deﬁnition» )\max<Aundet) = )‘jndet'

By Lemma 10.1 > /\min(Ecur,J_/‘I’GundetGundet/‘I’Ecur,J_) = O-min(Ecur,J_/‘I’(;undet)2 >
2

(1—(r¢)? - \/%) when {C4et < r(}. The rest of the proof is the same as above.

Proof of Lemma 9.6, item 7. Using Ostrowski’s theorem and Lemma 10.1, Ay (E[A|X]) >
)\max (Ecur/‘I’chrAcuchur/‘IlEcur) Z )\min(Rcuchur/))\max(Acur) 2 (1 - (T<)2)A:_ur When
{Caet < r(}. The rest of the proof is the same as above. X

11 Detailed Proof of Theorem 3.3 and Proof of Lemma 10.1

Proof of Theorem 3.3. Recall that we need to show that (; < (. Assume the substitutions given
in Definition 9.2. We will use induction.

Consider a k < 1. For the k-th step, assume that {; < r;¢ fori = 1,2,...,k — 1. Thus, using (9),
Cdet < r( and so Lemma 9.8 is applicable. We first show that 7, = Tk and that Algorithm 1 does

not stop (proceeds to (k + 1)-th step). From Algorithm 1, 7, = 7y, if ;‘1 < g, and % > g. Also
T rp+1

it will not stop if 5‘7%—&-1 > Athresh- dince k < ¥, Gyndet 1S not empty. Thus, item 1 of Lemma 9.8
shows that all these hold. Hence 7, = 7, and algorithm does not stop w.p. at least 1 —p; —ps —4ps.
Thus, by item 3 of the same lemma, with the same probability, (i < ri(.

Now consigler k = 9. We first show 7, = 7 and that Algorithm 1 does stop, i.e., 9 = 1. This will
be true if ;—1 < g and S\Tk“rl < Athresh- For k = 9, Gynget 1s empty. Thus, item 2 of Lemma 9.8

shows that tl‘kliS holds w.p. at least 1 — p; — p2 — 4ps. Thus, by item 3 of the same lemma, with the
same probability, ( < (.
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Thus, using the union bound, w.p. at least 1 — J(p1 + pa + 4p3), . = 1 and ¢ < 74( for all k.
Using (8), this implies that SE < r( with the same probability.

Finally, the choice o > ay, implies that p; < $2n710, po < £2n710, p3 < £2n719. Hence
SE < r¢ w.p. at least 1 — 12n~19. We work this out for p; below. The others follow similarly.

), € = 0.01(rQ)A™ and bprop = nrg((rOAT + AL

cur

Recall that p; = 2nexp(—« 321,2

prob

b2
(FOVA M + VAT ML), Thus, 255 < (dnrmax(g(rQ) £, 99,9V F9, a(rO)VF9)? <
16n°r? max(q(r¢) f, a9, av/f9)?
32.16 n°r%(11log n+log¥) T (0.01(r¢))?
Thus, a32b2 ob = (0~01)2n (:Cg)2 == max(q(r¢)f, 99,9 fg)32~16n27"2maX(q(TC)ﬁqmq\/ﬁ)Q =
1110gn+10g19. Thus, p; < %271‘10. X

Proof of Lemma 10.1. The first claim is obvious. The next two claims follow using the following
lemma:

Lemma 11.1 ([3], Lemma 2.10). Suppose that P, P and Q are three basis matrices. Also, P and
P are of the same size, Q' P = 0 and ||(I — PP')P|| = (,. Then,

1. |(I - PP)PP'| = |(I - PP)PP'| = |(I-PP)P| =|(I—-PP)P|=(
2. |PP' — PP'|| <2||(I - PP)P| =2

3 1P'Q| <.
4. T-C <o (1-PP)Q) <1

Use item 4 of Lemma 11.1 and the fact that Gaet' Geur = 0 and Gaet’ Gunaet = 0 to get the second
claim.

For the third claim, notice that FE.,'¥Gundet = 1 Gewr’ TG undet =

CUI‘

Rcuchur GdetGdet Gundet- since ¥2 = W and Geuy'Gundet = 0. Using the second claim,
5. Use item 3 of Lemma 11.1 and the facts that G’ Gqe; = 0 and

1
1Rewll < 5trey < 100
Gundet' Gaet = 0to bound ||Geuy' Get|| and [|Gaet’ Gundet || respectively.

The fourth claim just uses the definitions. The fifth claim uses the previous claims and the assump-
tions on M from Assumption 1.2. The sixth claim follows using Weyl’s inequality.

The second last claim: We show how to bound @ rest: ||at rest]|? = ||@t,curl|® + ||@tundet]]* <
D ieGun TN 2 ieGunae MG < TG, (since A < AL, for all the j’s being summed over). The
other bounds follow similarly.

Last claim:
Omin(Beur. 1 'O Gundet )
= Amin(Gundet' ¥ Ecur, | Ecur, 1P Gundet)
= Min(Gundet' ¥ (I — Ecyr Eew’ ) P Gundet)
> Amin(Gundet TP Gundet) —
Amax(Gundet' ¥ Ecyr Eey ¥ G undet)
= Omin (¥ Gundet)” — | Bewr" ¥ Gundet |
>1—(r()? — (r¢)? '

1—(r¢)?

The last inequality follows using the second and the third claim. X
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