Supplemental Material for Gaussian Processes for
Survival Analysis

Tamara Fernandez Nicolas Rivera Yee Whye Teh
Department of Statistics, Department of Informatics, Department of Statistics,
University of Oxford. King’s College London. University of Oxford.
Oxford, UK. London, UK. Oxford, UK.

fernandez@stats.ox.ac.uk mnicolas.rivera@kcl.ac.uk y.w.teh@stats.ox.ac.uk

1 Proofs of propositions

Proposition 1. Let (I(t))>0 ~ GP(0, k) be a stationary continuous Gaussian process. Suppose
that k(s) is non-increasing and that lims_, o £(s) = 0. Moreover, assume it exists K > 0 and a > 0
such that \o(t) > Kt*~1 forallt > 1. Let S(t) be the random survival function associated with
(I(t)) >0, then lim;_, o, S(t) = 0 with probability 1.

Proof. Denote with P the probability associated with the gaussian process (I(¢));>0 ~ GP(0, k) and
by E the corresponding expected values.

Remember our (random) hazard is given by A(s) = \o(s)o(I(s)) > Ks* 1o(l(s)) > 0 for s > 1.
It is well-known that the survival function can be written as S(t) = e~ Jo Ae)ds then

S(t)=e~ J3 A(s)ds <e Jo M) [ Ks*to(l(s))ds < e Ji Ks®ta(i(s))ds

fort > 1.

We just need to prove that the latter term tends to O as ¢ goes to infinity. Consider the stochastic

process (X;)¢>o0 given by X; = |, f Kt*1o(l(s))ds. We compute the expected value and variance
of X;. By Tonelli’s Theorem we have that

E(X,) = KE </1t5°‘10(l(3))ds>

K/l LB (o (I(s)))ds
Kt —1)

= —5— )

In the last equality we used that E(o(I(s))) = 1/2 since the function f(z) = o(z) — 1/2 is odd.

For the variance, we use Tonelli’s Theorem, again, to obtain
t
Var(X;,) = K?Var (/ a(l(s))x“_lds>
1
t ot
= & [ [ covloe). o)) ) dudy e
1 J1

We separate the last integral in two pieces, one integrating the region A = {t,s € [1,¢t] : |t — s| < 1}
and its complement on [1, ]2
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In the region A we use that Cov(o(I(z)), o(I(y))) < v/Var(o(I(x)))Var(a(I(y))) = Var(c(1(0)))
since (I(t))¢>o is stationary. Note that Var(o (! ( ))) <1 because 0 < o(x) < 1 forall x Then

/ Cov(o(U(x)), o (1)) (xy)* dudy < / () didy 3
A A

a tedious computation gives us

[ varto(ata)a)* oy < [ (o tanay < o @

for some constant C' > 0.

We claim the following inequality for all (¢, s) € A€,

(e = B ((2))?
Cov(o(1(a)),o1(y))) < 2" AT

The proof of the above inequality is given in Lemmal[l] Let C' > 0 a large enough constant, then we
have

| eovtoti@ ot e tdsdy < [ ('I%'))_(ﬁfj@” (a)* ddy

< C’// y)(zy)* dydx 3)

Using the change of variables w = z and z = x — y we get from equation (3] that

/CCov(a(l(x)),U(l(y)))(xy)a_ldxdy < C’/1 / k(2)w* Hw — 2)* dwdz

t gt
< C’/ / r(2)w?* 2 dwdz
1 J1
tQO(—l t
<
< C o /(JH(Z)dZ (6)

Adding the integrals over A and A€, we get that it exists a large constant C' > 0, depending on «
such that for large enough ¢, it holds

t
Var(X;) < CtQ“_l/ K(s)ds. (7)
0
Then for large enough ¢ > 0, by Chebyshev’s inequality and equations (I)) and (7) it holds
4Var(X;) 2071 1 o(s)ds o(t)
P(|X: —E(Xy)| >E(X:)/2) L ———5-=0 % =—. 8
(X, ~B(X)| = B(X0)/2) < Fris o ; ®)

In the last step we use that lim_,~, #(s) = 0 which implies that fot k(s)ds = o(t).

Let B, be the event B; = {|X; — E(X;)| > E(X,)/2}. Let (t,,)»>1 be an increasing sequence of
times, such that P(B;, ) < n~2 and t,, — oo as n tends to co. Observe it is always possible to find
such t,, because equation (8). Observe )~ -, P(B;, ) < oo, then by using the Borel-Cantelli Lemma
it holds that exists some finite N > 1 such that all event By, does not hold for n > N. Thus, for
n > N the equation

| X, —E(Xy,)| <E(Xy,)/2,
holds true, implying that

X, > E(X:,)/2.

Using the above equation, for n > N we have

S(tn) < €_Xt” < e_E(th)/2 < e—ctn""
for a small constant ¢ > 0. Then since S(t) is decreasing it holds

lim S(t) = lim S(t,) < lim e =0.
t—o0 n—o00 n—oo



Lemma 1. Foranyt, s such that |t — s| > 1 we have

K|z — y)E(e(i(x)))?
k(0) — k(1) '

Cov(o(l(2)),0(l(y))) <2

Proof. Let |t — s| > 1. Using that zy < Z2§y2 we have

/_O:o ./_O:o o(@)o(y) 27r(n(0)§(i(0,i2(;l:(t;;2);i/2 }dxdy

exp{ (5(0) =k (t—5)) (2 +y?)

T 2(k(0)2—k(t—s)2) }
dxzd
/ / 2m(1(0)2 — (t —5)2)1 /2 Y

exp {_~<o>(w2+y2)—2n<t—s)w

E(a(l(t)o(U(s)))

<
eXp{‘%}

: / / (“(O)Q—R(t—s)2)1/2dxdy

/{(O)fm(tis)E( (1) < () (D) B

In the last inequality we use that k(s) is non-increasing. Finally, by deleting E((1(0)))? in both sides
of the above equation gives us the covariance of o (I(¢)) and o (I(s)), which give us the corresponding
bound. 0



2 Survival Function for E-SGP
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Figure 1: Exponential Model. First row: clean data, Second row: data with noisy covariates. Per
columns we have 25,50,100 and 150 data points per each group (shown in X-axis) and data is
increasing from left to right. Dots indicate data is generated from density pg, crosses, from p;. In
the first row a confidence interval for each curve is given. In the second row each curve for each
combination of noisy covariate is shown.
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