
Appendices

A Proof of Proposition 1

Recall that h = tj � tj�1

for all j. Straightforward substitutions into the definitions give that
�i ⌘ �(0) = (0, 1, 0, . . . , 0), �i�1

⌘ �(�h) = (0, 0, 1, . . . , 0) etc. and hence �Ti�p�i�q = �pq, for
all 0  p, q  s� 1. Furthermore �i ⌘ �(0) = (1, 0, 0, . . . , 0) since every component of �(!) bar
the first is a polynomial of degree s with a factor !. Finally
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Now by (10) and the standard formulae for Gaussian conditioning, we have
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which is equal to the s-step Adams-Bashforth predictor defined by (6) and (7). Next we write

Var[yi+1

|yi, fi�s+1

:i] = �
T
i+1

�i+1

�

0

BBB@

�

T
i+1

�i

�

T
i+1

�i
...

�

T
i+1

�i�s+1

1

CCCA

T

I�1

s+1

0

BBB@

�

T
i �i+1

�Ti �i+1

...
�Ti�s+1

�i+1

1

CCCA

= �

T
i+1

�i+1

�

0

BBB@

1

[�i+1

]

2

...
[�i+1

]s+1

1

CCCA

T 0

BBB@

1

[�i+1

]

2

...
[�i+1

]s+1

1

CCCA

= �

T
i+1

�i+1

� �T
i+1

�i+1

= 0

and the proposition follows.

B Proof of Proposition 2

We follow the same reasoning as in Proposition 1. Since the additional basis function at the end
of �+i�k is clearly zero at for all 0  k  s � 1, each inner product of the form �+T�+, �+T�+

and �+T
�

+ is equal to the corresponding inner product �T�, �T� and �T� as no additional
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contribution from the new extended basis arises. It therefore suffices to check only the terms of the
form �+T

�.

Integrating the additional basis function gives a polynomial of degree s+ 1 with a constant factor !.
Evaluating this at ti = 0 means that the additional term is also 0 in �i. Therefore �+T
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The argument in the previous paragraph means we can immediately write down that
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reduces to the contribution of the augmented basis element. Therefore
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The Adams-Moulton coefficient �AM
�1,s+1

is equal to the local truncation error constant for the s-step
Adams-Bashforth method [12] and the proposition follows.

C Extension to Adams-Moulton

We collect here the straightforward modifications required to the constructions in the main paper to
produce implicit Adams-Moulton methods instead of explicit Adams-Bashforth versions.

The telescopic decomposition (5) becomes
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where it is particularly to be noted that fN is no longer superfluous.

The Lagrange interpolation resulting in the the Adams-Moulton method is
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and the iterator is defined by
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The Gaussian process prior resulting in AM is
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D Adams-Moulton integrator with s = 4

The conditional distribution of interest is p(yi+1
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and the resulting calculations give
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and further calculation shows that
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Remark

Proofs analogous to those of Propositions 1 and 2, for the Adams-Moulton case, follow the same line
of reasoning as for the Adams-Bashforth case.

E Expansion of backward difference coefficient approximation for s = 3

From (13), we have for s = 3
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F Proof of Theorem 3

Proposition 2 implies that our integrator can be written as
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where yi denotes the numerical solution at iteration i, and ⇠i 2 Rd is a Gaussian random variable
satisfying E|⇠i⇠Ti | = Qh2s+2 for some fixed d⇥ d matrix Q. We denote the true solution of the ODE
(1) at iteration i by Yi ⌘ y(ti) and we have that
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We will rearrange this s-step recursion to give an equivalent one-step recursion in an higher-
dimensional space. In particular, using the trivial identities Ei�1
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or in compact form,
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= AEi +��i + Ti � ⌅i, i = s� 1, . . . , N � 1, N = T/h (28)

For the subsequent calculations it will be necessary to find a scalar product inducing a matrix norm
such that the norm of the matrix A is less or equal to 1. This is possible if the eigenvalues of the
Frobenius matrix A lie inside the unit circle on the complex plane and are simple if their modulus
is equal to 1. It is easy to show that the eigenvalues of A are roots of the characteristic polynomial
associated with the deterministic integrator (7). Since we have assumed that the deterministic
integrator is convergent, A does have the claimed property, since it is equivalent to the root condition
in Dahlquist’s equivalence theorem [12]. Thus there exists a non-singular matrix ⇤ with a block
structure like A such that ||⇤�1A⇤||
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where �⇤
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is as in (29). Applying the norm | · |2⇤ to (28) and taking expectations gives
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Then by applying the Gronwall inequality we have (for different K in each line)
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Note that in (33), the O(h2s+2

) term derived from the introduced perturbations ⇠i is of one higher
order than the O(h2s+1

) term representing the truncation error in the deterministic solver. This
observation implies that a noise vector satisfying E|⇠i⇠Ti | = Qh2s+1 would also give rise to an
integrator of order s.

Remark

An analogous proof for the Adams-Moulton case follows with straightforward modifications.
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