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A Derivation of Optimal h∗(s)

In this section we show how to solve the efficient coding problem formulated in the main submission.

maximize MI(s, r)

subject to 0 ≤ h(s) ≤ rmax, h′(s) ≥ 0 (range constraint)
Es[K(h(s))] ≤ Ktotal (metabolic constraint)

A.1 Re-parameterization of s

The initial step is to map the stimulus s to u = F (s) with uniform distribution U ∼ U [0, 1]. To
achieve this, one can simply use the cumulative density function F (s) =

∫ s
−∞ p(t) dt. We will

prove that such mapping does not change the form of our problem. First the objective function is
unchanged:

MI(s, r) = MI(F (s), r) = MI(u, r) (1)

Which can be proved by the fact that F (s) is invertible and applying the information processing
inequality twice

MI(s, r) ≥ MI(F (s), r) ≥ MI(F−1(F (s)), r) = MI(s, r). (2)

Now we define

g(u)
def
= g(F (s)) = h(s) (3)

Therefore the saturation constraint is same 0 ≤ g(u) ≤ rmax. Together with the fact that du =
dF (s) = p(s)ds,

Eu[K(g(u))] =

∫ 1

0

K(g(u)) du =

∫ ∞
−∞

K(h(s))p(s) ds = Es[K(h(s))] (4)
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This shows that the metabolic constraint is also preserved in its format. It suffices to solve the new
optimization problem which is on g(u) for a uniformly distributed distributed input u.

maximize MI(u, r)

subject to 0 ≤ g(u) ≤ rmax, g′(u) ≥ 0

Eu[K(g(u))] ≤ Ktotal

A.2 Lagrangian multiplier approach

Using results from Brunel and Nadal (1998), we show that the objective function is

MI(u, r) = H(U) +
1

2

∫
p(u) log IF (u) du (5)

In our case, a uniform random variable U has zero entropy H(U) = 0 and p(u) = 1u∈[0,1]. The
Fisher information term is determined by the noise model. Assuming g′(u) > 0, the leading order
term of the mutual information can also be calculated.

IF (u) = T
g′(u)2

g(u)α
+O(1) ⇒ I(u, r) ∼

∫ 1

0

log g′(u)− α

2
log g(u) du+ log(T/V0) (6)

Without loss of generality, we assume rmin = 0 and we may rewrite both constraints as integral of
g′(u) and g(u).

g(1)− g(0) =
∫ 1

0

g′(u) du ≤ rmax (7)

Eu[K(g(u))] =

∫ 1

0

g(u)β du ≤ Ktotal (8)

We can calculate the Lagrangian of this optimization problem

L(g, g′) = log g′ − α

2
log g − λ1g′ − λ2gβ (9)

which has no explicit dependency on the variable u. Thus we can use the Beltrami’s identity to
derive the optimal condition for g(u):

const = L− g′ ∂L
∂g′

= log g′ − α

2
log g − λ1g′ − λ2gβ − (1− λ1g′) (10)

Therefore we have an ordinary differential equation (ODE) as the optimal condition for g(u)

const = log g′(u)− α

2
log g(u)− λ2gβ ⇒ c0 =

g′(u)

g(u)α/2
exp

(
−λ2gβ

)
(11)

To simplify this, we use the substitution g̃(u) = λ2g(u)
β so that

g(u) ∝ g̃(u)1/β (12)

g′(u) ∝ g̃(u)1/β−1 · g̃′(u) (13)

⇒ c1 =
dg̃

du
· g̃(1−α/2)/β−1 exp(−g̃) (14)

which is now a separable ODE (denote q = (1− α/2)/β),∫
c1 du =

∫
g̃q−1 exp(−g̃) dg̃ (15)

⇒ c1u = γq(g̃) ⇒ g̃(u) = γ−1q (c1u) (16)
where γq(x) is the incomplete gamma function and γ−1q is its inverse function

γq(x) =

∫ x

0

zq−1 exp(−z) dz, γ−1q ◦ γq(x) = x. (17)

For some constant a, b, the optimal tuning curve must take the form
g∗(u) ∝ g̃∗(u)1/β (18)

⇒ g∗(u) =

[
1

a
γ−1q (uγq(b))

] 1
β

, h∗(s) = g∗(F (s)) (19)

and the constants a, b are chosen such that the saturation and metabolic constraints are satisfied.
Below we will find the optimal a, b.
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A.3 Determining constants a, b

From the above analysis we know the optimal form of g(u) is

g∗(u) =

[
1

a
γ−1q (uγq(b))

] 1
β

(20)

where q = (1−α/2)/β. The optimal solution is a linearly scaled version of the inverse-incomplete-
gamma function with two parameters a, b. Now we only need to re-write the constraints and the
objective function in terms of a, b and optimize these two parameters.

A.3.1 Objective function

The key part of the objective function is

F (a, b) =

∫ 1

0

log

[
g′(u)

g(u)α/2

]
du (21)

where

g′(u) =
1

β

[
1

a
γ−1q (uγq(b))

] 1
β−1 1

a

[
γ−1q (uγq(b))

]1−q
exp(γ−1q (uγq(b))) · γq(b) (22)

=
γq(b)

β

(
1

a

) 1
β [
γ−1q (uγq(b))

] 1
β−q exp(γ−1q (uγq(b))) (23)

g(u)α/2 =

(
1

a

) α
2β [

γ−1q (uγq(b))
] α

2β (24)

Since q = (1− α/2)/β, we have

g′(u)

g(u)α/2
=
γq(b)

β
a−q exp(γ−1q (uγq(b))) (25)

F (a, b) = − log β + log γq(b)− q log a+
∫ 1

0

γ−1q (uγq(b)) du (26)

Here we calculate the integral term. We let

v(u) = γ−1q (uγq(b)), v(0) = 0, v(1) = b. (27)

uγq(b) = γq(v), γq(b) du = vq−1 exp(−v) dv (28)

Therefore ∫ 1

0

γ−1q (uγq(b)) du =
1

γq(b)

∫ v(1)

v(0)

vq exp(−v) dv (29)

=
1

γq(b)

[
q

∫ b

0

vq−1 exp(−v) dv − vq exp(−v)|b0

]
(30)

=
1

γq(b)
[qγq(b)− bq exp(−b)] = q − bq exp(−b)

γq(b)
(31)

Thus the objective function in terms of a, b is

F (a, b) = q − log β + log γq(b)− q log a−
bq exp(−b)
γq(b)

(32)

A.4 Optimal a for fixed value of b

We begin with rewriting the saturation constraint and the metabolic constraint in terms of a, b. First
the saturation constraint

rmax ≥ g∗(1) =
[
b

a

] 1
β

⇒ a ≥ r−βmax · b
def
= A1(b) (33)
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Second the metabolic constraint

Ktotal ≥
∫ 1

0

K(g(u)) du =
1

a

∫ 1

0

γ−1q (uγq(b)) du =
1

a

[
q − bq exp(−b)

γq(b)

]
⇒ a ≥ K−1ave ·

[
q − bq exp(−b)

γq(b)

]
def
= A2(b) (34)

Based on the form of the objective function F (a, b), it is clear that a should be as small as possible,
given that the above two constraints are satisfied. Therefore for fixed value of b, the smallest a that
satisfies both constraints is

a∗(b) = max {A1(b), A2(b)} (35)

A.5 Optimal b

Here we discuss in cases. We consider two sets

B1 = {b ≥ 0|A1(b) ≥ A2(b)} (36)
B2 = {b ≥ 0|A2(b) ≥ A1(b)} (37)

Case I: For b ∈ B1, a ≥ A1(b) is the tighter constraint therefore a∗(b) = A1(b). Now we have

a∗ = A1(b) = r−βmax · b (38)

F (b) = F (a∗, b) = const+ log γq(b)− q log b−
bq exp(−b)
γq(b)

(39)

We will show that F (a∗, b) is non-increasing in b. To prove this, we define an auxiliary function

Z(b)
def
=
bq exp(−b)
γq(b)

, logZ(b) = q log b− b− log γq(b) (40)

F (b) = const− logZ(b)− b− Z(b) (41)

We need to show

0 ≥ F ′(b) = −Z
′(b)

Z(b)
− Z ′(b)− 1 (42)

Here we calculate Z ′(b)

Z ′(b) =
qbq−1 exp(−b)− bq exp(−b)

γq(b)
− b2q−1 exp(−2b)

γq(b)2
(43)

=
bq−1 exp(−b)

γq(b)2
[(q − b) γq(b)− bq exp(−b)]︸ ︷︷ ︸

def
=Z2(b)

(44)

The term Z2(b) has property

Z2(0) = 0, Z ′2(b) = −γq(b) ⇒ Z2(b) = −
∫ b

0

γq(t) dt (45)

Therefore

Z ′(b) = − bq exp(−b)
γq(b)︸ ︷︷ ︸
=Z(b)

∫ b
0
γq(t) dt

bγq(b)︸ ︷︷ ︸
=M(b)

= −Z(b)M(b) (46)

Plug this into F ′(b)

F ′(b) =M(b)(1 + Z(b))− 1 (47)
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First we can show F ′(0) = 0. Now for b > 0, we have

F2(b)
def
= F ′(b) · bγq(b) =

∫ b

0

γq(t) dt · (1 + Z(b))− 1 (48)

F ′2(b) = γq(b) (1 + Z(b)) +

∫ b

0

γq(t) dt · Z ′(b)− γq(b)− bq exp(−b) =
∫ b

0

γq(t) dt · Z ′(b) < 0

(49)

Therefore F ′(b) ≤ 0 and the function F (b) is non-increasing. This means that in the case of b ∈ B1,
the optimal solution is the smallest b∗ = infb∈B1

b.

Case II: For b ∈ B2, a ≥ A2(b) is the tighter constraint therefore a∗(b) = A2(b). Now we have

a∗(b) = A2(b) = K−1ave

[
q − bq exp(−b)

γq(b)

]
= K−1ave [q − Z(b)] (50)

F (b) = F (a∗, b) = const+ log γq(b)− q log(q − Z(b))− Z(b) (51)

Now we will show this F (b) is non-decreasing in b.

F ′(b) =
bq−1 exp(−b)

γq(b)
+

qZ ′(b)

q − Z(b)
− Z ′(b) (52)

=
Z(b)

b
+ Z ′(b)

Z(b)

q − Z(b)
=

Z(b)

b(q − Z(b))
[q − Z(b) + bZ ′(b)] (53)

The term outside the bracket is positive when b > 0. Therefore we only need to show

Z3(b) = q − Z(b) + bZ ′(b) ≥ 0. (54)

Note that we have

logZ(b) = q log b− b− log γq(b) (55)

Z ′(b)

Z(b)
=
q

b
− 1− bq−1 exp(−b)

γq(b)
=
q

b
− 1− Z(b)

b
(56)

Therefore

q − Z(b) = b

(
1 +

Z ′(b)

Z(b)

)
(57)

Plug this into Eq(57) we have

Z3(b) = b

(
1 +

Z ′(b)

Z(b)
+ Z ′(b)

)
≥ 0 (58)

which share the proof of the inequality in Eq(45). In this case, F (b) is non-decreasing. This means
that in the case of b ∈ B2, the optimal solution is the largest b∗ = supb∈B2

b.

Conclusion: Based on these two cases, we know that if bothB1, B2 are non-empty, then the optimal
b∗ is both the infimum or B1 and supremum of B2, which means that b∗ is uniquely determined by

A1(b) =
1

rβmax
b =

1

Kave

[
q − bq exp(−b)

γq(b)

]
= A2(b) (59)

Since A1(b) grows linearly but A2(b) has an upper bound, therefore B1 cannot be empty. However
if B2 is empty, then the optimal b∗ = infb∈R+ b = 0 which means that the optimal solution is
attained by the limit b→ 0.

B Technical Details for Multiple Neurons Case

First we define the active regions of the i-th neuron as

A±i = {s| ± h′i(s) > 0}, Ai = A−i ∪A
+
i . (60)
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Now we prove a couple of necessary conditions for these Ai to be optimal in terms of maximum
mutual information. Note that the tuning curves are assumed to be monotonic so one of A+

i and A−i
must be empty.

As a useful preliminary result, we recall that the total Fisher information of the population is the
linear sum of Fisher information contributed by each individual neuron

IF (s) =

N∑
i=1

Ii(s) where Ii(s) ∝
h′i(s)

2

hi(s)α
(61)

if the noise model parameter is α. It is clear that Ii(s) is greater than zero only if s ∈ Ai.
Lemma 1 (Non-overlapping active regions.). We consider the problem of optimizing a neural pop-
ulation with neuron i = 1, . . . , N . We limit the stimulus to be on some subset s ∈ [s0, s1] of the
original range [0, 1]. Each neuron is monotonic (either h′i(s) ≥ 0 or h′i(s) ≤ 0 for s ∈ [s0, s1]) and
has limited range of output Li ≤ hi(s) ≤ Hi.

maximize
∫ s1

s0

log IF (s) ds (62)

subject to Li ≤ hi(s) ≤ Hi, i = 1, . . . , N (63)

Then a necessary condition is the non-overlapping active regions, i.e. Ai ∩Aj = ∅ for all i 6= j.

Proof. We begin with the proof of an upper bound on the integral of the square root of the Fisher
information: ∫ s1

s0

√
Ii(s) ds ≤ Imax

i (64)

For α 6= 2, for example, we have√
Ii(s) ∝

|h′i(s)|
hi(s)α/2

∝ d

ds

[
hi(s)

1−α/2
]

(65)

Imax
i ∝ |H1−α/2

i − L1−α/2
i | (66)

For α = 2 the calculation is similar if we use log hi(s) as the anti-derivative. Next we write down
an upper bound of the objective function:

IF (s) =

N∑
i=1

Ii(s) =

(
N∑
i=1

√
Ii(s)

)2

− 2
∑
i<j

√
Ii(s) · Ij(s) ≤

(
N∑
i=1

√
Ii(s)

)2

def
= Q(s)2 (67)

∫ s1

s0

log IF (s) ds ≤ 2

∫ s1

s0

logQ(s) ds = 2(s1 − s0)
∫ s1

s0

1

s1 − s0
logQ(s) ds (68)

≤ 2(s1 − s0) log
∫ s1

s0

Q(s)

s1 − s0
ds ≤ 2(s1 − s0) log

∑
i I

max
i

s1 − s0
. (69)

where we have used the Jensen’s inequality and the optimization constraints. To achieve this at-
tainable upper bound for the objective function, we need Q(s) = const for the Jensen’s inequality
and also the equality in Eq. 67. Therefore a necessary condition for hi(s) to be optimal is that
Ii(s) · Ij(s) = 0 everywhere for i 6= j. This is equivalent as our claim Ai ∩ Aj = ∅ for all
i 6= j.

In other words, different neurons should not have non-overlapping active region. However, the above
lemma does not take the energy constraints into consideration. If we add the energy constraint∫ 1

0

N∑
i=1

K(hi(s)) ds ≤ Ktotal (70)

does it break the necessity of the non-overlapping Fisher information condition? The answer is no
due to the following lemma.
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Lemma 2 (Non-overlapping active regions with metabolic constraints). Assuming hi(s) is the op-
timal solution to the following problem. Each neuron is monotonic (either hi(s) ≥ 0 or hi(s) ≤ 0
for s ∈ [0, 1]) and has limited range of output L ≤ hi(s) ≤ H .

maximize
∫ 1

0

log IF (s) ds (71)

subject to L ≤ hi(s) ≤ H, i = 1, . . . , N (72)∫ 1

0

N∑
i=1

K(hi(s)) ds ≤ Ktotal (73)

Then a necessary condition is the non-overlapping active regions, i.e. Ai ∩Aj = ∅ for all i 6= j.

Proof. We show this lemma by contradiction – we assume hi(s) is optimal with Ii(s) · Ij(s) > 0

for some s (so s ∈ Ai ∩Aj) and show that there exists a better solution h̃i(s).

We divide the stimulus space s ∈ [0, 1] equally into M smaller intervals with endpoints sj = j/M
for j = 0, . . .M . We define

Li,j = min
s∈[sj−1,sj ]

hi(s) (74)

Hi,j = max
s∈[sj−1,sj ]

hi(s) (75)

On each of these intervals [sj−1, sj ] and the above range, we apply Lemma 1 and obtain a new
solution h̃i(s) which satisfies the non-overlapping Fisher information condition. It is easy to see
that this new solution gives better objective function. Next we show that this better solution costs
similar amount of energy as hi(s). Using the upper and lower bound of firing rate in each interval,
we have∫ 1

0

K(h̃i(s)) ds =

M∑
j=1

∫ sj

sj−1

K(h̃i(s)) ds ≤
M∑
j=1

(sj − sj−1)K(Hi,j) =
1

M

M∑
j=1

K(Hi,j) (76)

∫ 1

0

K(h̃i(s)) ds =

M∑
j=1

∫ sj

sj−1

K(h̃i(s)) ds ≥
M∑
j=1

(sj − sj−1)K(Li,j) =
1

M

M∑
j=1

K(Li,j) (77)

Similarly for the original solution hi(s) these two bounds also apply

1

M

M∑
j=1

K(Li,j) ≤
∫ 1

0

K(hi(s)) ds ≤
1

M

M∑
j=1

K(Hi,j) (78)

Therefore

|Kh̃ −Kh| =
∣∣∣∣∫ 1

0

K(h̃i(s)) ds−
∫ 1

0

K(hi(s)) ds

∣∣∣∣ (79)

≤ 1

M

M∑
j=1

(Hi,j − Li,j) =
1

M
(H − L) (80)

and the right side converges to zero asM goes to infinity. This means that the energy consumption of
this new solution h̃i(s) can be made as close to the original solution as possible if we use a finer and
finer grid (large M ), while having a better objective function value. This contradicts the optimality
of hi(s).

Using Lemma 1 and Lemma 2, we conclude that in the optimal population, the neurons need to have
non-overlapping Fisher information. This simplifies our further analysis. Here we discuss another
necessary condition that a pair of ON-OFF neurons must satisfies.
Lemma 3 (ON-OFF neurons). Under the assumption that the energy constraint is binding, then for
an ON-neuron with active regionA+

i and an OFF-neuron with active regionA−j , we have supB−j ≤
inf A+

i . In other words, the active region of any ON neuron is strictly on the right side of the active
region of any OFF neuron.
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Proof. We denote si = inf A+
i and sj = supA−j and prove the lemma by contradiction. We

assume si < sj . Due to the piecewise continuity of h′i(s), there exists ε > 0 such that there exist
small neighborhoods [si, si + ε] ∈ A+

i and [sj − ε, sj ] ∈ A−j . We can construct a new tuning curve
h̃i(s) and h̃j(s) by swapping their active regions (see Figure 1 below) in these neighborhood. It

s

si si + ǫ sj − ǫ sj
h
(s
)

s

si si + ǫ sj − ǫ sj

h̃
(s
)

Figure 1: Tuning curve surgery for ON-OFF neuron pairs that reduces energy costs.

is obvious that the new h̃i costs strictly less amount of energy. The new tuning curves has equal
performance in terms of objective function because the regions being swapped has same size. The
existence of such tuning curves contradicts the fact that the energy constraint is binding.

One immediate corollary is that, in a large population of neurons with both ON and OFF sub-
populations, there exists a single s that divides the active regions for the ON sub-population and the
OFF sub-population.

Next we find the optimal condition for a population of only ON/OFF neurons. Without loss of
generality, we assume the neural population consists of only ON neurons.
Lemma 4 (ON-ON neurons). Assuming the population has only ON neurons and the metabolic cost
function is linear

∑
iK(hi(s)) = K(

∑
i hi(s)), then the optimal hi(s) ≈ h(s)/N but with disjoint

active regions A+
i . The function h(s) =

∑
i hi(s) is the single neuron infomax solution of:

maximizeh(s) MI(s, r) (81)

subject to 0 ≤ h(s) ≤ N · rmax (82)
E[K(h(s))] ≤ N ·Ktotal (83)

Proof. We denote hi(s) = pi(s) · h(s) and it is clear that
∑
pi(s) = 1. Using Lemma 1 we know

Ai’s are disjoint therefore we also have h′i(s) = h′(s) · 1Ai . Plug these into the objective function,
we know that

IF (s) ∝
N∑
i=1

h′i(s)
2

hi(s)α
=
h′(s)2

h(s)α
·
N∑
i=1

1Ai · pi(s)−α ⇒ (84)

∫ 1

0

log IF (s) ds =

∫ 1

0

log
h′(s)2

h(s)α
ds+

∫ 1

0

log

(
N∑
i=1

1Ai · pi(s)−α
)
ds (85)

Now the problem is divided into two independent part. The first part involves finding the optimal
h(s) under constraints stated in the lemma. This part is exactly the same as the single neuron case.

The second part involves optimizing Ai and pi(s) for the following term

maximize
∫ 1

0

log

(
N∑
i=1

1Ai · pi(s)−α
)
ds = −α

∑
i

∫ 1

0

1Ai log pi(s) ds (86)

subject to
∑

pi(s) = 1. (87)

Using Lagrange multiplier method we know the optimal condition for pi(s) is

−α 1Ai
pi(s)

− λ = 0 (88)
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This shows that pi(s) = const for s ∈ Ai. However Ai is the active region of neuron i so the
function hi(s) is increasing and all other hj(s) remains the same. The only way for this condition
to holds is when Ai consists of infinite many small intervals so that the increase in hi(s) is small.
Also we know that all pi(s) → 1/N when s → 1. Therefore one possible solution is given by
hi(s) ≈ h(s)/N but on infinitesimal scales, each small interval is equally divided into N disjoint
set Ai’s.
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