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Abstract

Asynchronous parallel optimization received substantial successes and extensive
attention recently. One of core theoretical questions is how much speedup (or
benefit) the asynchronous parallelization can bring to us. This paper provides a
comprehensive and generic analysis to study the speedup property for a broad
range of asynchronous parallel stochastic algorithms from the zeroth order to the
first order methods. Our result recovers or improves existing analysis on special
cases, provides more insights for understanding the asynchronous parallel behav-
iors, and suggests a novel asynchronous parallel zeroth order method for the first
time. Our experiments provide novel applications of the proposed asynchronous
parallel zeroth order method on hyper parameter tuning and model blending prob-
lems.

1 Introduction
Asynchronous parallel optimization received substantial successes and extensive attention recently,
for example, [5, 25, 31, 33, 34, 37]. It has been used to solve various machine learning problems,
such as deep learning [4, 7, 26, 36], matrix completion [25, 28, 34], SVM [15], linear systems [3, 21],
PCA [10], and linear programming [32]. Its main advantage over the synchronous parallel optimiza-
tion is avoiding the synchronization cost, so it minimizes the system overheads and maximizes the
efficiency of all computation workers.
One of core theoretical questions is how much speedup (or benefit) the asynchronous parallelization
can bring to us, that is, how much time can we save by employing more computation resources?
More precisely, people are interested in the running time speedup (RTS) with T workers:

RTS(T ) =
running time using a single worker

running time using T workers
.

Since in the asynchronous parallelism all workers keep busy, RTS can be measured roughly by the
computational complexity speedup (CCS) with T workers1

CCS(T ) =
total computational complexity using a single worker

total computational complexity using T workers
× T.

In this paper, we are mainly interested in the conditions to ensure the linear speedup property. More
specifically, what is the upper bound on T to ensure CCS(T ) = Θ(T )?
Existing studies on special cases, such as asynchronous stochastic gradient descent (ASGD) and
asynchronous stochastic coordinate descent (ASCD), have revealed some clues for what factors can

1For simplicity, we assume that the communication cost is not dominant throughout this paper.
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Table 1: Asynchronous parallel algorithms. “I” and “C” in “model” stand for inconsistent and
consistent read model respectively, which will be explained later. “Base alg.” is short for base
algorithm.

Asyn. alg. base alg. problem type upper bound of T model
ASGD [25] SGD smooth, strongly convex O(N1/4) C
ASGD [1] SGD smooth, convex O(K1/4 min{σ3/2, σ1/2}) C
ASGD[11] SGD composite, convex O(K1/4σ1/2) C
ASGD [18] SGD smooth, nonconvex O(N1/4K1/2σ) I
ASGD [18] SGD smooth, nonconvex O(K1/2σ) C
ARK [21] SGD Ax = b O(N) C
ASCD [20] SCD smooth, convex, unconstrained O(N1/2) C
ASCD [20] SCD smooth, convex, constrained O(N1/4) C
ASCD [19] SCD composite, convex O(N1/4) I
ASCD [3] SCD 1

2
xTAx− bTx O(N) C

ASCD [3] SCD 1
2
xTAx− bTx O(N1/2) I

ASCD [15] SCD 1
2
xTAx− bTx , constrained O(N1/2) I

ASZD
zeroth order

SGD & SCD smooth, nonconvex O(
√
N3/2 +KN1/2σ2) I

ASGD SGD smooth, nonconvex O(
√
N3/2 +KN1/2σ2) I

ASGD SGD smooth, nonconvex O(
√
Kσ2 + 1) C

ASCD SCD smooth, nonconvex O(N3/4) I

affect the upper bound of T . For example, Agarwal and Duchi [1] showed the upper bound depends
on the variance of the stochastic gradient in ASGD; Niu et al. [25] showed that the upper bound
depends on the data sparsity and the dimension of the problem in ASGD; and Avron et al. [3], Liu
and Wright [19] found that the upper bound depends on the problem dimension as well as the
diagonal dominance of the Hessian matrix of the objective. However, it still lacks a comprehensive
and generic analysis to comprehend all pieces and show how these factors jointly affect the speedup
property.
This paper provides a comprehensive and generic analysis to study the speedup property for a broad
range of asynchronous parallel stochastic algorithms from the zeroth order to the first order methods.
To avoid unnecessary complication and cover practical problems and algorithms, we consider the
following nonconvex stochastic optimization problem:

minx∈RN f(x) := Eξ(F (x; ξ)), (1)

where ξ ∈ Ξ is a random variable, and both F (·; ξ) : RN → R and f(·) : RN → R are smooth but
not necessarily convex functions. This objective function covers a large scope of machine learning
problems including deep learning. F (·; ξ)’s are called component functions in this paper. The most
common specification is that Ξ is an index set of all training samples Ξ = {1, 2, · · · , n} and F (x; ξ)
is the loss function with respect to the training sample indexed by ξ.
We highlight the main contributions of this paper in the following:
• We provide a generic analysis for convergence and speedup, which covers many existing algo-

rithms including ASCD, ASGD ( implementation on parameter server), ASGD (implementation on
multicore systems), and others as its special cases.
• Our generic analysis can recover or improve the existing results on special cases.
• Our generic analysis suggests a novel asynchronous stochastic zeroth-order gradient descent

(ASZD) algorithm and provides the analysis for its convergence rate and speedup property. To the
best of our knowledge, this is the first asynchronous parallel zeroth order algorithm.
• The experiment includes a novel application of the proposed ASZD method on model blending

and hyper parameter tuning for big data optimization.
1.1 Related Works
We first review first-order asynchronous parallel stochastic algorithms. Table 1 summarizes existing
linear speedup results for asynchronous parallel optimization algorithms mostly related to this paper.
The last block of Table 1 shows the results in this paper. Reddi et al. [29] proved the convergence of
asynchronous variance reduced stochastic gradient (SVRG) method and its speedup in sparse setting.
Mania et al. [22] provides a general perspective (or starting point) to analyze for asynchronous
stochastic algorithms, including HOGWILD!, asynchronous SCD and asynchronous sparse SVRG.
The fundamental difference in our work lies on that we apply different analysis and our result can be
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directly applied to various special cases, while theirs cannot. In addition, there is a line of research
studying the asynchronous ADMM type methods, which is not in the scope of this paper. We
encourage readers to refer to recent literatures, for example, Hong [14], Zhang and Kwok [35].
We end this section by reviewing the zeroth-order stochastic methods. We use N to denote the
dimension of the problem, K to denote the iteration number, and σ to the variance of stochastic gra-
dient. Nesterov and Spokoiny [24] proved a convergence rate of O(N/

√
K) for zeroth-order SGD

applied to convex optimization. Based on [24], Ghadimi and Lan [12] proved a convergence rate of
O(
√
N/K) rate for zeroth-order SGD on nonconvex smooth problems. Jamieson et al. [16] shows

a lower bound O(1/
√
K) for any zeroth-order method with inaccurate evaluation. Duchi et al. [9]

proved a O(N1/4/K + 1/
√
K) rate for zeroth order SGD on convex objectives but with some very

different assumptions compared to our paper. Agarwal et al. [2] proved a regret of O(poly(N )
√
K)

for zeroth-order bandit algorithm on convex objectives.
For more comprehensive review of asynchronous algorithms, please refer to the long version of this
paper on arXiv:1606.00498.
1.2 Notation
• ei ∈ RN denotes the ith natural unit basis vector.
• E(·) means taking the expectation with respect to all random variables, while Ea(·) denotes the

expectation with respect to a random variable a.
• ∇f(x) ∈ RN is the gradient of f(x) with respect to x. Let S be a subset of {1, · · · , N}.
∇Sf(x) ∈ RN is the projection of ∇f(x) onto the index set S, that is, setting components of
∇f(x) outside of S to be zero. We use∇if(x) ∈ RN to denote ∇{i}f(x) for short.
• f∗ denotes the optimal objective value in (1).

2 Algorithm Algorithm 1 Generic Asynchronous Stochastic
Algorithm (GASA)

Require: x0,K, Y, (µ1, µ2, . . . , µN ), {γk}k=0,...,K−1 ▷

γk is the step length for kth iteration
Ensure: {xk}Kk=0

1: for k = 0, . . . ,K − 1 do
2: Randomly select a component function index ξk

and a set of coordinate indices Sk, where |Sk| = Y ;
3: xk+1 = xk − γkGSk

(x̂k; ξk);
4: end for

We illustrate the asynchronous parallelism
by assuming a centralized network: a cen-
tral node and multiple child nodes (work-
ers). The central node maintains the opti-
mization variable x. It could be a param-
eter server if implemented on a computer
cluster [17]; it could be a shared memory
if implemented on a multicore machine.
Given a base algorithm A, all child nodes
run algorithm A independently and con-
currently: read x from the central node (we call the result of this read x̂, and it is mathematically
defined later in (4)), calculate locally using the x̂, and modify x on the central node. There is no need
to synchronize child nodes. Therefore, all child nodes stay busy and consequently their efficiency
gets maximized. In other words, we have CCS(T ) ≈ RTS(T ). Note that due to the asynchronous
parallel mechanism the variable x in the central node is not updated exactly following the protocol
of Algorithm A, since when a child node returns its computation result, the x in the central node
might have been changed by other child nodes. Thus a new analysis is required. A fundamental
question would be under what conditions a linear speedup can be guaranteed. In other words, under
what conditions CCS(T ) = Θ(T ) or equivalently RTS(T ) = Θ(T )?
To provide a comprehensive analysis, we consider a generic algorithm A – the zeroth order hybrid
of SCD and SGD: iteratively sample a component function2 indexed by ξ and a coordinate block
S⊆{1, 2, · · · , N}, where |S| = Y for some constant Y and update x with

x← x− γGS(x; ξ) (2)

where GS(x; ξ) is an approximation to the block coordinate stochastic gradient NY −1∇SF (x; ξ):

GS(x; ξ) :=
∑

i∈S
N

2Y µi
(F (x+ µiei; ξ)− F (x− µiei; ξ))ei, S ⊆ {1, 2, . . . , N}. (3)

In the definition of GS(x; ξ), µi is the approximation parameter for the ith coordinate.
(µ1, µ2, . . . , µN ) is predefined in practice. We only use the function value (the zeroth order in-
formation) to estimate GS(x; ξ). It is easy to see that the closer to 0 the µi’s are, the closer GS(x; ξ)
and NY −1∇Sf(x; ξ) will be. In particular, limµi→0,∀i GS(x; ξ) = NY −1∇Sf(x; ξ).

2The algorithm and theoretical analysis followed can be easily extended to the minibatch version.
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Applying the asynchronous parallelism, we propose a generic asynchronous stochastic algorithm in
Algorithm 1. This algorithm essentially characterizes how the value of x is updated in the central
node. γk is the predefined steplength (or learning rate). K is the total number of iterations (note
that this iteration number is counted by the the central node, that is, any update on x no matter from
which child node will increase this counter.)
As we mentioned, the key difference of the asynchronous algorithm from the protocol of Algo-
rithm A in Eq. (2) is that x̂k may be not equal to xk. In asynchronous parallelism, there are two
different ways to model the value of x̂k:
• Consistent read: x̂k is some early existed state of x in the central node, that is, x̂k = xk−τk for

some τk ≥ 0. This happens if reading x and writing x on the central node by any child node are
atomic operations, for instance, the implementation on a parameter server [17].
• Inconsistent read: x̂k could be more complicated when the atomic read on x cannot be guaran-

teed, which could happen, for example, in the implementation on the multi-core system. It means
that while one child is reading x in the central node, other child nodes may be performing modifica-
tions on x at the same time. Therefore, different coordinates of x read by any child node may have
different ages. In other words, x̂k may not be any existed state of x in the central node.
Readers who want to learn more details about consistent read and inconsistent read can refer to
[3, 18, 19]. To cover both cases, we note that x̂k can be represented in the following generic form:

x̂k = xk −
∑

j∈J(k)(xj+1 − xj), (4)

where J(k) ⊂ {k−1, k−2, . . . , k−T} is a subset of the indices of early iterations, and T is the upper
bound for staleness. This expression is also considered in [3, 18, 19, 27]. Note that the practical
value of T is usually proportional to the number of involved nodes (or workers). Therefore, the total
number of workers and the upper bound of the staleness are treated as the same in the following
discussion and this notation T is abused for simplicity.

3 Theoretical Analysis
Before we show the main results of this paper, let us first make some global assumptions commonly
used for the analysis of stochastic algorithms.3

Bounded Variance of Stochastic Gradient Eξ(∥∇F (x; ξ)−∇f(x)∥2) ≤ σ2,∀x.
Lipschitzian Gradient The gradient of both the objective and its component functions are Lips-
chitzian:4

max{∥∇f(x)−∇f(y)∥, ∥∇F (x; ξ)−∇F (y; ξ)∥} ≤ L∥x− y∥ ∀x,∀y, ∀ξ. (5)

Under the Lipschitzian gradient assumption, define two more constants Ls and Lmax. Let s be
any positive integer bounded by N . Define Ls to be the minimal constant satisfying the following
inequality: ∀ξ, ∀x, αiei∀S ⊂ {1, 2, ..., N} with |S| ≤ s for any z =

∑
i∈S we have:

max {∥∇f(x)−∇f (x+ z)∥ , ∥∇F (x; ξ)−∇F (x+ z; ξ)∥} ≤ Ls ∥z∥
Define L(i) for i ∈ {1, 2, . . . , N} as the minimum constant that satisfies:

max{∥∇if(x)−∇if(x+ αei)∥, ∥∇iF (x; ξ)−∇iF (x+ αei; ξ)∥} ≤ L(i)|α|. ∀ξ,∀x. (6)

Define Lmax := maxi∈{1,...,N} L(i). It can be seen that Lmax ≤ Ls ≤ L.
Independence All random variables ξk, Sk for k = 0, 1, · · · ,K are independent to each other.
Bounded Age Let T be the global bound for delay: J(k)⊆{k − 1, . . . , k − T},∀k, so |J(k)| ≤ T .
We define the following global quantities for short notations:

ω :=
(∑N

i=1 L
2
(i)µ

2
i

)
/N, α1 := 4 + 4

(
TY + Y 3/2T 2/

√
N
)
L2
T /(L

2
Y N),

α2 := Y/((f(x0)− f∗)LY N), α3 := (K(Nω + σ2)α2 + 4)L2
Y /L

2
T . (7)

Next we show our main result in the following theorem:

3Some underlying assumptions such as reading and writing a float number are omitted here. As pointed in
[25], these behaviors are guaranteed by most modern architectures.

4Note that the Lipschitz assumption on the component function F (x; ξ)’s can be eliminated when it comes
to first order methods (i.e., ω → 0) in our following theorems.
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Theorem 1 (Generic Convergence Rate for GASA). Choose the steplength γk to be a constant γ in
Algorithm 1

γ−1
k = γ−1 = 2LY NY −1

(√
α2
1/(K(Nω + σ2)α2 + α1) +

√
K(Nω + σ2)α2

)
,∀k

and suppose the age T is bounded by T ≤
√
N

2Y 1/2

(√
1 + 4Y −1/2N1/2α3 − 1

)
. We have the fol-

lowing convergence rate:∑K
k=0 E∥∇f(xk)∥2

K
⩽ 20

Kα2
+

1

Kα2

(
L2

T

L2
Y

√
1 + 4Y −1/2N1/2α3 − 1√

NY −1
+ 11

√
Nω + σ2

√
Kα2

)
+Nω.

(8)

Roughly speaking, the first term on the RHS of (8) is related to SCD; the second term is related to
“stochastic” gradient descent; and the last term is due to the zeroth-order approximation.
Although this result looks complicated (or may be less elegant), it is capable to capture many impor-
tant subtle structures, which can be seen by the subsequent discussion. We will show how to recover
and improve existing results as well as prove the convergence for new algorithms using Theorem 1.
To make the results more interpretable, we use the big-O notation to avoid explicitly writing down
all the constant factors, including all L’s, f(x0), and f∗ in the following corollaries.
3.1 Asynchronous Stochastic Coordinate Descent (ASCD)
We apply Theorem 1 to study the asynchronous SCD algorithm by taking Y = 1 and σ = 0. Sk =
{ik} only contains a single randomly sampled coordinate, and ω = 0 (or equivalently µi = 0,∀i).
The essential updating rule on x is xk+1 = xk − γk∇ikf(x̂k).

Corollary 2 (ASCD). Let ω = 0, σ = 0, and Y = 1 in Algorithm 1 and Theorem 1. If

T ⩽ O(N3/4), (9)

the following convergence rate holds:(∑K
k=0 E∥∇f(xk)∥2

)
/K ⩽ O(N/K). (10)

The proved convergence rate O(N/K) is consistent with the existing analysis of SCD [30] or ASCD
for smooth optimization [20]. However, our requirement in (9) to ensure the linear speedup property
is better than the one in [20], by improving it from T ≤ O(N1/2) to T ≤ O(N3/4). Mania et al. [22]
analyzed ASCD for strongly convex objectives and proved a linear speedup smaller than O(N1/6),
which is also more restrictive than ours.
3.2 Asynchronous Stochastic Gradient Descent (ASGD)
ASGD has been widely used to solve deep learning [7, 26, 36], NLP [4, 13], and many other im-
portant machine learning problems [25]. There are two typical implementations of ASGD. The first
type is to implement on the computer cluster with a parameter sever [1, 17]. The parameter server
serves as the central node. It can ensure the atomic read or write of the whole vector x and leads to
the following updating rule for x (setting Y = N and µi = 0,∀i in Algorithm 1):

xk+1 = xk − γk∇F (x̂k; ξk). (11)

Note that a single iteration is defined as modifying the whole vector. The other type is to implement
on a single computer with multiple cores. In this case, the central node corresponds to the shared
memory. Multiple cores (or threads) can access it simultaneously. However, in this model atomic
read and write of x cannot be guaranteed. Therefore, for the purpose of analysis, each update on
a single coordinate accounts for an iteration. It turns out to be the following updating rule (setting
Sk = {ik}, that is, Y = 1, and µi = 0,∀i in Algorithm 1):

xk+1 = xk − γk∇ikF (x̂k; ξk). (12)

Readers can refer to [3, 18, 25] for more details and illustrations for these two implementations.
Corollary 3 (ASGD in (11)). Let ω = 0 (or µi = 0,∀i equivalently) and Y = N in Algorithm 1
and Theorem 1. If

T ⩽ O
(√

Kσ2 + 1
)
, (13)

then the following convergence rate holds:(∑K
k=0 E∥∇f(xk)∥2

)
/K ⩽ O

(
σ/
√
K + 1/K

)
. (14)
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First note that the convergence rate in (14) is tight since it is consistent with the serial (nonparallel)
version of SGD [23]. We compare this linear speedup property indicated by (13) with results in
[1], [11], and [18]. To ensure such rate, Agarwal and Duchi [1] need T to be bounded by T ≤
O(K1/4 min{σ3/2,

√
σ}), which is inferior to our result in (13). Feyzmahdavian et al. [11] need

T to be bounded by σ1/2K1/4 to achieve the same rate, which is also inferior to our result. Our
requirement is consistent with the one in [18]. To the best of our knowledge, it is the best result so
far.
Corollary 4 (ASGD in (12)). Let ω = 0 (or equivalently, µi = 0,∀i) and Y = 1 in Algorithm 1
and Theorem 1. If

T ⩽ O
(√

N3/2 +KN1/2σ2
)
, (15)

then the following convergence rate holds(∑K
k=0 E∥∇f(xk)∥2

)
/K ⩽ O

(√
N/Kσ +N/K

)
. (16)

The additional factor N in (16) (comparing to (14)) arises from the different way of counting the
iteration. This additional factor also appears in [25] and [18]. We first compare our result with [18],
which requires T to be bounded by O(

√
KN1/2σ2). We can see that our requirement in (16) allows

a larger value for T , especially when σ is small such that N3/2 dominates KN1/2σ2. Next we com-
pare with [25], which assumes that the objective function is strongly convex. Although this is sort
of comparing “apple” with “orange”, it is still meaningful if one believes that the strong convexity
would not affect the linear speedup property, which is implied by [22]. In [25], the linear speedup
is guaranteed if T ≤ O(N1/4) under the assumption that the sparsity of the stochastic gradient
is bounded by O(1). In comparison, we do not require the assumption of sparsity for stochastic
gradient and have a better dependence on N . Moreover, beyond the improvement over existing anal-
ysis in [22] and [18], our analysis provides some interesting insights for asynchronous parallelism.
Niu et al. [25] essentially suggests a large problem dimension N is beneficial to the linear speedup,
while Lian et al. [18] and many others (for example, Agarwal and Duchi [1], Feyzmahdavian et al.
[11]) suggest that a large stochastic variance σ (this often implies the number of samples is large) is
beneficial to the linear speedup. Our analysis shows the combo effect of N and σ and shows how
they improve the linear speedup jointly.
3.3 Asynchronous Stochastic Zeroth-order Descent (ASZD)
We end this section by applying Theorem 1 to generate a novel asynchronous zeroth-order stochastic
descent algorithm, by setting the block size Y = 1 (or equivalently Sk = {ik}) in GSk

(x̂k; ξk)

GSk
(x̂k; ξk) = G{ik}(x̂k; ξk) = (F (x̂k + µikeik ; ξk)− F (x̂k − µikeik ; ξk))/(2µik)eik . (17)

To the best of our knowledge, this is the first asynchronous algorithm for zeroth-order optimization.
Corollary 5 (ASZD). Set Y = 1 and all µi’s to be a constant µ in Algorithm 1. Suppose that µ
satisfies

µ ⩽ O
(
1/
√
K +min

{√
σ(NK)−1/4, σ/

√
N
})

, (18)

and T satisfies
T ⩽ O

(√
N3/2 +KN1/2σ2

)
. (19)

We have the following convergence rate(∑K
k=0 E∥∇f(xk)∥2

)
/K ⩽ O

(
N/K +

√
N/Kσ

)
. (20)

We firstly note that the convergence rate in (20) is consistent with the rate for the serial (nonparallel)
zeroth-order stochastic gradient method in [12]. Then we evaluate this result from two perspectives.
First, we consider T = 1, which leads to the serial (non-parallel) zeroth-order stochastic descent.
Our result implies a better dependence on µ, comparing with [12].5 To obtain such convergence rate

5Acute readers may notice that our way in (17) to estimate the stochastic gradient is different from the one
used in [12]. Our method only estimates a single coordinate gradient of a sampled component function, while
Ghadimi and Lan [12] estimate the whole gradient of the sampled component function. Our estimation is more
accurate but less aggressive. The proved convergence rate actually improves a small constant in [12].
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in (20), Ghadimi and Lan [12] require µ ⩽ O
(
1/(N

√
K)
)

, while our requirement in (18) is much
less restrictive. An important insight in our requirement is to suggest the dependence on the variance
σ: if the variance σ is large, µ is allowed to be a much larger value. This insight meets the common
sense: a large variance means that the stochastic gradient may largely deviate from the true gradient,
so we are allowed to choose a large µ to obtain a less exact estimation for the stochastic gradient
without affecting the convergence rate. From the practical view of point, it always tends to choose a
large value for µ. Recall the zeroth-order method uses the function difference at two different points
(e.g., x+µei and x−µei) to estimate the differential. In a practical system (e.g., a concrete control
system), there usually exists some system noise while querying the function values. If two points
are too close (in other words µ is too small), the obtained function difference is dominated by noise
and does not really reflect the function differential.
Second, we consider the case T ≥ 1, which leads to the asynchronous zeroth-order stochastic
descent. To the best of our knowledge, this is the first such algorithm. The upper bound for T in (19)
essentially indicates the requirement for the linear speedup property. The linear speedup property
here also shows that even if Kσ2 is much smaller than 1, we still have O(N3/4) linear speedup,
which shows a fundamental understanding of asynchronous stochastic algorithms that N and σ can
improve the linear speedup jointly.

4 Experiment
Since the ASCD and various ASGDs have been extensively validated in recent papers. We conduct
two experiments to validate the proposed ASZD on in this section. The first part applies ASZD
to estimate the parameters for a synthetic black box system. The second part applies ASZD to the
model combination for Yahoo Music Recommendation Competition.
4.1 Parameter Optimization for A Black Box
We use a deep neural network to simulate a black box system. The optimization variables are the
weights associated with a neural network. We choose 5 layers (400/100/50/20/10 nodes) for the
neural network with 46380 weights (or parameters) totally. The weights are randomly generated
from i.i.d. Gaussian distribution. The output vector is constructed by applying the network to the
input vector plus some Gaussian random noise. We use this network to generate 463800 samples.
These synthetic samples are used to optimize the weights for the black box. (We pretend not to know
the structure and weights of this neural network because it is a black box.) To optimize (estimate)
the parameters for this black box, we apply the proposed ASZD method.
The experiment is conducted on the machine (Intel Xeon architecture), which has 4 sockets and
10 cores for each socket. We run Algorithm 1 on various numbers of cores from 1 to 32 and the
steplength is chosen as γ = 0.1, which is based on the best performance of Algorithm 1 running on
1 core to achieve the precision 10−1 for the objective value.

Table 2: CCR and RTS of ASZD for different # of threads (synthetic data).
thr-# 1 4 8 12 16 20 24 28 32

CCS 1 3.87 7.91 9.97 14.74 17.86 21.76 26.44 30.86
RTS 1 3.32 6.74 8.48 12.49 15.08 18.52 22.49 26.12

The speedup is reported in Table 2. We observe that the iteration speedup is almost linear while the
running time speedup is slightly worse than the iteration speedup. We also draw Figure 1 (see the
supplement) to show the curve of the objective value against the number of iterations and running
time respectively.
4.2 Asynchronous Parallel Model Combination for Yahoo Music Recommendation

Competition
In KDD-Cup 2011, teams were challenged to predict user ratings in music given the Yahoo! Music
data set [8]. The evaluation criterion is the Root Mean Squared Error (RMSE) of the test data set:

RMSE =
√∑

(u,i)∈T1
(rui − r̂ui)2/|T1|, (21)

where (u, i) ∈ T1 are all user ratings in Track 1 test data set (6,005,940 ratings), rui is the true rating
for user u and item i, and r̂ui is the predicted rating. The winning team from NTU created more
than 200 models using different machine learning algorithms [6], including Matrix Factorization,
k-NN, Restricted Boltzmann Machines, etc. They blend these models using Neural Network and
Binned Linear Regression on the validation data set (4,003,960 ratings) to create a model ensemble
to achieve better RMSE.
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We were able to obtain the predicted ratings of N = 237 individual models on the KDD-Cup test
data set from the NTU KDD-Cup team, which is a matrix X with 6,005,940 rows (corresponding to
the 6,005,940 test data set samples) and 237 columns. Each element Xij indicates the j-th model’s
predicted rating on the i-th Yahoo! Music test data sample. In our experiments, we try to linearly
blend the 237 models using information from the test data set. Thus, our variable to optimize
is a vector x ∈ RN as coefficients of the predicted ratings for each model. To ensure that our
linear blending does not over-fit, we further split X randomly into two equal parts, calling them the
“validation” set (denoted as A ∈ Rn×N ) for model blending and the true test set.

We define our objective function as RMSE2 of the blended output on the validation set: f(x) =
∥Ax− r∥2/n where r is the corresponding true ratings in the validation set and Ax is the predicted
ratings after blending.
We assume that we cannot see the entries of r directly, and thus cannot compute the gradient of f(x).
In our experiment, we treat f(x) as a blackbox, and the only information we can get from it is its
value given a model blending coefficients x. This is similar to submitting a model for KDD-Cup and
obtain a leader-board RMSE of the test set; we do not know the actual values of the test set. Then,
we apply our ASZD algorithm to minimize f(x) with zero-order information only.

Table 3: Comparing RMSEs on test data set with KDD-Cup winner teams
NTU (1st) Commendo (2nd) InnerPeace (3rd) Our result

RMSE 21.0004 21.0545 21.2335 21.1241

We implement our algorithm using Julia on a 10-core Xeon E7-4680 machine an run our algorithm
for the same number of iterations, with different number of threads, and measured the running time
speedup (RTS) in Figure 4 (see supplement). Similar to our experiment on neural network blackbox,
our algorithm has a almost linear speedup. For completeness, Figure 2 in supplement shows the
square root of objective function value (RMSE) against the number of iterations and running time.
After about 150 seconds, our algorithm running with 10 threads achieves a RMSE of 21.1241 on our
test set. Our results are comparable to KDD-Cup winners, as shown in Table 3. Since our goal is
to show the performance of our algorithm, we assume we can “submit” our solution x for unlimited
times, which is unreal in a real contest like KDD-Cup. However, even with very few iterations, our
algorithm does converge fast to a reasonable small RMSE, as shown in Figure 3.

5 Conclusion
In this paper, we provide a generic linear speedup analysis for the zeroth-order and first-order asyn-
chronous parallel algorithms. Our generic analysis can recover or improve the existing results on
special cases, such as ASCD, ASGD (parameter implementation), ASGD (multicore implementa-
tion). Our generic analysis also suggests a novel ASZD algorithm with guaranteed convergence rate
and speedup property. To the best of our knowledge, this is the first asynchronous parallel zeroth
order algorithm. The experiment includes a novel application of the proposed ASZD method on
model blending and hyper parameter tuning for big data optimization.
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