Appendix

A Data Collection Details

In this section, we discuss additional details of the data collection procedure.

The data was collected using 10 7-degree-of-freedom robot arms, and included the robot’s joint angles,
gripper pose, commanded gripper pose, measured torques, and 640 x 512 RGB images captured
from the robot’s camera. The images were center-cropped and downsampled to 64 x 64 for our
experiments. We used smaller images for faster training. In principle, the proposed methods should
be able to handle larger images if desired. The images and robot sensor readings were recorded at
10 Hz, and the robot was commanded via impedance control in task space. In our experiments, the
robot’s internal state was the gripper pose, and the action was the commanded gripper pose. Two test
sets, each with 1,500 recorded motions, were also collected. Both used the same robot control method
described above. The first test set used two different subsets of the objects pushed during training.
The second test set involved two subsets of objects, none of which were used during training.

During data collection, between ten and twenty random objects were placed in bins in front of each
robot, and swapped out for new objects after approximately 4,000 randomized interactions. The
robots were programmed to repeatedly perform one of two different types of pushing motions: a
random push or a randomized sweep to the middle. The sweep to the middle starts from a random
position on the outside border of the bin, and meandered randomly towards the middle. The sweep
motion was designed to prevent objects from piling up on the edges of the bin. Each type of motion
lasted for approximately 3-5 seconds. Between each motion, the arm was programmed to move out
of the camera scene, and an image was recorded.

B Model Details

In this section, we present additional details for each model. A diagram of the CDNA model is shown
in the main paper in Figure[I] and additional diagrams for the DNA and STP models are shown in
Figures 8 and [0] respectively. Each model consists of a core trunk made up of one stride-2 5 x 5
convolution, followed by convolutional LSTMs. Each of these LSTM layers has the weights arranged
into 5 x 5 convolutions, and the output of the preceding LSTM is fed directly into the next one. LSTM
layers 3 and 5 are preceded by stride 2 downsampling to reduce resolution, and LSTM layers 5, 6,
and 7 are preceded by 2x upsampling. The end of the LSTM stack is followed by a 2x upsampling
stage and a final convolutional layer, which then outputs a full-resolution mask for compositing
the various transformed predictions (in the case of the CDNA and STP) and compositing against
the static background (in the case of all models, including the DNA). To preserve high-resolution
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Figure 8: Architecture of the DNA model. In contrast to the other models, the DNA model outputs
the spatially-varying transformation kernels from the last layer, rather than the middle convolutional
LSTM layer. The kernels are applied to transform the previous image, and the transformed image is
composited with a 2-channel foreground-background mask.
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Figure 9: Architecture of the STP model. This model is identical to the CDNA, with the only
difference being that instead of outputting 10 transformation kernels, the model outputs 10 affine
transformation matrices (with an additional fully connected layer). As with the CDNA, the trans-
formations are each applied to the previous image, and the 10 resulting transformed images are
composited by using a mask.

information, skip connections are included from LSTM 1 to conv 2 and from LSTM 3 to LSTM 7.
The skip connections simply concatenate the skip layer activations and those of the preceding layer
before sending them to the following layer (e.g. the input to LSTM 7 consists of the concatenation of
LSTM 6 and LSTM 3).

In the case of the action-conditioned robot manipulation task, all three models also include as input
the current state and action of the robot (corresponding to gripper pose and gripper motion command).
This 10-dimensional vector is first tiled into a 8 x 8 response map with 10 channels, and then
concatenated, channel-wise, to the input of LSTM 5. The next state is predicted linearly from the
current state and action, though more sophisticated prediction models could be used for more complex
systems.

The three models differ in the form of the transformation that is applied to the previous image. The
object-centric CDNA and STP models output the transformation parameters after LSTM 5. In both
cases, the output of LSTM 5 is flattened and linearly transformed, either directly into filter parameters
in the case of the CDNA, or through one 100-unit hidden layer in the case of the STP. There are 10
CDNA filters, which are 5 x 5 in size and normalized to sum to 1 via a spatial softmax, so that each
filter represents a distribution over positions in the previous image from which a new pixel value
can be obtained. The STP parameters correspond to 10 3 x 2 affine transformation matrices. The
transformations are applied to the preceding image to create 10 separate transformed images. The
CDNA transformation corresponds to a convolution (though with the kernel being an output of the
network), while the STP transformation is an affine transformation.

The DNA model differs from the other two in that the transformation parameters are outputted at the
last layer, in the same place as the mask. This is because the DNA model outputs a transformation
map as large as the entire image. For each image pixel, the model outputs a 5 x 5 convolutional
kernel that can be applied to the previous image to obtain a new pixel value, similarly to the CDNA
model. However, because the kernel is spatially-varying, this model is not equivalent to the CDNA.
This transformation only produces one transformed image.

After transformation, the transformed image(s) and the previous image are composited together
based on the mask. The previous image is included as a static “background” image and, as shown in
Section 3] the mask on the background image indeed tends to pick out static parts of the scene. The
final image is formed by multiplying each transformed image and the background image by their
mask values, and adding all of the masked images together.

C Additional Experimental Results

Here we show additional experimental results.

11



Reconstruction on test set: seen objects Reconstruction on test set: seen objects Reconstruction on test set: novel objects Reconstruction on test set: novel objects

o« o = -
F 0 L [
O 25 75 Q.
8. g g g.
o o o= o
g 2o 2 -
s 0 N = o
5 8 0 2 * 5 0 2 . 6 8 0 2 ® 6 ® 0 2 4 0 0 0 ) 2, o 0 0 2 »
time step time step time step time step
= FF, multi-scale, Adv+GDL == FF, multi-scale, |1 === FF, multi-scale, I1+GDL == FF, multi-scale, 12

Figure 10: Comparison of various losses using the feedforward multi-scale architecture from [[17].
We were unable to get the adversarial objective to train desirably.

To evaluate the method of [17]], we trained the feedforward multiscale architecture using four of the
proposed objectives. For the robot motion dataset, we added the actions to the architecture at each
scale via tiling. We were unable to successfully train the model with an adversarial loss, and, as

shown in Figure |10} the model trained GDL+I; performed the best on the robot dataset. Thus, we
presented the results of this model in the main evaluation.
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