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A Technical Conditions for Langevin-Stein Operators

Here we establish the conditions needed on the function class ¥ or the posterior distribution short-
handed p for the operators to have expectation zero for all f € ¥. W derive properties using inte-
gration by parts for supports that are bounded open sets. Then we extend the result to unbounded
supports using limits. We start with the Langevin-Stein operator. Let S be the set over which we
integrate and let B be its boundary. Let v be the unit normal to the surface B, and v; be the ith
component of the surface normal (which is d dimensional). Then we have that

/p(O{’S f)ds =/szlongf+pVdeS
S S
400 9
=Y [ g+ pgtlds

0 d
=> | —IplfidS+ | fipvidB - _a. [p1fidS
S 0z B S 0z
i=1 ! :

= / v' fpdB.
B

A sufficient condition for this expectation to be zero is that either p goes to zero at its boundary or
that the vector field f is zero at the boundary.

For unbounded sets, the result can be written as a limit for a sequence of increasing sets S, — S
and a set of boundaries B,, — B using the dominated convergence theorem [2]. To use dominated
convergence, we establish absolute integrability. Sufficient conditions for absolute integrability of
the Langevin-Stein operator are for the gradient of log p to be bounded and the vector field f and
its derivatives to be bounded. Via dominated convergence, we get that lim,, |, B, v" fpdB = 0 for
the Langevin-Stein operator to have expectation zero.

B Characterizing the zeros of the Langevin-Stein Operators

We provide analysis on how to characterize the equivalence class of distributions defined as
(OP14 f)(z) = 0. One general condition for equality in distribution comes from equality in prob-
ability on all Borel sets. We can build functions that have expectation zero with respect to the
posterior that test this equality. Formally, for any Borel set A with §4 being the indicator, these
functions on A have the form:

54(z) — /A p(y)dy

We show that if the Langevin-Stein operator satisfies £(g; 0]{’5, F) = 0, then g is equivalent to p
in distribution. We do this by showing the above functions are in the span of Ofs. Expanding the
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Langevin-Stein operator we have

d
afip

Ofs ) =p 'Vep [+ VI f=pT ) ==
1

i=1

Setting this equal to the desired function above yields the differential equation
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To solve this, set f; = 0 for all but i = 1. This yields
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which is an ordinary differential equation with solution for f;
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This function is differentiable with respect to z;, so this gives the desired result. Plugging the
function back into the operator variational objective gives

E, [Mz)— [ p(y)dy] —0 = El54()] = Epl5a(2)]

for all Borel measurable A. This implies the induced distance captures total variation.

C Operators for Discrete Variables

Some operators based on Stein’s method are applicable only for latent variables in a continuous
space. There are Stein operators that work with discrete variables [1, 4]. We present one amenable
to operator variational objectives based on a discrete analogue to the Langevin-Stein operator de-
veloped in [4]. For simplicity, consider a one-dimensional discrete posterior with support {0, ..., ¢}.
Let f be a function such that f(0) = 0, then an operator can be defined as

fEe+Dpiz+1,x)— f(2)p(z,x)
p(z,x) '

Since the expectation of this operator with respect to the posterior p(z | x) is a telescoping sum with
both endpoints 0, it has expectation zero.
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This relates to the Langevin-Stein operator in the following. The Langevin-Stein operator in one
dimension can be written as

<1fp]
(07 f) =14 p”.

This operator is the discrete analogue as the differential is replaced by a discrete difference. We can
extend this operator to multiple dimensions by an ordered indexing. For example, binary numbers
of length n would work for n binary latent variables.

D Proof of Universal Representations

Consider the optimal form of R such that transformations of standard normal draws are equal in
distribution to exact draws from the posterior. This means

R(e;1) = P7H(D(e)),

where ®(€) squashes the draw from a standard normal such that it is equal in distribution to a uni-
form random variable. The posterior’s inverse cumulative distribution function P ~! is applied to the



uniform draws. The transformed samples are now equivalent to exact samples from the posterior. For
a rich-enough parameterization of R, we may hope to sufficiently approximate this function.

Indeed, as in the universal approximation theorem of Tran et al. [5] there exists a sequence of param-
eters {11, A2, ...} such that the operator variational objective goes to zero, but the function class is
no longer limited to local interpolation. Universal approximators like neural networks [3] also work.
Further, under the assumption that p is the unique root and by satisfying the conditions described
in Section B for equality in distribution, this implies that the variational program given by drawing
€ ~ N (0, I) and applying R(€) converges in distribution to p(z | x).
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