A Appendix: Proof of Theorem 1

We first show that the estimate is unbiased. Indeed, for every $i \neq j$ we can rewrite $L(z)$ as $\mathbb{E}_{\pi} \ell_{\pi(i), \pi(j)}(z)$. Therefore,

$$
L(z)=\frac{1}{k^{2}-k} \sum_{i \neq j \in[k]} L(z)=\frac{1}{k^{2}-k} \sum_{i \neq j \in[k]} \underset{\pi}{\mathbb{E}} \ell_{\pi(i), \pi(j)}(z)=\underset{\pi}{\mathbb{E}} L_{\pi}(z)
$$

which proves that the multibatch estimate is unbiased.
Next, we turn to analyze the variance of the multibatch estimate. let $I \subset[k]^{4}$ be all the indices i, j, s, t s.t. $i \neq j, s \neq t$, and we partition I to $I_{1} \cup I_{2} \cup I_{3}$, where I_{1} is the set where $i=s$ and $j=t$, I_{2} is when all indices are different, and I_{3} is when $i=s$ and $j \neq t$ or $i \neq s$ and $j=t$. Then:

$$
\begin{aligned}
& \underset{\pi}{\mathbb{E}}\left\|\nabla L_{\pi}(z)-\nabla L(z)\right\|^{2}=\frac{1}{\left(k^{2}-k\right)^{2}} \underset{\pi}{\mathbb{E}} \sum_{(i, j, s, t) \in I}\left(\nabla \ell_{\pi(i), \pi(j)}(z)-\nabla L(z)\right) \cdot\left(\nabla \ell_{\pi(s), \pi(t)}(z)-\nabla L(z)\right) \\
& =\sum_{r=1}^{d} \frac{1}{\left(k^{2}-k\right)^{2}} \sum_{q=1}^{3} \sum_{(i, j, s, t) \in I_{q}} \underset{\pi}{\mathbb{E}}\left(\nabla_{r} \ell_{\pi(i), \pi(j)}(z)-\nabla_{r} L(z)\right)\left(\nabla_{r} \ell_{\pi(s), \pi(t)}(z)-\nabla_{r} L(z)\right)
\end{aligned}
$$

For every r, denote by $A^{(r)}$ the matrix with $A_{i, j}^{(r)}=\nabla_{r} \ell_{i, j}(z)-\nabla_{r} L(z)$. Observe that for every r, $\mathbb{E}_{i \neq j} A_{i, j}^{(r)}=0$, and that

$$
\sum_{r} \underset{i \neq j}{\mathbb{E}}\left(A_{i, j}^{(r)}\right)^{2}=\underset{i \neq j}{\mathbb{E}}\left\|\nabla \ell_{i, j}(z)-\nabla L(z)\right\|^{2}
$$

Therefore,

$$
\underset{\pi}{\mathbb{E}}\left\|\nabla L_{\pi}(z)-\nabla L(z)\right\|^{2}=\sum_{r=1}^{d} \frac{1}{\left(k^{2}-k\right)^{2}} \sum_{q=1}^{3} \sum_{(i, j, s, t) \in I_{q}} \underset{\pi}{\mathbb{E}} A_{\pi(i), \pi(j)}^{(r)} A_{\pi(s), \pi(t)}^{(r)}
$$

Let us momentarily fix r and omit the superscript from $A^{(r)}$. We consider the value of $\mathbb{E}_{\pi} A_{\pi(i), \pi(j)} A_{\pi(s), \pi(t)}$ according to the value of q.

- For $q=1$: we obtain $\mathbb{E}_{\pi} A_{\pi(i), \pi(j)}^{2}$ which is the variance of the random variable $\nabla_{r} \ell_{i, j}(z)-$ $\nabla_{r} L(z)$.
- For $q=2$: When we fix i, j, s, t which are all different, and take expectation over π, then all products of off-diagonal elements of A appear the same number of times in $\mathbb{E}_{\pi} A_{\pi(i), \pi(j)} A_{\pi(s), \pi(t)}$. Therefore, this quantity is proportional to $\sum_{p \neq r} v_{p} v_{r}$, where v is the vector of all non-diagonal entries of A. Since $\sum_{p} v_{p}=0$, we obtain (using Lemma 1) that $\sum_{p \neq r} v_{p} v_{r} \leq 0$, which means that the entire sum for this case is non-positive.
- For $q=3$: Let us consider the case when $i=s$ and $j \neq t$, and the derivation for the case when $i \neq s$ and $j=t$ is analogous. The expression we obtain is $\mathbb{E}_{\pi} A_{\pi(i), \pi(j)} A_{\pi(i), \pi(t)}$. This is like first sampling a row and then sampling, without replacement, two indices from the row (while not allowing to take the diagonal element). So, we can rewrite the expression as:

$$
\begin{align*}
\underset{\pi}{\mathbb{E}} A_{\pi(i), \pi(j)} A_{\pi(s), \pi(t)}= & \underset{i \sim[m] j, t \in[m] \backslash\{i\}: j \neq t}{\mathbb{E}} A_{i, j} A_{i, t} \\
& \leq \underset{i \sim[m]}{\mathbb{E}}\left(\underset{j \neq i}{\mathbb{E}} A_{i, j}\right)^{2}=\underset{i \sim[m]}{\mathbb{E}}\left(\bar{A}_{i}\right)^{2} \tag{5}
\end{align*}
$$

where we denote $\bar{A}_{i}=\mathbb{E}_{j \neq i} A_{i, j}$ and in the inequality we used again Lemma 1 .
Finally, the bound on the variance follows by observing that the number of summands in I_{1} is $k^{2}-k$ and the number of summands in I_{3} is $O\left(k^{3}\right)$. This concludes our proof.

Lemma 1 Let $v \in \mathbb{R}^{n}$ be any vector. Then,

$$
\underset{s \neq t}{\mathbb{E}}\left[v_{s} v_{t}\right] \leq\left(\underset{i}{\mathbb{E}}\left[v_{i}\right]\right)^{2}
$$

In particular, if $\mathbb{E}_{i}\left[v_{i}\right]=0$ then $\sum_{s \neq t} v_{s} v_{t} \leq 0$.
Proof For simplicity, we use $\mathbb{E}[v]$ for $\mathbb{E}_{i}\left[v_{i}\right]$ and $\mathbb{E}\left[v^{2}\right]$ for $\mathbb{E}_{i}\left[v_{i}^{2}\right]$. Then:

$$
\begin{aligned}
\underset{s \neq t}{\mathbb{E}} v_{s} v_{t} & =\frac{1}{n^{2}-n} \sum_{s=1}^{n} \sum_{t=1}^{n} v_{s} v_{t}-\frac{1}{n^{2}-n} \sum_{s=1}^{n} v_{s}^{2} \\
& =\frac{1}{n^{2}-n} \sum_{s=1}^{n} v_{s} \sum_{t=1}^{n} v_{t}-\frac{1}{n^{2}-n} \sum_{s=1}^{n} v_{s}^{2} \\
& =\frac{n^{2}}{n^{2}-n} \mathbb{E}[v]^{2}-\frac{n}{n^{2}-n} \mathbb{E}\left[v^{2}\right] \\
& =\frac{n}{n^{2}-n}\left(\mathbb{E}[v]^{2}-\mathbb{E}\left[v^{2}\right]\right)+\frac{n^{2}-n}{n^{2}-n} \mathbb{E}[v]^{2} \\
& \leq 0+\mathbb{E}[v]^{2}
\end{aligned}
$$

