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Abstract

In this work we analyze the class prediction of parallel randomized ensembles by
majority voting as an urn model. For a given test instance, the ensemble can be
viewed as an urn of marbles of different colors. A marble represents an individual
classifier. Its color represents the class label prediction of the corresponding
classifier. The sequential querying of classifiers in the ensemble can be seen
as draws without replacement from the urn. An analysis of this classical urn
model based on the hypergeometric distribution makes it possible to estimate
the confidence on the outcome of majority voting when only a fraction of the
individual predictions is known. These estimates can be used to speed up the
prediction by the ensemble. Specifically, the aggregation of votes can be halted
when the confidence in the final prediction is sufficiently high. If one assumes
a uniform prior for the distribution of possible votes the analysis is shown to be
equivalent to a previous one based on Dirichlet distributions. The advantage of
the current approach is that prior knowledge on the possible vote outcomes can be
readily incorporated in a Bayesian framework. We show how incorporating this
type of problem-specific knowledge into the statistical analysis of majority voting
leads to faster classification by the ensemble and allows us to estimate the expected
average speed-up beforehand.

1 Introduction

Combining the outputs of multiple predictors is in many cases of interest a successful strategy to
improve the capabilities of artificial intelligence systems, ranging from agent architectures [19], to
committee learning [13, 15, 8, 9]. A common approach is to build a collection of individual subsys-
tems and then integrate their outputs into a final decision by means of a voting process. Specifically,
in the machine learning literature, there is extensive empirical evidence on the improvements in
generalization capacity that can be obtained using ensembles of learners [7, 11]. However, one of the
drawbacks of these types of systems is the linear memory and time costs incurred in the computation
of the final ensemble prediction by combination of the individual predictions. There are various
strategies that alleviate these shortcomings. These techniques are grouped into static (or off-line)
and dynamic (or online). In static pruning techniques, only a subset of complementary predictors
from the original ensemble is kept [16, 21, 6]. By contrast, in dynamic pruning, the whole ensemble
is retained. The prediction of the class label of a particular instance is accelerated by halting the
sequential querying process when it is unlikely that the remaining (unknown) votes would change
the output prediction [10, 20, 14, 12, 2, 3, 17]. These techniques are online in the sense that, as new
individual predictions become known, the algorithm dynamically updated the estimated probability
of having a stable prediction; i.d. a prediction that coincides with that by the complete ensemble.
This is the basis of the Statistical Instance-Based Algorithm (SIBA) proposed in [14]. In a similar
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approach, albeit with a different objective, Reyzin proposes to randomly sample hypotheses from
the original AdaBoost ensemble. The goal is to minimize the number of features that are used for
prediction, with a limited loss of accuracy [18]. This feature-efficient prediction is beneficial when
access to the features of a new instance at test time is costly (e.g., in some medical problems). A
different approach is followed in [3]. In this work, a policy is learned to decide which classifiers
should be queried and which discarded in the prediction of the class label of a given instance.

The dynamic ensemble pruning method proposed in this work is closely related to SIBA [14]. In
SIBA, the members of a committee are queried sequentially. At each step in the querying process, the
votes recorded are used to estimate the probability that the majority decision of the classifiers queried
up to that moment coincides with the complete ensemble. If this probability exceeds a specified
confidence level, α, the voting process is halted. To compute this estimate, the probability that a
single predictor outputs a given decision for the particular instance considered is modeled as a random
variable. Starting from a uniform prior, Bayes’ theorem is used to update the distribution of this
variable with the information provided by the actual votes, as they become known. In most of the
problems analyzed in [14], the assumption that the prior is uniform leads to conservative estimates
of the confidence on the stability of the predictions when only a fraction of the classifiers have
been queried. Analyzing the results of those experiments, it is apparent that the actual disagreement
percentages between the dynamic decision output and the decision made by the complete committee
are significantly lower than the specified target α. As a consequence, more queries are made than the
ones that are actually needed.

The present work has two objectives. First, we propose an intuitive mathematical modeling of
the voting process in ensembles of classifiers based on the hypergeometric distribution. Under the
assumption that the distribution of possible vote outcomes is uniform, we prove that this derivation is
equivalent to the one presented in [14]. However, the vote distribution is, in general, not uniform.
Its shape depends on the classification task considered and on the base learning algorithm used to
generate the predictors. Second, to take into account this dependence, we propose to approximate
this distribution using a non-parametric prior. The use of this problem-specific prior knowledge
leads to more accurate estimations of the disagreement rates between the dynamic sub-committee
prediction and the complete committee, which are closer to the specified target α. In this manner,
faster classification can be achieved with minimal loss of accuracy. In addition, the use of priors allow
us to estimate quite precisely the expected average number of trees that would be necessary to query.

2 Modeling ensemble voting processes as a classical urn problem

Consider the following process modeled as a classical urn model. Let us suppose we have marbles
of l different colors in an urn. The number of marbles of color yk in the urn is Tk, with k = 1 . . . l.
The total number of marbles in the urn is T =

∑l
k=1 Tk. The contents of the urn can therefore be

described by vector T = 〈T1, T2 . . . Tl〉. Assume that t < T marbles are extracted from the urn
without replacement. This extraction process can be characterized by vector t = 〈t1, t2 . . . tl〉 where
tk is the number of marbles of color yk extracted, with t =

∑l
k=1 tk. The probability of extracting a

color distribution of marbles t, given the initial color distribution of the urn T is described by the
multivariate hypergeometric distribution

P(t|T) =

(
T1

t1

)
. . .
(
Tl

tl

)(
T
t

) =

∏l
i=1

(
Ti

ti

)(
T
t

) . (1)

Consider the case in which the total number of marbles in the urn, T , is known but that the color
distribution, T, is unknown. In this case, the color distribution of the extracted marbles, t, can be
used to estimate the content of the urn applying Bayes Theorem

P(T|t) =
P(t|T)P(T)

P(t)
=

P(t|T)P(T)∑
T∗∈Ωt

P(t|T∗)P(T∗)
=

(
T1

t1

)
. . .
(
Tl

tl

)
P(T)∑

T∗∈Ωt

(
T∗
1
t1

)
. . .
(
T∗
l
tl

)
P(T∗)

(2)

where Ωt is the set of vectors T∗, such that T ∗i ≥ ti ∀i and
∑l

i=1 T
∗
i = T .

This problem is equivalent to the voting process in an ensemble of classifiers: Suppose we want
to predict the class label of an instance by combining the individual predictions of the ensemble
classifiers (marbles). Assuming that the individual predictions are deterministic, the class (color) that
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each classifier (marble) would output if queried is fixed, but unknown before the query. Therefore,
for each instance considered we have a different "bag of colored marbles" with an unknown class
distribution. After a partial count of votes of the ensemble is known, Eq. 2 provides an estimate of the
distribution of votes for the complete ensemble. This estimate can be used to compute the probability
that the decision obtained using only a partial tally of votes, t, of size t < T and by the final decision
using all T votes, coincide

P∗(t, T ) =
∑
T∈Tt

(
T1

t1

)
. . .
(
Tl

tl

)
P(T)∑

T∗∈Ωt

(
T∗
1
t1

)
. . .
(
T∗
l
tl

)
P(T∗)

, (3)

where Tt is the set of vectors of votes for the complete ensemble T = {T1, T2 . . . Tl} such that
the class predicted by the subensemble of size t and the class predicted by the complete committee
coincide, with Ti ≥ ti, and

∑l
i=1 Ti = T .

If P∗(t, T ) = 1, then the classification given by the partial ensemble and the full ensemble coincide.
This case happens when the difference between the number of votes for the first and second class
in t is greater than the remaining votes in the urn. In such case, the voting process can be halted
with full confidence that the decision of the partial ensemble will not change when the predictions of
the remaining classifiers are considered. In addition, if it is acceptable that, with a small probability
1− α, the prediction of the partially polled ensemble and that of the complete ensemble disagree,
then the voting process can be stopped when the P∗(t, T ) exceeds the specified confidence level α.
The final classification would be given as the combined decisions of the classifiers that have been
polled up to that point only.

2.1 Uniform prior

Assuming a uniform prior for the distribution of possible T vectors P(T) = 1/‖T‖, where ‖T‖
stands for the number of possible T vectors, this derivation is equivalent to the one presented in
[14]. That formulation assumes that the base classifiers of the ensemble are independent realizations
from a pool of all possible classifiers given the training dataset. Assuming that an unlimited number
of realizations can be performed, the distribution of class votes in the ensemble converges to a
Dirichlet distribution in the limit of infinite ensemble size. Then, assuming a partial tally of t votes,
the probability that the ensemble’s decision will change if the precictions of the remaining T − t
classifiers are considered, can be estimated.

In order to prove the equivalence between both formulations, we first need to introduce three results,
presented in the theorem and propositions below.

Theorem. Chu-Vandermonde Identity. Let s, t, r ∈ N then(
s+ t

r

)
=

r∑
k=0

(
s

k

)(
t

r − k

)
(4)

Proposition 1. Upper negation. Let r ∈ C and k ∈ Z, then(
r

k

)
= (−1)k

(
k − r − 1

k

)
(5)

The previous theorem and proposition are used in the following proposition, which is the key to prove
the equivalence between the two formulations:

Proposition 2. Let n1 and n2 be positive integers such that n1 + n2 = n and n ≤ N . Then
N−n2∑
i=n1

(
i

n1

)(
N − i
n2

)
=

(
N + 1

N − n

)
(6)

Proof. First the symmetry property of the binomial (i.e.,
(
n
k

)
=
(

n
n−k
)
) is used to bring down the

indices
N−n2∑
i=n1

(
i

n1

)(
N − i
n2

)
=

N−n2∑
i=n1

(
i

i− n1

)(
N − i

N − i− n2

)
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The upper indices are removed by applying the upper negation property of proposition 1.

N−n2∑
i=n1

(
i

i− n1

)(
N − i

N − i− n2

)
=

N−n2∑
i=n1

(
−n1 − 1

i− n1

)(
−n2 − 1

N − i− n2

)
(−1)i−n1(−1)N−i−n2

Now, the Chu-Vandermonde identity can be applied with r = N − n1 − n2 and k = i− n1

N−n2∑
i=n1

(
−n1 − 1

i− n1

)(
−n2 − 1

N − i− n2

)
(−1)i−n1(−1)N−i−n2 =

(
−n− 2

N − n

)
(−1)N−n

Finally the upper negation is applied again(
−n− 2

N − n

)
(−1)N−n =

(
N + 1

N − n

)

Proposition 3 Following the hypergeometric reformulation given by Equation 2 and assuming that
P(T) follows a uniform distribution 1/‖T‖, where ‖T‖ stands for the number of possible T vectors
then

P(T|t) =
(T − t)!∏l

i=1 (Ti − ti)!

∏l
i=1 (ti + 1)Ti−ti

(t+ l)T−t

where (x)n = x(x+ 1) . . . (x+ n− 1) is the Pochhammer symbol. This formulation is equivalent
to the one proposed in [14].

Proof. Equation 2 can be simplified by taking into account the uniform prior P(T) = 1/‖T‖ as

P(T|t) =
P(t|T)P(T)

P(t)
=

(
T1

t1

)
. . .
(
Tl

tl

)∑
T∗∈Ωt

(
T∗
1
t1

)
. . .
(
T∗
l
tl

) (7)

The indices of the summation, Ωt, is the set of vectors T such that Ti ≥ ti ∀i and
∑l

i=1 Ti = T .
They can be changed for l classes to

P(T|t) =

(
T1

t1

)
. . .
(
Tl

tl

)
∑T̂1

T∗
1 =t1

∑T̂2

T∗
2 =t2

· · ·
∑T̂l−1

T∗
l−1=tl−1

(
T∗
1
t1

)
. . .
(
T∗
l
tl

) (8)

where T̂k for k = 1, . . . , (l − 1) are the maximum values for T ∗k in the summations. Note that the
summation over T ∗l is unnecessary since the value of T ∗l becomes fixed once the values of T ∗1 . . . T

∗
l−1

are fixed since
∑l

i=1 T
∗
i = T . In this sense, the values for T̂k have a dependency on T ∗i for i < k as

T̂k = T − t+ tk −
∑k−1

i=1 (T ∗i − ti), k = 1, . . . , (l − 1). The summations in the denominator of
Eq. 8 can be rearranged

T̂1∑
T∗
1 =t1

T̂2∑
T∗
2 =t2

· · ·
T̂l−1∑

T∗
l−1=tl−1

(
T ∗1
t1

)
. . .

(
T ∗l
tl

)
=

T̂1∑
T∗
1 =t1

(
T ∗1
t1

) T̂2∑
T∗
2 =t2

(
T ∗2
t2

)
· · ·

T̂l−1∑
T∗
l−1=tl−1

(
T ∗l−1

tl−1

)(
T ∗l
tl

)
.

Proposition 2 (Eq. 6) can be used, together with N = T −
∑l−2

i=1 T
∗
i , to express the summation over

T ∗l−1 in closed form

T−t+tl−1−
∑l−2

i=1(T∗
i −ti)∑

T∗
l−1=tl−1

(
T ∗l−1

tl−1

)(
T ∗l
tl

)
=

T−
∑l−2

i=1 T∗
i −tl∑

T∗
l−1=tl−1

(
T ∗l−1

tl−1

)(
T −

∑l−2
i=1 T

∗
i − T ∗l−1

tl

)
=

(
T −

∑l−2
i=1 T

∗
i + 1

T −
∑l−2

i=1 T
∗
i − tl−1 − tl

)
=

(
T −

∑l−2
i=1 T

∗
i + 1

tl−1 + tl + 1

)
,
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where the symmetry property of the binomial has been used in the last step. The subsequent
summations are carried out in the same manner. The summation over T ∗k requires the application of
Eq. 6 with N = T −

∑k−1
i=1 T

∗
i + (l − k − 1), n1 = tk and n2 =

∑l
i=k+1 ti + (l − k − 1)

T̂1∑
T∗
1 =t1

(
T ∗1
t1

)
...

T̂l−2∑
T∗
l−2=tl−2

(
T ∗l−2

tl−2

)(
T −

∑l−2
i=1 T

∗
i + 1

tl−1 + tl + 1

)
= · · · =

(
T + l − 1

t+ l − 1

)
Employing this result in Eq. 8, one obtains

P(T|t) =

(
T1

t1

)
. . .
(
Tl

tl

)(
T+l−1
t+l−1

) =

T1!
t1!(T1−t1)! . . .

Tl!
tl!(Tl−tl)!

(T+l−1)!
(t+l−1)!(T−t)!

=
(T − t)!∏l

i=1 (Ti − ti)!

∏l
i=1 (ti + 1)Ti−ti

(t+ l)T−t
.

2.2 Non-uniform prior

The distribution P(T) can be modeled using a non-parametric non-uniform prior. The values of this
prior can be obtained from the training data by some form of validation; e.g., out-of-bag or cross
validation. Out-of-bag validation is faster because it does not require multiple generations of the
ensemble. Therefore, it will be the validation method used in our implementation of the method. To
compute the out-of-bag error, each training instance, xn, is classified by the ensemble predictors
that do not have that particular instance in their training set. Let T̃n = T̃n

1 + . . . + T̃n
l , be the

number of such classifiers, where T̃n
i is the number of out-of-bag votes for class i, where i = 1, . . . , l,

assigned to instance xn. The number of votes for each class for an ensemble of size T is estimated as
Tn
i ≈ round(T T̃n

i /T̃
n). To mitigate the influence of the random fluctuations that appear because

of the finite size of the training set and to avoid spurious numeric artifacts, the prior is subsequently
smoothed using a sliding window of size 5 over the vote distribution.

As shown in Section 2, the response time of the ensemble can be reduced by using Eq. 3, if we allow
that a small fraction, 1− α, of the predictions given by ensembles of size t and T do not coincide.
Assuming this tolerance, when P∗(t, T ) > α, the voting process can be halted and the ensemble
will output the decision given by the t ≤ T queried classifiers. However, the computation of Eq. 3
is costly and should be performed off-line. In the SIBA formulation, a lookup table indexed by the
number of votes of the minority class (for binary problems) and whose values are the minimum
number of votes of the majority class such that P∗(t, T ) > α, is used. Using a precomputed lookup
table to halt the voting process does not entail a significant overhead during classification: a single
lookup operation in the table is needed for each vote. The consequence of using a uniform prior is
that all classes are considered equivalent. Hence, it is sufficient to compute one lookup table and use
the minority class for indexing.

When prior knowledge is taken into account, the probability P∗(t1 = n, t2 = m,T ) is not necessarily
equal to P∗(t1 = m, t2 = n, T ) for n 6= m. Therefore, a different lookup table per class will be
necessary. In addition, it is necessary to compute a different set of tables for each dataset. In the
original formulation, the lookup table values depend only on T and α. Therefore, they are independent
of the particular classification problem considered. In our case, the prior distribution is estimated
from the training data: Hence, it is problem dependent. However, the querying process is similar to
SIBA. For instance, if we have 1 vote for class 1 and 7 for class 2, one determines whether the value
in position 1 (minority class at this moment) of the lookup table for class 1 is greater or equal to 7. If
it is, the querying process stops. As a side effect, for the experimental comparison, it is necessary to
recompute the lookup tables for each realization of the data. Notwithstanding, in a real setting, these
tables need to be computed only once. This can be done offline. Therefore, the speed improvements
in the classification phase are independent of the size of the training set.

The lookup table and the estimated non-parametric prior can be used to estimate also the average
number of classifiers that are expected to be queried during test. This estimation can be made using
Monte Carlo simulation. To this end one would perform the following experiment repeatedly and
compute the average number of queries: extract a random vector T from the prior distribution;
generate a vector of votes of size T that contains exactly Ti votes for class i with i = 1 . . . l; finally,
query a random permutation of this vector of votes until the process can be halted as given by the
lookup table and keep the number of queries.
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3 Experiments

In this section we present the results of an extensive empirical evaluation of the dynamical ensemble
pruning method described in the previous section. The experiments are performed in a series of
benchmark classification problems from the UCI Repository [1] and synthetic data [4] using Random
Forests [5]. The code is available at: https://github.com/vsoto/majority-ibp-prior.

The protocol for the experiments is as follows: for each problem, 100 partitions are created by
10× 10-fold cross-validation for real datasets and by random sampling in the synthetic datasets. All
the classification tasks considered are binary, except for New-thyroid, Waveform and Wine, which have
three classes. For each partition, the following steps are carried out: (i) a Random Forest ensemble
of size T = 101 is built; (ii) we compute the generalization error rate of the complete ensemble in
the test set and record the mean number of trees that are queried to determine the final prediction.
Note that this number need not be T : the voting process can be halted when the remaining votes (i.e.
the predictions of classifiers that have not been queried up to that point) cannot modify the partial
ensemble decision. This is the case when the number of remaining votes is below the difference
between the majority class and the second most voted class; (iii) The SIBA algorithm [14] is applied
to dynamically select the number of classifiers that are needed for each instance in the test set to
achieve a level of confidence in the prediction above α = 0.99. We use SIBA as the benchmark for
comparison since in previous studies it has been shown to provide the best overall results, especially
for T < 500 [2]; (iv) The process is repeated using the proposed method with non-uniform priors
for the class vote distribution, with the same confidence threshold, α = 0.99. The prior distribution
P(T) is estimated in the training set using out-of-bag data. This prior is also used to estimate the
expected number of trees to be queried in the testing phase. In addition, for steps (iii) and (iv) we
compute the test error rate, the average number of queried trees, and the disagreement rates between
the predictions of the partially queried ensembles and the complete ones.

Table 1: Error rates (left) and disagreement % (right). The statistical significant differences, using
paired t-tests at a significance level α = 0.05, are highlighted in boldface.

Error rates Disagreement %
Problem RF SIBA HYPER SIBA HYPER
Australian 13.00±3.7 13.09±3.7 13.25±3.8 0.3±0.6 0.9±1.1
Breast 3.22±2.1 3.23±2.1 3.76±2.3 0.1±0.4 1.0±1.1
Diabetes 24.34±4.2 24.25±4.1 24.23±4.0 0.6±0.9 0.8±1.0
Echocardiogram 22.18±14.3 22.05±14.7 22.18±14.1 0.7±3.1 1.4±4.6
German 23.43±3.5 23.65±3.3 23.62±3.3 0.8±0.8 0.8±0.9
Heart 18.30±6.9 18.37±7.0 18.37±7.2 0.8±1.8 1.0±2.1
Horse-colic 15.47±5.6 15.44±5.4 15.44±5.4 0.4±0.9 0.7±1.3
Ionosphere 6.44±4.1 6.44±4.1 6.52±3.9 0.1±0.6 0.7±1.3
Labor 6.33±8.9 6.17±8.8 6.43±9.1 0.2±1.7 1.2±4.5
Liver 27.10±6.7 27.09±7.0 27.01±6.9 1.0±1.7 0.9±1.5
Mushroom 0.00±0.0 0.00±0.0 0.08±0.2 0.0±0.0 0.1±0.2
New-thyroid 4.29±4.0 4.38±4.0 4.66±4.2 0.1±0.7 0.7±2.0
Ringnorm 7.60±1.3 7.72±1.2 7.82±1.2 0.5±0.2 0.8±0.3
Sonar 16.25±8.7 16.45±8.7 16.45±8.8 0.9±2.0 0.8±1.9
Spam 4.59±1.5 4.63±1.5 4.86±1.4 0.1±0.2 0.7±0.4
Threenorm 17.85±1.1 18.04±1.1 17.97±1.1 1.0±0.2 0.8±0.2
Tic-tac-toe 1.05±1.1 1.16±1.1 1.72±1.5 0.1±0.4 0.7±1.0
Twonorm 4.66±0.6 4.77±0.6 4.90±0.6 0.4±0.1 0.7±0.2
Votes 4.05±2.9 4.12±2.9 4.30±2.9 0.1±0.4 1.0±1.8
Waveform 17.30±0.9 17.36±0.8 17.45±0.8 0.6±0.1 1.0±0.3
Wine 1.69±2.8 1.74±2.8 2.30±3.5 0.1±0.6 1.1±2.5

In Table 1, we compare the error rates of Random Forest (RF) and of the dynamically pruned
ensembles using the halting rule derived from assuming uniform priors (SIBA) and using non-
uniform priors (HYPER), and the disagreement rates. The values displayed are averages over 100
realizations of the datasets The standard deviation is given after the ± symbol.
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Figure 1: Vote distribution, P(T), and disagreement rates for Sonar (left) and Votes (right)

From Table 1, one observes that the mean error rates of the pruned ensembles using SIBA and HYPER
are only slightly worse than the rates obtained by the complete ensemble (RF). These differences
should be expected since we are allowing a small disagreement of 1−α = 1% between the decisions
of the partial and the complete ensemble. In any case, the differences in generalization error can
be made arbitrarily small by increasing α. By design, the disagreement rates are expected to be
below, but close to 1%. From Table 1, one observes that the disagreement % of the proposed method
(HYPER) are closer to the specified threshold (1− α = 1%) than those of SIBA, except for Liver,
Sonar and Threenorm, where the differences are small. In these problems (and in general in the
problems where SIBA obtains disagreement rates closer to 1− α), the distribution of T is closer to a
uniform distribution (see Figure 1, left histogram). In consequence, the assumption of uniform prior
taken by SIBA is closer to the real one. However, when P(T) differs from the uniform distribution
(see for instance Votes in Figure 1 right histogram) the results of SIBA are rather different from the
expected disagreement rates.

Table 2: Number of queried trees and speed-up rate with respect to the full ensemble of 101 trees.
The statistical significant differences between SIBA and HYPER, using paired t-tests at a significance
level α = 0.05, are highlighted in boldface.

# of trees Speed-up rate
Problem RF∗ SIBA HYPER MC Estim RF∗ SIBA HYPER
Australian 62.2±1.4 16.1±2.1 12.8±2.3 12.9±0.9 1.6 6.3 7.9
Breast 54.2±0.9 8.9±1.4 4.0±1.0 4.0±0.4 1.9 11.3 25.3
Diabetes 68.8±1.8 24.9±3.2 24.0±3.2 23.8±1.1 1.5 4.1 4.2
Echocardiogram 68.0±4.6 22.6±8.2 20.0±8.0 21.6±3.2 1.5 4.5 5.1
German 71.8±1.3 28.4±2.8 27.7±2.9 30.1±1.0 1.4 3.6 3.6
Heart 67.2±2.5 22.5±4.2 20.9±4.2 20.7±1.7 1.5 4.5 4.8
Horse-colic 66.2±2.1 20.2±3.5 17.5±3.7 18.6±1.5 1.5 5.0 5.8
Ionosphere 57.9±1.5 11.9±2.3 7.8±2.1 7.8±0.6 1.7 8.5 12.9
Labor 61.6±4.0 14.1±6.0 9.7±5.3 10.2±2.0 1.6 7.2 10.4
Liver 74.5±2.3 31.8±4.5 31.7±4.5 31.6±2.0 1.4 3.2 3.2
Mushroom 51.0±0.0 6.0±0.0 1.0±0.0 1.0±0.0 2.0 16.8 101.0
New-thyroid 55.2±1.8 10.7±2.6 6.0±2.3 6.2±1.4 1.8 9.4 16.8
Ringnorm 68.6±0.8 22.9±1.1 20.4±1.5 19.7±2.3 1.5 4.4 5.0
Sonar 73.9±3.0 32.1±6.6 32.6±6.8 31.8±2.4 1.4 3.1 3.1
Spam 57.1±0.3 11.1±0.5 7.2±0.6 7.1±0.5 1.8 9.1 14.0
Threenorm 76.6±0.5 34.8±1.0 35.8±1.6 33.4±2.5 1.3 2.9 2.8
Tic-tac-toe 60.7±0.9 12.8±1.4 7.8±1.2 8.6±0.7 1.7 7.9 12.9
Twonorm 67.2±0.2 21.0±0.5 18.4±0.9 18.8±1.7 1.5 4.8 5.5
Votes 54.5±1.2 8.8±1.8 4.1±1.4 4.0±0.7 1.9 11.5 24.6
Waveform 72.3±0.7 29.3±1.1 27.8±1.7 28.6±2.8 1.4 3.4 3.6
Wine 57.3±2.1 11.4±2.7 5.8±1.8 6.7±1.4 1.8 8.9 17.5

In order to analyze this aspect in more detail, we have computed the disagreement rates for different
values of alpha (α = 0.999, 0.995, 0.99, 0.95). In Figure 1 the relation between the target 1− α and
the actual disagreement rate is presented. A diagonal solid line marks the expected upper limit for
the disagreement. The results for SIBA, HYPER and for the case of using a fixed number of trees
for all instances (FIXED) (and equal to the average number of trees used by HYPER in those tasks)
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are presented in these plots. This last case (FIXED) can be seen as a stochastic approximation to
the prediction of the whole ensemble. From these plots, we observe that the results for HYPER are
very close to the expected disagreement rates for cases in which the prior is approximately uniform
(Sonar), and for cases in which the prior is non-uniform (Votes). As expected, the results of SIBA are
close to the target only for the case of approximately uniform prior (Sonar). Finally, when a stochastic
approximation is used (FIXED) the disagreement rates are clearly above the target threshold given by
α. From these results we conclude that the proposed model provides a more accurate description
of the voting process used to compute the prediction of the ensemble. This means that taking into
account the prior distribution of possible vote outcomes, P(T), is important to obtain disagreement
rates that are closer to the threshold established.

Finally, in Table 2, we present the average number of trees used by Random Forest (RF∗), the SIBA
method,the proposed method using non-parametric priors (HYPER), and the expected average of
the number of trees to be queried in HYPER using Monte Carlo sampling (MC Estim). Note that
the number of trees used by RF∗ is not necessary T = 101: the voting process is halted when the
remaining (unknown) predictions cannot alter the decision of the ensemble. The number of trees
given in RF∗ is the same as the trees that SIBA or HYPER would use when α = 100%. Finally, the
last three columns of Table 2 display the speed-up rate of the partial ensembles with respect to the
full ensemble of size T = 101. From this table it is clear that HYPER reduces the number of queried
classifiers with respect to SIBA in most of the tasks investigated. In addition, using only training data,
the Monte Carlo estimations of the average number of trees are very precise. The largest average
difference between this estimation and HYPER is 2.4 trees for German and Threenorm. The speed-up
rate of HYPER with respect to the full ensemble is remarkable: from 2.8 times faster for Threenorm
to 101 times faster in Mushroom. This dataset can be used to illustrate the benefits of using the prior
distribution. For this problem, most classifiers agree in their predictions. HYPER takes advantage of
this prior knowledge and queries only one classifier to cast the final decision. In this problem, the
chances that the prediction of a single classifier, and the prediction of the complete ensemble are
different, are below 1%. Similar behavior (but not as extreme) is observed in Breast and Votes.

4 Conclusions

In this work, we present an intuitive, rigorous mathematical description of the voting process in an
ensemble of classifiers: For a given an instance, the process is equivalent to extracting marbles (the
individual classifiers), without replacement, from a bag that contains a known number of marbles, but
whose color (class label prediction) distribution is unknown. In addition, we show that for the specific
case of a uniform prior distribution of class votes this process is equivalent to the one developed in
[14]. In the current description, which does not assume a uniform distribution prior for the class
votes, the hypergeometric distribution plays a central role.

The results of this statistical description are then used to design a dynamic ensemble pruning method,
with the goal of speeding up predictions in the test phase. For a given instance, it is possible to
compute the probability that the the partial decision made on the basis of the known votes (i.e., the
class label predictions of the subset of classifiers that have been queried) and the final ensemble
decision coincide. If this probability is above a specified threshold, sufficiently close to 1, a reliable
estimate of the class label that the complete ensemble would predict can be made on the basis of
the known votes. The effectiveness of this dynamic ensemble pruning method is illustrated using
random forests. The prior distribution of class votes is estimated using out-of-bag data. As a result of
incorporating this problem-specific knowledge in the statistical analysis of the voting process, the
differences between the predictions of the dynamically pruned ensemble and the complete ensemble
are closer to the specified threshold than when a uniform distribution is assumed, as in SIBA [14]. In
the empirical evaluation performed, this dynamic ensemble pruning algorithm consistently yields
improvements of classification speed over SIBA without a significant deterioration of accuracy.
Finally, the statistical model proposed is used to provide an accurate estimate of the average number
of individual classifier predictions that are needed to reach a stable ensemble prediction.
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