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Abstract

This paper deals with price optimization, which is to find the best pricing strategy
that maximizes revenue or profit, on the basis of demand forecasting models.
Though recent advances in regression technologies have made it possible to reveal
price-demand relationship of a large number of products, most existing price
optimization methods, such as mixed integer programming formulation, cannot
handle tens or hundreds of products because of their high computational costs. To
cope with this problem, this paper proposes a novel approach based on network
flow algorithms. We reveal a connection between supermodularity of the revenue
and cross elasticity of demand. On the basis of this connection, we propose an
efficient algorithm that employs network flow algorithms. The proposed algorithm
can handle hundreds or thousands of products, and returns an exact optimal solution
under an assumption regarding cross elasticity of demand. Even if the assumption
does not hold, the proposed algorithm can efficiently find approximate solutions as
good as other state-of-the-art methods, as empirical results show.

1 Introduction

Price optimization is a central research topic with respect to revenue management in marketing
science [11, 17, 19]. The goal is to find the best price strategy (a set of prices for multiple products)
that maximizes revenue or profit. There is a lot of literature regarding price optimization [1, 5, 11,
14, 18, 19, 21], and significant success has been achieved in industries such as online retail [7],
fast-fashion [5], hotels [14, 15], and airlines [17]. One key component in price optimization is
demand modeling, which reveals relationships between price and demand. Though traditional studies
have focused more on a single price-demand relationship, such as price elasticity of demand [14, 15]
and the law of diminishing marginal utility [17], multi-product relationships such as cross price
elasticity of demand [16] have recently received increased attention [5, 18]. Recent advances in
regression technologies (non-linear, sparse, etc.) make demand modeling over tens or even hundreds
of products possible, and data oriented demand modeling has become more and more important.

Given demand models of multiple products, the role of optimization is to find the best price strategy.
Most existing studies for multi-product price optimization employ mixed-integer programming [5, 14,
15] due to the discrete nature of individual prices, but their methods cannot be applied to large scale
problems with tens or hundreds of products since their computational costs exponentially increases
over increasing numbers of products. Though restricting demand models might make optimization
problems tractable [5, 7], such approaches cannot capture complicated price-demand relationships
and often result in poor performance. Ito and Fujimaki [10] have recently proposed a prescriptive
price optimization framework to efficiently solve multi-product price optimization with non-linear
demand models. In this prescriptive price optimization, the problem is transformed into a sort of
binary quadratic programming problem, and they have proposed an efficient relaxation method
based on semi-definite programming (SDP). Although their approach has significantly improved
computational efficiency over that of mixed-integer approaches, the computational complexity of
their SDP formulation requires O(M6) in theory, where M is the number of products, and it is not
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sufficiently scalable for large scale problems with hundreds of products, as our empirical evaluation
show in Section 5.

The goal of this paper is to develop an efficient algorithm for large scale multi-product price optimiza-
tion problems that can handle hundreds of products as well as flexible demand models. Our main
technical contributions are two-fold. First, we reveal the connection between submodularity of the
revenue and cross elasticity of demand. More specifically, we show that the gross profit function of
the prescriptive price optimization is supermodular (i.e., the maximization of the gross profit function
is equivalent to the submodular minimization) under the assumption regarding cross elasticity of
demand that there are no pairs of complementary goods (we refer to this property as a substitute-goods
property).1 On the basis of the submodularity, we propose a practical, efficient algorithm that employs
network flow algorithms for minimum cut problems and returns exact solutions for problems with the
substitute-goods property. Further, even in cases in which the property does not hold, it can efficiently
find approximate solutions by iteratively improving submodular lower bounds. Our empirical results
show that the proposed algorithm can successfully handle hundreds of products and derive solutions
as good as other state-of-the-art methods, while its computational cost is much cheaper, regardless of
whether the substitute-goods property holds or not.

2 Literature review

Our price optimization problems are reduced to binary quadratic problems such as (4). It is well
known that submodular binary quadratic programming problems can be reduced to minimum cut
problems [13], and hence it can be solved by maximum flow algorithms. Also for unconstrained non-
submodular binary quadratic programming problems, there is a lot of literature regarding optimization
algorithm using minimum cut, especially in the context of Markov random fields inference or energy
minimization in computer vision [2, 3, 4, 9, 12, 23]. Above all, QPBO method [2, 12] and its
extensions such as QPBOI method [20] are known to be state-of-the-art methods in terms of scalability
and theoretical properties. These QPBO/QPBOI and our method are similar in that they all employ
network flow algorithms and derive not only partial/approximate solutions but also lower bounds of
the exact optimal (minimum) value. Our methods, however, differs from QPBO and its extensions in
network structures, accuracy and scalability, as is shown in Section 5.

3 Price optimization and submodularity in cross elasticity of demand

Suppose we have M products and a product index is denoted by i ∈ {1, . . . ,M}. In prescriptive
price optimization [10], for a price strategy p = [p1, . . . , pM ]>, where pi is the price of the i-th
product, and for external variables r = [r1, . . . , rD]> such as weather, temperature and days of
the week, the sales quantity (demand) for the i-th product is modeled by the following regression
formula:

qi(p, r) =

M∑
j=1

fij(pj) +

D∑
t=1

git(rt), (1)

where fii expresses the effect of price elasticity of demand, fij (i 6= j) reflects the effect of cross
elasticity, and git represent how the t-th external variable affect the sales quantity. Note that fij for
all (i, j) can be arbitrary functions, and Eq. (1) covers various regression (demand) models, such
as linear regression, additive models [22], linear regression models with univariate basis functions,
etc. This paper assumes that the regression models are given using existing methods and focuses its
discussion on optimization.

1"Complementary goods" and "substitute goods" are terms in economics. A good example of complementary
goods might be wine and cheese, i.e., if we discount wine, the sales of cheese will increase. An example of
substitute goods might be products of different brands in the same product category. If we discount one product,
sales of the other products will decrease.
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Given qi(p) for all i and a cost vector c = [c1, . . . , cM ]>, and fixed external variables r, the gross
profit can be represented as

`(p) =

M∑
i=1

(pi − ci)qi(p) =

M∑
i=1

(pi − ci)

 M∑
j=1

fij(pj) +

D∑
t=1

git(rt)

 . (2)

The goal of price optimization is to find p maximizing `(p). In practice, pm is often chosen from
the finite set Pi = {Pi1, . . . , PiK} ⊆ R of K price candidates, where PiK might be a list price and
Pik (k < K) might be discounted prices such as 10%-off, 5%-off, 3%-off. Then, the problem of
maximizing the gross profit can be formulated as the following combinatorial optimization problem:

Maximize `(p) subject to pi ∈ Pi. (3)

It is trivial to show that (3) is NP-hard in general.

Let us formally define the "substitute-goods property" as follows.
Definition 1 (Substitute-Goods Property). The demand model defined by (1) of the i-th product is
said to satisfy the substitute-goods property if fij is monotone non-decreasing for all j 6= i.

The concept of substitute-goods property is practical and important because retailers often deal with
substitute goods. Suppose the situation that a retailer decides a price strategy of different brand in the
same products category. For example, supermarkets sell milk of different brands and car dealerships
sell various types of cars. These products are usually substitute goods. This kind of cross elasticity
effect is one of advanced topics in revenue management and is practically important [14, 15, 18].
Our key observation is the connection between the substitute-goods property in marketing science
and the supermodularity of the gross profit function, which is formally described in the following
proposition.
Proposition 2. The gross profit function ` : P1×· · ·×PM → R is supermodular2 if demand models
defined by (1) for all products satisfies the substitute-goods property.

The above proposition implies that, under the assumption of the substitute-goods property, problem
(3) can be solved precisely using submodular minimization algorithms, where time complexity is a
polynomial in M and K. This fact, however, does not necessarily imply that there exists a practical,
efficient algorithm for problem (3). Indeed, general submodular minimization algorithms are slow in
practice even though their time complexities are polynomial. Further, actual models do not always
satisfy the substitute-goods property. We propose solutions to these problems in the next section.

4 Network flow-based algorithm for revenue maximization

4.1 Binary quadratic programming formulation

This section shows that problem (3) can be reduced to the following binary quadratic programming
problem (notations are explained in the latter part of this section):

Minimize x>Ax + b>x
subject to x = [x1, . . . , xn]> ∈ {0, 1}n,

xu ≤ xv ((u, v) ∈ C),
(4)

Each variable pi takes Pik if and only if the binary vector xi = [xi1, . . . , xi,K−1]> ∈ {0, 1}(K−1)

satisfies:

xi = ck := [1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k

]> (k = 1, . . . ,K). (5)

Also we define x = [x>1 , . . . ,x
>
M ]> ∈ {0, 1}(K−1)M and redefine the indices of the entries of x as

x = [x1, x2, . . . , x(K−1)M ], i.e. xi,k = xi(K−1)+k for notational simplicity.

2We say that a function f : D1 × · · · × Dn → R (Dj ⊆ R) is submodular if f(x) + f(y) ≤ f(x ∨ y) +
f(x ∧ y) for all x,y, where x ∨ y and x ∧ y denote the coordinate-wise maximum and minimum, respectively.
We say a function f is supermodular if −f is submodular.
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Algorithm 1 s-t cut for price optimization with the substitute-goods property
Input: Problem instance (A,b, C) of (4), where all entries of A are non-positive.
Output: An optimal solution x∗ to (4).

1: Construct a weighted directed graph G = (V,E,w) satisfying (9).
2: Add edges C with weight∞ to G, i.e., set E ← E ∪ C and w(u, v)←∞ for all (u, v) ∈ C.
3: Compute a minimum s-t cut U∗ of G, define x∗ by (10) and return x∗.

Defining `ij : Pi × Pj → R by `ij(pi, pj) = (pi − ci)fij(pj) for i 6= j and `i : Pi → R by
`i(pi) = (pi − ci)(fii(pi) +

∑D
t=1 git(rt)), we can express ` as

`(p) =
∑

1≤i,j≤M,i6=j

`ij(pi, pj) +

M∑
i=1

`i(pi). (6)

Using xi, we can construct matrices Aij ∈ R(K−1)×(K−1) for which it holds that

`ij(pi, pj) = −x>i Aijxj + const. (7)

Indeed, matrices Aij = [aijuv]1≤u,v≤K−1 ∈ R(K−1)×(K−1) defined by

aijuv = −`ij(Pi,u+1, Pj,v+1) + `ij(Pi,u, Pj,v+1) + `ij(Pi,u+1, Pj,v)− `ij(Pi,u, Pj,v) (8)

satisfy (7). In a similar way, we can construct bi ∈ RK−1 such that `i(pi) = −b>i xi + const.
Accordingly, the objective function ` of problem (3) satisfies `(p) = −(x>Ax + b>x) + const,
where we define A = [Aij ]1≤i,j≤M ∈ R(K−1)M×(K−1)M and b = [bi]1≤i≤M ∈ R(K−1)M . The
conditions xi ∈ {c1, . . . , cK} (i = 1, . . . ,M) can be expressed as xu ≤ xv ((u, v) ∈ C),
where we define C := {((K − 1)(i − 1) + k + 1, (K − 1)(i − 1) + k) | 1 ≤ i ≤ M, 1 ≤ k ≤
K − 2}. Consequently, problem (3) is reduced to problem (4). Although [10] also gives another
BQP formulation for the problem (3) and relaxes it to a semi-definite programming problem, our
construction of the BQP problem can be solved much more efficiently, as is explained in the next
section.

4.2 Minimum cut for problems with substitute goods property

As is easily seen from (8), if the problem satisfies the substitute-goods property, matrix A has only
non-positive entries. It is well known that unconstrained binary quadratic programming problems
such as (4) with non-positive A ∈ Rn×n and C = ∅ can be efficiently solved3 by algorithms
for minimum cut [6]. Indeed, we can construct a positive weighted directed graph, G = (V =
{s, t, 1, 2, . . . , n}, E ⊆ V × V,w : E → R>0 ∪ {∞})4 for which

x>Ax + b>x = cG({s} ∪ {u | xu = 1}) + const (9)

holds for all x ∈ {0, 1}n, where cG is the cut function of graph G5. Hence, once we can compute a
minimum s-t cut U that is a vertex set U ⊆ V minimizing cG(U) subject to s ∈ U and t /∈ U , we
can construct an optimal solution x = [x1, . . . , xn]> to the problem (4) by setting

xu =

{
1 (u ∈ U)
0 (u /∈ U)

(u = 1, . . . , n). (10)

For constrained problems such as (4) with C 6= ∅, the constraint xu ≤ xv is equivalent to xu =
1 =⇒ xv = 1. This condition can be, in the minimum cut problem, expressed as u ∈ U =⇒ v ∈ U .
By adding a directed edge (u, v) with weight ∞, we can forbid the minimum cut to violate the
constraints. In fact, if both u ∈ U and v /∈ U hold, the value of the cut function is∞, and hence such
a U cannot be a minimum cut. We summarize this in Algorithm 1.

3The computational cost of the minimum cut depends on the choice of algorithms. For example, if we use
Dinic’s method, the time complexity is O(n3 logn) = O((KM)3 log(KM)).

4 s, t are auxiliary vertices different from 1, . . . , n corresponding to source, sink in maximum flow problems.
5 For details about the construction of G, see, e.g., [4, 13].
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4.3 Submodular relaxation for problems without the substitute-goods property

For problems without the substitute-goods property, we first decompose the matrix A into A+ and
A− so that A+ +A− = A, where A+ = [a+

uv] and A− = [a−uv] ∈ Rn×n are given by

a+
uv =

{
auv (auv ≥ 0)
0 (auv < 0)

, a−uv =

{
0 (auv ≥ 0)
auv (auv < 0)

(u, v ∈ N). (11)

This leads to a decomposition of the objective function of Problem (4) into supermodular and
submodular terms:

x>Ax + b>x = x>A+x + x>A−x + b>x, (12)

where x>A+x is supermodular and x>A−x + b>x is submodular. Our approach is to replace the
supermodular term x>A+x by a linear function to construct a submodular function approximating
x>Ax+b>x, that can be minimized by Algorithm 1. Similar approaches can be found in the literature,
e.g. [9, 23], but ours has a significant point of difference; our method constructs approximate functions
bounding objectives from below, which provides information about the degree of accuracy.

Consider an affine function h(x) such that h(x) ≤ x>A+x for all x ∈ {0, 1}n. Such an h can be
constructed as follows. Since

γuv(xu + xv − 1) ≤ xuxv (xu, xv ∈ {0, 1}) (13)

holds for all γuv ∈ [0, 1], an arbitrary matrix Γ ∈ [0, 1]n×n satisfies

x>A+x ≥ x>(A+ ◦ Γ)1 + 1>(A+ ◦ Γ)x− 1>(A+ ◦ Γ)1 =: hΓ(x), (14)

where A+ ◦ Γ denotes the Hadamard product, i.e., (A+ ◦ Γ)uv = a+
uv · γuv. From inequality (14),

the optimal value of the following problem,

Minimize x>A−x + b>x + hΓ(x)
subject to x = [x1, . . . , xn]> ∈ {0, 1}n,

xu ≤ xv ((u, v) ∈ C),
(15)

is a lower bound for that of problem (4). Since A− has non-positive entries and b>x + hΓ(x) is
affine, we can solve (15) using Algorithm 1 to obtain an approximate solution for (4) and a lower
bound for the optimal value of (4).

4.4 Proximal gradient method with sequential submodular relaxation

An essential problem in submodular relaxation is how to choose Γ ∈ [0, 1]n×n and to optimize x
given Γ. Let ψ(Γ) denote the optimal value of (15), i.e., define ψ(Γ) by ψ(Γ) = minx∈R x>A−x +
b>x + hΓ(x), where R is the feasible region of (15). Then, for simultaneous optimization of x and
Γ, we consider the following problem:

Maximize ψ(Γ) subject to Γ ∈ [0, 1]n×n, (16)

which can be rewritten as follows:6

Minimize − ψ(Γ) + Ω(Γ) subject to Γ ∈ Rn×n, (17)

where we define Ω : Rn×n → R ∪ {∞} by

Ω(Γ) =

{
0 (Γ ∈ [0, 1]n×n)
∞ (Γ /∈ [0, 1]n×n)

. (18)

Then, −ψ(Γ) is convex and (17) can be solved using a proximal gradient method.

6Problem (16) can be also solved using the ellipsoid method, which guarantees polynomial time-complexity
in the input size. However, it is known that the order of its polynomial is large and that the performance of
the algorithm can be poor in practice, especially for large size problems. To try to achieve more practical
performance, this paper proposes a proximal gradient algorithm.
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Algorithm 2 An iterative relaxation algorithm for (4)
Input: Problem instance (A,b, C) of (4).
Output: An approximate solution x̂ to (4) satisfying (25), a lower bound ψ of optimal value of (4).

1: Set Γ1 = 11>/2, t = 1, min_value =∞, ψ = −∞.
2: while Not converged do
3: Compute xt satisfying (19) by using Algorithm 1, and compute

valuet = x>t Axt + b>xt, ψt = x>t A
−xt + b>xt + hΓt(xt), ψ = max{ψ,ψt}

4: if valuet < max_value then
5: Update value and x̂ by

min_value = valuet, x̂ = xt. (24)

6: end if
7: Compute Γt+1 by (22) and (23).
8: end while
9: Return x̂, min_value and ψ.

Let Γt ∈ Rn×n denote the solution on the t-th step. Let xt be the optimal solution of (15) with
Γ = Γt, i.e.,

xt ∈ arg min
x∈R
{x>A−x + b>x + hΓt

(x)}. (19)

The partial derivative of −hΓ(x) w.r.t. Γ at (Γt,xt), denoted by St, is then a subgradient of −ψ(Γ)
at Γt, which can be computed as follows:

St = A+ ◦ (11> − xt1
> − 1x>t ) (20)

By using St and a decreasing sequence {ηt} of positive real numbers, we can express the update
scheme for the proximal gradient method as follows:

Γt+1 ∈ arg min
Γ∈Rn×n

{St · Γ +
1

2ηt
‖Γ− Γt‖2 + Ω(Γ)}, (21)

We can compute Γt+1 satisfying (21) by
Γt+1 = Proj[0,1]n×n(Γt − ηtSt), (22)

where Proj[0,1](X) is defined by

(Proj[0,1](X))uv =

{
0 ((X)uv < 0)
1 ((X)uv > 1)
(X)uv (otherwise)

. (23)

The proposed algorithm can be summarized as Algorithm 2.

The choice of {ηt} has a major impact on the rate of the convergence of the algorithm. From a
convergence analysis of the proximal gradient method, when we set ηt = Θ(1/

√
t), it is guaranteed

that ψt converge to the optimal value ψ∗ of (16) and |ψt − ψ∗| = O(1/
√
t). Because ψ(Γ) is

non-smooth and not strongly concave, there is no better guarantee of convergence rate, to the best of
our knowledge. In practice, however, we can observe the convergence in ∼ 10 steps iteration.

4.5 Initialization of Γ

Let x̃Γ denote an optimal solution to (15). We employ Γ1 = 1/211> for the initialization of
Γ because (xu + xu − 1)/2 is the tightest lower bound of xuxv in the max-norm sense, i.e.,
h(xu, xv) = (xu + xv − 1)/2 is the unique minimizer of maxxu,xv∈{0,1}{|xuxv − h(xu, xv)|},
subject to the constraints that h(xu, xv) is affine and bounded from above by xuxv . In this case, x̃Γ

is an approximate solution satisfying the following performance guarantee.
Proposition 3. If Γ = 11>/2, then x̃Γ satisfies

x̃>ΓAx̃Γ + b>x̃Γ ≤ x>∗ Ax∗ + b>x∗ +
1

2
1>A+1, (25)

where x∗ is an optimal solution to (4).
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Table 1: Ranges of parameters in regression models.
(i) is supermodular, (ii) is supermodular + submodular,
and (iii) is submodular.

βij (i 6= j) βii αi

(i) [0, 2] [−2M,−M ] [M, 3M ]
(ii) [−25, 25] [−2M, 0] [M, 3M ]
(iii) [−2, 0] [M − 3,M − 1] [1, 3]

Table 2: Results on real retail data. (a) is
computational time, (b) is estimated gross
profit, (c) is upper bound.

actual proposed QPBO
(a) - 36[s] 964[s]
(b) 1403700 1883252 1245568
(c) - 1897393 1894555

5 Experiments

5.1 Simulations

This section investigates behavior of Algorithm 2 on the basis of the simulation model used in [10],
and we compare the proposed method with state-of-the-art methods: the SDP relaxation method
[10] and the QPBO and QBPOI methods [12]. We use SDPA 7.3.8 to solve SDP problems7 and
use the implementation of QPBO and QPBOI written by Kolmogolov.8 QPBO methods computes
partial labeling, i.e., there might remain unlabeled variables, and we set unlabeled variables to 0 in
our experiments. For computing a minimum s-t cut, we use Dinic’s algorithm [6]. All experiments
were conducted in a machine equipped with Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz, 768GB
RAM. We limited all processes to a single CPU core.

Revenue simulation model [10] The sales quantity qi of the i-th product was generated from the
regression model qi = αi +

∑M
j=1 βijpj , where {αi} and {βij} were generated by uniform distribu-

tions. We considered three types of uniform distributions to investigate the effect of submodularity,
as shown in Table 1, which correspond to three different situations: (i) all pairs of products are
substitute goods, i.e., the gross profit function is supermodular, (ii) half pairs are substitute goods
and the others are complementary goods, i.e., the gross profit function contains submodular terms
and supermodular terms, and (iii) all pairs are complementary goods, i.e., the gross profit function is
submodular. Price candidates Pi and cost ci for each product are fixed to Pi = {0.6, 0.7, . . . , 1.0}
and ci = 0, respectively.

Scalability and accuracy comparison We evaluated four methods in terms of computational
time (sec) and optimization accuracy (i.e. optimal values calculated by four methods). In addition
to calculating approximate optimal solutions and values, all four algorithms derive upper bounds of
exact optimal value, which provide information about how accurate the calculated solution.9 Fig. 1
shows the results with M = 30, 60, . . . , 300 for situations (i),(ii) and (iii). The plotted values are
arithmetic means of 5 random problem instances. We can observe that proposed, QPBO and QPBOI
methods derived exact solutions in the case (i), which can be confirmed from the computed upper
bounds coinciding with the values of objective function. For situations (ii) and (iii), on the other
hand, the upper bound and the objective value did not coincide and the solutions by QPBO were
worse than the others. The solutions by QPBOI and SDPrelax are as good as the proposed methods,
but their computational costs are significantly higher especially for the situations (ii) and (iii). For
all situations, the proposed method successfully derived solutions as good as the best of the four
methods did, and its computational cost was the lowest.

5.2 Real-world retail data

Data and settings We applied the proposed method to actual retail data from a middle-size su-
permarket located in Tokyo [24].10 We selected 50 regularly-sold beer products. The data range is
approximately three years from 2012/01 to 2014/12, and we used the first 35 months (1065 samples)
for training regression models and simulated the best price strategy for the next 20 days. Therefore,
the problem here was to determine 1000 prices (50 products × 20 days).

7http://sdpa.sourceforge.net/
8http://pub.ist.ac.at/~vnk/software.html
9 For example, the coincidence of the upper bound and the calculated optimal value implies that the algorithm

computed the exact optimal solution.
10The Data has been provided by KSP-SP Co., LTD, http://www.ksp-sp.com.

7

http://sdpa.sourceforge.net/
http://pub.ist.ac.at/~vnk/software.html


0 50 100 150 200 250 300

M: number of products

0

50

100

150

200

250

c
o
m

p
u
ta

ti
o
n
a
l 
ti

m
e
 [

s
] proposed

QPBO

QPBOI

SDPrelax

0 50 100 150 200 250 300

M: number of products

0

50

100

150

200

250

c
o
m

p
u
ta

ti
o
n
a
l 
ti

m
e
 [

s
] proposed

QPBO

QPBOI

SDPrelax

0 50 100 150 200 250 300

M: number of products

0

50

100

150

200

250

c
o
m

p
u
ta

ti
o
n
a
l 
ti

m
e
 [

s
] proposed

QPBO

QPBOI

SDPrelax

0 50 100 150 200 250 300

M: number of products

0.6

0.7

0.8

0.9

1.0

1.1

1.2

v
a
lu

e
 o

f 
o
b
je

c
ti

v
e
 f

u
n
c
ti

o
n

proposed

QPBO

QPBOI

SDPrelax

(i) supermodular

0 50 100 150 200 250 300

M: number of products

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

v
a
lu

e
 o

f 
o
b
je

c
ti

v
e
 f

u
n
c
ti

o
n

proposed

QPBO

QPBOI

SDPrelax

(ii) supermodular + submodular

0 50 100 150 200 250 300

M: number of products

0.0

0.2

0.4

0.6

0.8

1.0

1.2

v
a
lu

e
 o

f 
o
b
je

c
ti

v
e
 f

u
n
c
ti

o
n

proposed

QPBO

QPBOI

SDPrelax

(iii) submodular

Figure 1: Comparisons of proposed, QPBO, QPBOI, and SDPrelax methods on revenue simulation
data. The horizontal axis represents the number M of products. The vertical axes represent computa-
tional time (top) and optimal values of four methods (3) (bottom). For the bottom, circle markers
with dashed line represent the computed upper bounds of the optimal values, and optimal values and
upper bounds are normalized so that upper bounds with the proposed method are equal to 1.

For forecasting the sales quantity q
(d)
i of the i-product on the d-th day, we use prices features

{p(d′)
j }1≤j≤50,d−19≤d′≤d of 50 products for the 20 days before the d-th day. In addition to these

1000 linear price features, we employed “day of the week" and “month" features (both binary), as
well as temperature forecasting features (continuous), as external features. The price candidates
{P (d)

ik }5k=1 were generated by splitting equally the range [Pi1, Pi5], where Pi1 and Pi5 are the highest
and lowest prices of the i-th product in the historical data. We assumed that the cost c(d)

i was
0.3Pi5 (30% of the list prices). Our objective was to obtain a price strategy for 50-products over
the 20 days, from the 1066-th to 1085-th, which involves 1000-dimensional variables, in order
to maximize the sum of the gross profit for the 20 days. We estimated parameters in regression
models, using the ridge regression method. The estimated model contained 310293 pairs with the
substitute-goods property and 189207 pairs with complementary goods property.

The results are summarized in Table 2, where “actual” means the gross profit computed on the basis
of the historical data regarding sales quantities and prices over the 20 days, from the 1066-th to
1085-th, and costs c(d)

i = 0.3Pi5. Thus, the target is to find a strategy that expectedly achieves better
gross profit than “actual”. We have omitted results for QPBOI and SDPrelax here because they did
not terminate after running over 8 hours. We observe that the proposed method successfully derived
a price strategy over 1000 products, which can be expected to increase gross profit significantly
in spite of its cheap computational cost, in contrast to QPBO, which failed with more expensive
computation. Although Table 2 shows results using a single CPU core for fair comparison, the
algorithm can be easily parallelized that can finish optimization in a few seconds. This makes it
possible to dynamically change prices in real time or enables price managers to flexibly explore a
better price strategy (changing a price range, target products, domain constraints, etc.)

6 Conclusion

In this paper we dealt with price optimization based on large-scale demand forecasting models. We
have shown that the gross profit function is supermodular under the assumption of the substitute-goods
property. On the basis of this supermodularity, we have proposed an efficient algorithm that employs
network flow algorithms and that returns exact solutions for problems with the substitute-goods
property. Even in case in which the property does not hold, the proposed algorithm can efficiently
find approximate solutions. Our empirical results have shown that the proposed algorithm can handle
hundreds/thousands products with much cheaper computational cost than other existing methods.
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Appendix

(proof of Proposition 2)

Proof. Since the sum of supermodular function is supermodular[8], it suffices to show that `ij and `i are
supermodular for all i and j, under the assumption of the substitute goods property. First, `i are supermodular
because arbitrary univariate functions are supermoludar by the definition. Next, let us show the supermodularity
of `ij . Let pi, p′i and pj , p

′
j be arbitrary elements of Pi and Pj , respectively. Denote p

i
= min{pi, p′i},

pi = max{pi, p′i}, pj = min{pj , p′j}, and pi = max{pj , p′j}. Without loss of generality, assume pi ≤ p′i. If
pj ≤ p′j , then we have `ij(pi, pj) + `ij(p

′
i, p
′
j)− `ij(pi, pj)− `ij(p

i
, p

j
) = 0. Otherwise, i.e, if pj > p′j , then

we have

`ij(pi, pj) + `ij(p
′
i, p
′
j)− `ij(pi, pj)− `ij(p

i
, p

j
)

= `ij(pi, pj) + `ij(p
′
i, p
′
j)− `ij(p

′
i, pj)− `ij(pi, p

′
j)

= (pi − p′i)(fij(pj)− fij(p
′
j)) ≤ 0,

where the last inequality comes from the substitute goods property. These inequality implies the supermodularity
of `ij .

(proof of Proposition 3)

Proof. From (14), we have

x>∗ Ax∗ + b>x∗ ≥ x>∗ A
−x∗ + b>x∗ + hΓ(x∗). (26)

Further, it holds that

x>∗ A
−x∗ + b>x∗ + hΓ(x∗) ≥ x̃>Γ A−x̃Γ + b>x̃Γ + hΓ(x̃Γ) (27)

since x̃Γ is an optimal solution to (15). From the definition (14) of hΓ, hΓ(x̃Γ) with Γ = 11>/2 satisfies

hΓ(x̃Γ) = x̃>(A+ ◦ Γ)1 + 1>(A+ ◦ Γ)x̃− 1>(A+ ◦ Γ)1

=
1

2
x̃>A+1 +

1

2
1>A+x̃− 1

2
1>A+1

= x̃>Γ A+x̃Γ −
1

2
x̃>Γ A+x̃Γ −

1

2
(1− x̃Γ)>A+(1− x̃Γ)

≥ x̃>Γ A+x̃Γ −
1

2
1>A+1. (28)

From (26), (27) and (28), we obtain

x>∗ A
−x∗ + b>x∗ + hΓ(x∗) ≥ x̃>Γ A−x̃Γ + b>x̃Γ + x̃>Γ A+x̃Γ −

1

2
1>A+1. (29)

= x̃>Γ Ax̃Γ + b>x̃Γ −
1

2
1>A+1. (30)
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