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I Proofs of results in main body
We present proofs of all results in the main body.
Proof [Proof of Theorem 1] Let J : X → Xg denote the Jacobian of h : x 7→ (1/g(x)) · x. By an
elementary calculation,

g(x) · J = Id − (1/g(x)) · x∇g(x)>,

which by the chain rule brings the following expression for the gradient of ϕ̌(y) = g(y) · (ϕ ◦ h)(y):

∇ϕ̌ (y) = ∇g(y) · (ϕ ◦ h)(y) + g(y) · ∇(ϕ ◦ h)(y)

= ∇g(y) · (ϕ ◦ h)(y) + g(y) · J>∇ϕ(h(y))

= ∇g(y) · (ϕ ◦ h)(y) +∇ϕ(h(y))− (1/g(y)) · ∇g(y)y>∇ϕ(h(y))

= ∇ϕ
(

1

g(y)
· y
)

+

(
ϕ

(
1

g(y)
· y
)
− 1

g(y)
· y>∇ϕ

(
1

g(y)
· y
))
· ∇g(y) . (1)

For simplicity, let u = x/g(x) and v = y/g(y), so that ϕ̌(x) = g(x) ·ϕ(u) and ϕ̌(y) = g(y) ·ϕ(v).
The above then reads

∇ϕ̌ (y) = ∇ϕ (v) +
(
ϕ (v)− v>∇ϕ (v)

)
· ∇g(y). (2)

Now, the LHS of Equation (3) (main file) is

g(x) ·Dϕ

(
1

g(x)
· x
∥∥ 1

g(y)
· y
)

= g(x) ·Dϕ (u‖v)

= g(x) · ϕ(u)− g(x) · ϕ(v)− g(x) · ∇ϕ(v)>(u− v)

= ϕ̌(x)− g(x) · ϕ(v)−∇ϕ(v)>(x− g(x) · v)

= ϕ̌(x)− g(x) · (ϕ(v)−∇ϕ(v)>v)−∇ϕ(v)>x,

while the RHS is

Dϕ̌

(
x
∥∥ y
)

= ϕ̌(x)− ϕ̌(y)−∇ϕ̌(y)>(x− y)

= ϕ̌(x)− g(y) · ϕ(v)−∇ϕ (v)> (x− y)−
(
ϕ (v)− v>∇ϕ (v)

)
· ∇g(y)>(x− y).

Cancelling the common ϕ̌(x) and ∇ϕ (v)> y terms, the difference ∆ = RHS− LHS is

∆ = g(x) · (ϕ(v)−∇ϕ(v)>v)− g(y) · ϕ(v) +∇ϕ (v)> y

−
(
ϕ (v)− v>∇ϕ (v)

)
· ∇g(y)>(x− y)

= g(x) · (ϕ(v)−∇ϕ(v)>v)− g(y) · ϕ(v) + g(y) · ∇ϕ (v)> v

−
(
ϕ (v)− v>∇ϕ (v)

)
· ∇g(y)>(x− y)

= g(x) · (ϕ(v)−∇ϕ(v)>v)− g(y) ·
(
ϕ(v)−∇ϕ (v)> v

)

−
(
ϕ (v)− v>∇ϕ (v)

)
· ∇g(y)>(x− y)

= (ϕ(v)−∇ϕ(v)>v) · (g(x)− g(y)−∇g(y)>(x− y))

= (ϕ(v)−∇ϕ(v)>v) ·Dg(x‖y).
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Thus, the identity holds, if and only if either ϕ(v) = ∇ϕ(v)>v for every v ∈ Xg, or Dg(x‖y) = 0.
The latter is true if and only if g is affine from Equation 2. The result follows.

It is easy to check that Theorem 1 in fact holds for separable (matrix) trace divergences [Kulis et al.,
2009] of the form

Dϕ(X‖Y)
.

= ϕ(X)− ϕ(Y)− tr
(
∇ϕ(Y)>(X − Y)

)
, (3)

with ϕ, g : S(d) → R (for S(d) the set of symmetric real matrices), with ϕ convex. In this case, the
restricted positive homogeneity property becomes

ϕ (U) = tr
(
∇ϕ(U)>U

)
,∀U ∈ Xg . (4)

Proof [Proof of Lemma 2] Note that by construction, g(r(x)) = P(X = x)/((1− πC) ·P(X = x|Y =
C)), and so

(
1

g(r(x))
· r(x)

)

c

=
(1− πC) · P(X = x|Y = C)

P(X = x)
· P(X = x|Y = c)

P(X = x|Y = C)

=
(1− πC)

πc
· πcP(X = x|Y = c)

P(X = x)

= η(x) . (5)

Furthermore,

P(X = x) =
C∑

c=1

πcP(X = x|Y = c)

= (1− πC) ·
(

πC
1− πC

+
∑

c<C

πc
1− πC

· P(X = x|Y = c)

P(X = x|Y = C)

)
· P(X = x|Y = C)

= (1− πC) · g(r(x)) · P(X = x|Y = C) . (6)

Now let
r̂(x) =

1

η̂C(x)
· η̂(x).

It then comes

EM [Dϕ(η(X)‖η̂(X))]

= (1− πC) · EPC
[g(r(x)) ·Dϕ(η(X)‖η̂(X))]

= (1− πC) · EPC

[
g(r(x)) ·Dϕ

(
1

g(r(x))
· r(x)

∥∥∥∥ η̂(X)

)]

= (1− πC) · EPC

[
g(r(x)) ·Dϕ

(
1

g(r(x))
· r(x)

∥∥∥∥
1

g(r̂(X))
· r̂(X)

)]

= (1− πC) · EPC
[Dϕ̌(r(X)‖r̂(X))] ,
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as claimed.

Proof [Proof of Lemma 3] For any x, ‖∇ϕ̌p(x)‖q = W by Corollary B. Since wt = ∇ϕ̌p(θt−1) for
suitable θt−1, the result follows. The result for ‖∇ϕ̌q(wt)‖p follows similarly by Corollary B.

Note that while ‖wt‖q = ‖∇ϕ(wt)‖p for the standard p-LMS update [Kivinen et al., 2006, Ap-
pendix I], these norms may vary with each iteration i.e. wt may not lie in the Lq ball.

Proof [Proof of Lemma 4] Similarly to the proof of Lemma E, a key to the proof of Lemma 4 relies
on branching on Kivinen et al. [2006] through the use of Theorem 1. We first note that Dϕ̌q(u‖w0) =
W · ‖u‖q since w0 = 0, and Dϕ̌q(u‖wT+1) ≥ 0, and so

W · ‖u‖q ≥ Dϕ̌q(u‖w0)−Dϕ̌q(u‖wT+1)

=
T∑

t=1

{
Dϕ̌q(u‖wt−1)−Dϕ̌q(u‖wt)

}
by telescoping property

= gq(u) ·
T∑

t=1

{
Dϕq

(
u

gq(u)

∥∥∥∥
wt−1

gq(wt−1)

)
−Dϕq

(
u

gq(u)

∥∥∥∥
wt

gq(wt)

)}
by Theorem 1

= gq(u) ·
T∑

t=1

{
Dϕq

(
u

gq(u)
‖wt−1

)
−Dϕq

(
u

gq(u)
‖wt

)}
by Lemma J . (7)

Recall from Lemma I that

Dϕq

(
u

gq(u)
‖wt−1

)
−Dϕq

(
u

gq(u)
‖wt

)
≥ 1

4(p− 1)
(

2 + 4M
W

+ 2(Y+XpW )

(p−1)W 2

)
X2
p

· (s2
t − r2

t )

where

st
.

= ((1/gq(u)) · u−wt−1)>xt

rt
.

= (1/gq(u)) · u>xt − yt.

Note that Rq(w1:T |u) =
∑T

t=1(s2
t − r2

t ) by definition. Summing the above for t = 1, 2, ..., T and
telescoping sums yields

Rq(w1:T |u) ≤ 4(p− 1)

(
2 +

4M

W
+

2(Y +XpW )

(p− 1)W 2

)
X2
pW

2

= 4(p− 1)X2
pW

2 + 16(p− 1)MX2
pW + 8(Y +XpW )X2

p

≤ 4(p− 1)X2
pW

2 + (16p− 8)MX2
pW + 8Y X2

p . (8)

See Figure 1 for some geometric intuition about the updates.
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Figure 1: Illustration of the case W = 1 for the Bq(W )-update: all classifiers and image via ∇ϕ̌
belong to a ball of radius 1 (here, q = 3, p = 3/2).

Proof [Proof of Lemma 5] We start by the sphere. Let ϕ(x)
.

= (1/2) · ‖x‖2
2. Since a Bregman

divergence is invariant to linear transformation, it comes from Table A1 that

Dϕ

(
xS

gS(xS)

∥∥ cS

gS(cS)

)
=

1

gS(cS)
·Dϕ̌(x‖c) = 1− cosDG(x, c),

where we recall that DG denotes the geodesic distance on the sphere (see Figure 1 and Appendix III).
Equivalently,

∥∥∥∥
1

gS(xS)
· xS − 1

gS(cS)
· cS
∥∥∥∥

2

2

= 1− cosDG(x, c) . (9)

This equality allows us to use k-means++ using the LHS of (9) to compute the distribution that picks
a center. The key to using the approximation property of k-means++ relies on the existence of a
coordinate system on the sphere for which the cluster centroid is just the average of the cluster points
(polar coordinates), an average that eventually has to be rescaled if the coordinate system is not that
one [Dhillon and Modha, 2001, Endo and Miyamoto, 2015]. The existence of this coordinate system
makes that the proof of Arthur and Vassilvitskii [2007] (and in particular the key Lemmata 3.2 and
3.3) can be carried out without modification to yield the same approximation ratio as that of Arthur
and Vassilvitskii [2007] if the distortion at hand is the squared Euclidean distance, which turns out to
be Drec(. : .) from eq. (9).
The case of the hyperboloid follows the exact same path, but starts from the fact that Table A1 now
brings

Dϕ

(
xH

gH(xH)

∥∥ cH

gH(cH)

)
= coshDG(y, c)− 1 =

∥∥∥∥
1

gH(xH)
· xH − 1

gH(cH)
· cH

∥∥∥∥
2

2

.

To finish, in the same way as for the Sphere, we just need the existence of a coordinate system for
which the centroid is an average of the cluster points, which can be obtained from hyperbolic barycen-
tric coordinates [Ungar, 2014, Section 18].
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II Additional helper lemmata
We begin with some helper lemmata that will be used in some of the proofs. In what follows, let

ϕq(w) = (1/2)(W 2 + ‖w‖2
q)

ϕ̌q(w) = W · ‖w‖q
for some W > 0 and p, q ∈ (1,∞) such that 1/p+ 1/q = 1.

II.1 Properties of ϕq and ϕ̌q
We use the following properties of ϕq, ϕ̌q.

Lemma A For any w,

∇ϕq(w) = ‖w‖2−q
q · sign(w)⊗ |w|q−1

∇ϕ̌q(w) = W · ‖w‖1−q
q · sign(w)⊗ |w|q−1,

where ⊗ denotes Hadamard product.

Proof The first identity was shown in [Kivinen et al., 2006, Example 1]. The second identity follows
from a simple calculation.

This implies the following useful relations between the gradients of ϕq and ϕ̌q.

Corollary B For any w,

∇ϕq(w) = (‖w‖q/W ) · ∇ϕ̌q(w),

‖∇ϕ̌q(w)‖p = W,

‖∇ϕq(w)‖p = ‖w‖q.

Proof [Proof of Corollary B] The proof follows by direct application of Lemma A and the definition
of p, q. Note the third identity was shown in Kivinen et al. [2006, Appendix I].

As a consequence, we conclude that the gradients of ϕq and ϕ̌q coincide when considering vectors on
the W -sphere.

Lemma C For any ‖w‖q = W ,
∇ϕq (w) = ∇ϕ̌q (w) .

Proof This follows from the relation between∇ϕq and ∇ϕ̌q from Lemma A.

Finally, we have the following result about the composition of gradients.

Lemma D For any w,

∇ϕq ◦ ∇ϕ̌p(w) = ∇ϕ̌q ◦ ∇ϕ̌p(w) =
W

‖w‖p
·w.
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Proof For the first identity, applying Lemma A twice,

∇ϕq ◦ ∇ϕ̌p(w) =
1

‖∇ϕ̌p(w)‖q−2
q

· sign(∇ϕ̌p(w))⊗ |∇ϕ̌p(w)|q−1

=
1

W q−2
q

· sign(w)⊗ W q−1

‖w‖(p−1)(q−1)
p

· |w|(p−1)(q−1)

=
W

‖w‖p
·w . (10)

For the second identity, use Corollary B to conclude that

∇ϕ̌q ◦ ∇ϕ̌p(w) =
W

‖∇ϕ̌p(w)‖q
· ∇ϕq(∇ϕ̌p(w))

= W · w

‖w‖p
,

as claimed.

II.2 Bound on successive iterate divergence
The following Lemma extends [Kivinen et al., 2006, Appendix I] to ϕ̌q.

Lemma E For any w and δ,

Dϕ̌q (w‖∇ϕ̌p (∇ϕ̌q(w) + δ))

≤ (p− 1)‖w‖qW
2

·
∥∥∥∥

1

‖∇ϕ̌q(w) + δ‖p
· (∇ϕ̌q(w) + δ)− 1

W
· ∇ϕ̌q (w)

∥∥∥∥
2

p

. (11)

Proof [Proof of Lemma E] In this proof, ◦ denotes composition and ⊗ is Hadamard product. The key
step in the proof is the use of Theorem 1 to “branch” on the proof of [Kivinen et al., 2006, Appendix
I] on the first following identity (letting ϕq(w)

.
= (1/2) · (W 2 + ‖w‖2

q)). We also make use of the dual
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symmetry of Bregman divergences and we obtain third identity of:

Dϕ̌q (w‖∇ϕ̌p (∇ϕ̌q(w) + δ))

=
‖w‖q
W
·Dϕq

(
W

‖w‖q
·w
∥∥∥∥

W

‖∇ϕ̌p(∇ϕ̌q(w) + δ)‖q
· ∇ϕ̌p (∇ϕ̌q(w) + δ

))

=
‖w‖q
W
·Dϕq

(
W

‖w‖q
·w ‖∇ϕ̌p (∇ϕ̌q(w) + δ )

)
(12)

=
‖w‖q
W
·Dϕp

(
∇ϕq ◦ ∇ϕ̌p (∇ϕ̌q(w) + δ)

∥∥∥∥∇ϕq
(

W

‖w‖q
·w
))

by dual symmetry

=
‖w‖q
W
·Dϕp

(
W

‖∇ϕ̌q(w) + δ‖p
· (∇ϕ̌q(w) + δ)

∥∥∥∥
W

‖w‖q
· ∇ϕq (w)

)
(13)

=
‖w‖q
W
·Dϕp

(
W

‖∇ϕ̌q(w) + δ‖p
· (∇ϕ̌q(w) + δ) ‖∇ϕ̌q (w)

)
(14)

= ‖w‖qW ·Dϕp

(
1

‖∇ϕ̌q(w) + δ‖p
· (∇ϕ̌q(w) + δ)

∥∥∥∥
1

W
· ∇ϕ̌q (w)

)
. (15)

Equations (12) – (14) hold because of Corollary B. We now use Appendix I1 in Kivinen et al. [2006]
on Equation (15) and obtain

Dϕ̌q (w‖∇ϕ̌p (∇ϕ̌q(w) + δ))

≤ (p− 1)‖w‖qW
2

·
∥∥∥∥

1

‖∇ϕ̌q(w) + δ‖p
· (∇ϕ̌q(w) + δ)− 1

W
· ∇ϕ̌q (w)

∥∥∥∥
2

p

,

as claimed.

II.3 Bound on successive iterate divergence to target
In what follows, we write the DN-p-LMS updates as wt = ∇ϕ̌p(θt), where

θt
.

= ∇ϕ̌q(wt−1)−∆t

for ∆t = ηt · (w>t−1xt − yt) · xt. Further, for notational ease, we write

ū
.

=
u

gq(u)

and
θ̄t

.
=

θt
‖θt‖p

.

We have the following preliminary bound on the distance from iterates of DN-p-LMS to the (nor-
malised) target.

1This result is stated as a bound on Dϕq (w‖(∇ϕq)
−1(∇ϕq(w) + δ)), which by the Bregman dual symmetry property

is equivalent to a bound on Dϕp(∇ϕq(w) + δ‖∇ϕq(w)).
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Lemma F Fix any learning rate sequence {ηt}Tt=1. Pick any u, and consider iterates {wt}Tt=0 as per
the update equation:

wt
.

= ∇ϕ̌p (∇ϕ̌q(wt−1)− ηt · ∇`t) . (16)

Denote st
.

= (ū−wt−1)>xt, rt
.

= ū>xt − yt, and αt
.

= W
‖θt‖p . Suppose ‖xt‖p ≤ Xp. Then,

Dϕq (ū ‖wt−1 )−Dϕq (ū ‖wt ) ≥ Q+R + S + T ,

with

Q
.

=
αt

2
ηt(s

2
t − r2

t ),

R
.

= (1− αt) ·
(
W 2 − ū>∇ϕ̌q(wt−1)

)
︸ ︷︷ ︸

∈[0,2W 2]

,

S
.

=
p− 1

2
·
(

2α2
tη

2
t (st − rt)2X2

p − ‖(st − rt)ηtαt · xt − (1− αt) · ∇ϕ̌q(wt−1)‖2
p

)

︸ ︷︷ ︸
≥−2(1−αt)2W 2

,

T
.

=
αt

2
ηt(st − rt)2

(
1− 2(p− 1)ηtαtX

2
p

)
.

Proof [Proof of Lemma F] The Bregman triangle equality (also called the three points property) [Bois-
sonnat et al., 2010, Property 5], [Cesa-Bianchi and Lugosi, 2006, Lemma 11.1] brings:

Dϕq (ū ‖wt−1 )−Dϕq (ū ‖wt )

= (ū−wt−1)> (∇ϕq (wt)−∇ϕq (wt−1))−Dϕq (wt−1 ‖wt )

= (ū−wt−1)> (∇ϕ̌q (wt)−∇ϕ̌q (wt−1))−Dϕ̌q (wt−1 ‖wt ) by Lemma 3 (main file) and Lemma C .

We now have

∇ϕ̌q (wt) = ∇ϕ̌q ◦ ∇ϕ̌p(θt) = W · θ̄t

by Corollary B. We get

Dϕq (ū ‖wt−1 )−Dϕq (ū ‖wt )

≥ (ū−wt−1)>
(
W · θ̄t −∇ϕ̌q(wt−1)

)
− (p− 1)W 2

2
·
∥∥∥∥θ̄t −

1

W
· ∇ϕ̌q (wt−1)

∥∥∥∥
2

p

= (ū−wt−1)>
(
W · θ̄t −∇ϕ̌q(wt−1)

)
− p− 1

2
·
∥∥W · θ̄t −∇ϕ̌q (wt−1)

∥∥2

p
.

Now, note that
θt = ∇ϕ̌q(wt−1) + ηt · (st − rt) · xt.
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T ≥ κt − 1

κt
· (st − rt)2
8(p− 1)X2

p

αtηt ≥
1

2(p− 1)κtX2
p

ηt ∈
1

2 · (p− 1) ·Xp ·W 2

[
(κt −

|st − rt|
2 · (p− 1) ·W 2

)−1, (2 +
|st − rt|

2 · (p− 1) ·W 2
)−1

]

R+ S + T ≥ 0 αt ∈ [1− εt, 1 + εt] ηt ≤
εt

1− εt
· W

|st − rt|Xp
εt ≤

|st − rt|
2|st − rt|+ 4(p− 1)W 2

εt ≤
1

p− 1
·
(
1 +

√
1 +

(st − rt)2
16X2

pW
2

)
εt ≤

|st − rt|
4(p− 1)XpW

εt =
|st − rt|

2|st − rt|+ 4(p− 1)WM

κt = 2 +
4M

W
+

2|st − rt|
(p− 1)W 2

Figure 2: Schematic of proof of Lemma G. Arrows from equation A to B indicate that A =⇒ B.

We can thus rewrite the above as

Dϕq (ū ‖wt−1 )−Dϕq (ū ‖wt )

≥ st(st − rt)ηtαt + (1− αt)
(
w>t−1∇ϕ̌q(wt−1)− ū>∇ϕ̌q(wt−1)

)

−p− 1

2
· ‖(st − rt)ηtαt · xt − (1− αt) · ∇ϕ̌q(wt−1)‖2

p

= st(st − rt)ηtαt + (1− αt)
(
W 2 − ū>∇ϕ̌q(wt−1)

)

−p− 1

2
· ‖(st − rt)ηtαt · xt − (1− αt) · ∇ϕ̌q(wt−1)‖2

p by definition of∇ϕ̌q
= Q+R + S + T ,

as claimed.

We can show that the sum R + S + T ≥ 0. This proof involves chaining together multiple simple
inequalities. We give a high level overview in Figure 2.

Lemma G Let R, S, T be as per Lemma F. Suppose we fix

ηt = γ · W

4(p− 1)MXpW + |yt −w>t−1xt|Xp

, (17)

for any γ ∈ [1/2, 1], and M .
= max{W,Xp}. Then, T +R + S ≥ 0.

Proof The triangle inequality and the fact that ‖∇ϕ̌q(wt−1)‖p = W brings

αt ∈
[

W

‖∇ϕ̌q(wt−1)‖p + ηt|st − rt| · ‖xt‖p
,

W

‖∇ϕ̌q(wt−1)‖p − ηt|st − rt| · ‖xt‖p

]

⊆
[

W

W + ηt|st − rt|Xp

,
W

W − ηt|st − rt| ·Xp

]
, (18)
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assuming that ηt is chosen so that

ηt ≤
W

|st − rt| ·Xp

, (19)

so that the right bound is non negative. To indeed ensure this, suppose that for some 0 < εt ≤ 1/2, we
fix

ηt ≤
εt

1− εt
· W

|st − rt|Xp

. (20)

We would in addition obtain from Equation (18) that αt ∈ [1− εt, 1 + εt]. Suppose ηt is also fixed to
ensure

ηt ∈
[

W

2(p− 1)κtXpW 2 − |st − rt|Xp

,
W

4(p− 1)XpW 2 + |st − rt|Xp

]
, (21)

for some κt such that

κt ≥ 2 +
|st − rt|

(p− 1)W 2
. (22)

Notice that constraint on κt makes the interval non empty and its left bound strictly positive. Assuming
(21) holds, we would have

αtηt ∈
[

1

2(p− 1)κtX2
p

,
1

4(p− 1)X2
p

]
. (23)

The left bound of (23) holds because

αtηt ≥ ηt ·
W

W + ηt|st − rt|Xp

≥ 1

2(p− 1)κtX2
p

. (24)

The first inequality holds because of (18) and the second one holds because of (21). The right bound
of (23) holds because of (18), and so

αtηt ≤ ηt ·
W

W − ηt|st − rt|Xp

≤ 1

4(p− 1)X2
p

, (25)

where the last inequality is due to (21). Equation (23) makes that T (ηtαt) is at least its value when
αtηt attains the lower bound of (24), that is,

T (ηtαt) ≥
κt − 1

κt
· (st − rt)2

8(p− 1)X2
p

. (26)
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Now, to guarantee αt ∈ [1−εt, 1+εt], it is sufficient that the right-hand side of inequality (20) belongs
to interval (21) and we pick ηt within the interval [left bound (21), right-hand side (20)]. To guarantee
that the right-hand side of inequality (20) falls in interval (21), we need first,

W

2(p− 1)κtXpW 2 − |st − rt|Xp

≤ εt
1− εt

· W

|st − rt|Xp

, (27)

that is,

κt ≥
1

εt
· |st − rt|

2(p− 1)W 2
. (28)

To guarantee that the right-hand side of inequality (20) falls in interval (21) we need then

W

4(p− 1)XpW 2 + |st − rt|Xp

≥ εt
1− εt

· W

|st − rt|Xp

, (29)

that is,

εt ≤
|st − rt|

2|st − rt|+ 4(p− 1)W 2
. (30)

To summarize, if we pick any strictly positive εt following inequality (30) (note εt < 1) and

κt
.

= 2 +
1

εt
· |st − rt|

(p− 1)W 2
, (31)

then we shall have both αt ∈ [1 − εt, 1 + εt] and inequality (26) holds as well. In this case, we shall
have

T +R + S ≥
(

1− 1

2 + 1
εt
· |st−rt|

(p−1)W 2

)
· (st − rt)2

8(p− 1)X2
p

− 2εtW
2 − (p− 1)ε2tW

2

≥
(

1− 1

2

)
· (st − rt)2

8(p− 1)X2
p

− 2εtW
2 − (p− 1)ε2tW

2

=
(st − rt)2

16(p− 1)X2
p

− 2εtW
2 − (p− 1)ε2tW

2 . (32)

To finish up, we want to solve for εt the right-hand side such that it is non negative, and we find that εt
has to satisfy

εt ≤
1

p− 1
·
(

1 +

√
1 +

(st − rt)2

16X2
pW

2

)
. (33)

Since
√

1 + x ≥ √x, a sufficient condition is

εt ≤
|st − rt|

4(p− 1)XpW
. (34)
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To ensure this and inequality (30), it is sufficient that we fix

εt
.

=
|st − rt|

2|st − rt|+ 4(p− 1)WM
, (35)

where M .
= max{W,Xp}. With this expression for εt, we get from (31),

κt
.

= 2 +
4M

W
+

2|st − rt|
(p− 1)W 2

. (36)

For these choices, Lemma H implies that the given ηt is feasible.

Lemma H Suppose εt satisfies (35) and κt satisfies (36). Then, a sufficient condition for ηt to satisfy
both (20) and (21) is

ηt = γ · W

4(p− 1)MXpW + |yt −w>t−1xt|Xp

,

for any γ ∈ [1/2, 1].

Proof [Proof of Lemma H] Notice the range of values authorized for ηt:

ηt ∈
[

W

2(p− 1)κtXpW 2 − |st − rt|Xp

,
εt

1− εt
· W

|st − rt|Xp

]

=


 W

2(p− 1)
(

2 + 4M
W

+ 2|st−rt|
(p−1)W 2

)
XpW 2 − |st − rt|Xp

,
W

4(p− 1)MXpW + |st − rt|Xp




=

[
W

2(2(p− 1)W 2 + 4M(p− 1)W + 2|st − rt|)Xp − |st − rt|Xp

,
W

4(p− 1)MXpW + |st − rt|Xp

]

=

[
W

4(p− 1)XpW 2 + 8(p− 1)MXpW + 3|st − rt|Xp

,
W

4(p− 1)MXpW + |st − rt|Xp

]

⊃
[

W

8(p− 1)MXpW + 2|st − rt|Xp

,
W

4(p− 1)MXpW + |st − rt|Xp

]
. (37)

A sufficient condition for ηt to fall in interval (37) is

ηt = γ · W

4(p− 1)MXpW + |yt −w>t−1xt|Xp

,

for any γ ∈ [1/2, 1].
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Lemma I Suppose we fix the learning rate as per (17). Pick any u, and consider iterates {wt}Tt=0 as
per Equation 10. Suppose ‖xt‖p ≤ Xp and |yt| ≤ Y, ∀t ≤ T . Then, for any t,

Dϕq (ū ‖wt−1 )−Dϕq (ū ‖wt ) ≥
1

4(p− 1)
(

2 + 4M
W

+ 2(Y+XpW )

(p−1)W 2

)
X2
p

· (s2
t − r2

t )

where st
.

= (ū−wt−1)>xt, rt
.

= ū>xt − yt.
Proof [Proof of Lemma I] We start from the bound of Lemma F:

Dϕq (ū ‖wt−1 )−Dϕq (ū ‖wt ) ≥ Q+R + S + T

≥ Q by Lemma G

=
αt

2
ηt(s

2
t − r2

t ) by definition

≥ 1

4(p− 1)κtX2
p

· (s2
t − r2

t )

≥ 1

4(p− 1)
(

2 + 4M
W

+
2 maxt |yt−w>t−1xt|

(p−1)W 2

)
X2
p

· (s2
t − r2

t )

≥ 1

4(p− 1)
(

2 + 4M
W

+ 2(Y+XpW )

(p−1)W 2

)
X2
p

· (s2
t − r2

t ) . (38)

The last constraint to check for this bound to be valid is our εt in (35) has to be < 1/2 from inequality
(19), which trivially holds since 4(p − 1)WM ≥ 0. We conclude by noting Lemma H provides a
feasible value of ηt.

II.4 Gauge normalisation
The following lemma about the gauge of x will be useful.

Lemma J Let gq(x) = ‖x‖q/W for some W > 0. Then, for the iterates {wt} as per Equation 9,
gq(wt) = 1.

Proof We have

gq(wt) =
‖wt‖q
W

=
W

W
by Lemma 3

= 1 ,∀t ≥ 1 . (39)
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III Working out examples of Table A1
We fill in the details justifying each of the examples of Equation 3 provided in Table 2. We also provide
the form of the corresponding divergences Dϕ and distortions Dϕ̌ in the augmented Table A1.

ϕ Dϕ (x‖y) g ϕ̌ Dϕ̌ (x‖y)

I 1
2
· (1 + ‖x‖2

2) (1/2) · ‖x− y‖2
2 ‖x‖2 ‖x‖2 ‖x‖2 · (1− cos∠x,y)

II 1
2
· (W + ‖x‖2

q)
(1/2) · (‖x‖2

q − ‖y‖2
q) ‖x‖q

W
W · ‖x‖q W · |x‖q −W ·

∑
i
xi·sign(yi)·|yi|q−1

‖y‖q−1
q−∑i

(xi−yi)·sign(yi)·|yi|q−1

‖y‖q−2
q

III 1
2
· (u2 + ‖xS‖2

2) (1/2) · ‖xS − yS‖2
2

‖x‖2
sin ‖x‖2 ‖xS‖2

‖x‖2
sin ‖x‖2 · (1− cosDG(x,y))

IV 1
2
· (u2 + ‖xH‖2

2) (1/2) · ‖xH − yH‖2
2 − ‖x‖2

sinh ‖x‖2 ‖xH‖2 − ‖x‖2
sinh ‖x‖2 · (coshDG(x,y)− 1)

V
∑

i xi log xi − xi
∑

i xi log xi
yi 1>x

∑
i xi log xi − 1>x

∑
i xi log xi

yi

−1>(x− y) −(1>x) log(1>x) −d · E[X] · log E[X]
E[Y]

VI −d−∑i log xi

∑
i
xi
yi ∏

i x
1/d
i −d ·∏i x

1/d
i

∑
i
xi(πy)1/d

yi
− d(πx)1/d

−∑i log xi
yi
− d

VII tr (X log X − X)
tr (X log X − X log Y)

tr (X)
tr (X log X − X) tr (X log X − X log Y)

−tr (X) + tr (Y) −tr (X) log tr (X) −tr (X) · log tr(X)
tr(Y)

VIII −d− log det(X)
tr (XY−1)

det(X1/d) −d · det(X1/d)
det(Y1/d)tr (XY−1)− d · det(X1/d)

− log det(XY−1)− d

Table A1: Example of distortions (right columns) that can be “reverse engineered” as Bregman di-
vergences involving a particular, non necessary linear g. Function xS .

= f(x) : Rd → Rd+1 is the
(S)phere lifting map defined in (51), and xH is the (H)yperboloid lifting map defined in (62). DG(., .)
is the geodesic distance between the exponential map of x and y on their respective manifold (sphere
or hyperboloid). Related proofs are in Section III. Expectation E[X] is a shorthand for (1/d) ·∑i xi.
W ∈ R+∗ and u ∈ R are constants.

Row I — for X = Rd, consider ϕ(x) = (1+‖x‖2
2)/2 and g(x) = ‖x‖2 (we project on the Euclidean

sphere). It comes

ϕ̌(x) = ‖x‖2 ·




1 +
∥∥∥ 1
‖x‖2 · x

∥∥∥
2

2

2


 = ‖x‖2 . (40)

g is not linear (but it is homogeneous of degree 1), but we have

ϕ(x) = 1 = x>∇ϕ(x) ,∀x : ‖x‖2 = 1 , (41)
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so ϕ is 1-homogeneous on the Euclidean sphere, and we can apply Theorem 1. We have

g(x) ·Dϕ

(
1

g(x)
· x‖ 1

g(y)
· y
)

=
‖x‖2

2
·
∥∥∥∥

1

‖x‖2

· x− 1

‖y‖2

· y
∥∥∥∥

2

2

= ‖x‖2 ·
(

1− x>y

‖x‖2‖y‖2

)
= ‖x‖2 · (1− cos(x,y)) , (42)

and we also have

Dϕ̌ (x‖y) = ‖x‖2 − ‖y‖2 −
1

‖y‖2

· (x− y)>y

= ‖x‖2 − ‖y‖2 −
x>y

‖y‖2

+ ‖y‖2 (43)

= ‖x‖2 ·
(

1− x>y

‖x‖2‖y‖2

)
= ‖x‖2 · (1− cos(x,y)) , (44)

which is equal to Equation (42), so we check that Theorem 1 applies in this case. Dϕ̌ has some
interesting properties. One is a weak form of triangle inequality.

Lemma K Dϕ̌ (x‖y) +Dϕ̌ (y‖z) ≤ Dϕ̌ (x‖z), ∀x,y, z such that ‖y‖2 ≤ ‖x‖2.

Proof

Dϕ̌ (x‖y) +Dϕ̌ (y‖z)

= ‖x‖2 · (1− cos(x,y)) + ‖y‖2 · (1− cos(y, z))

= ‖x‖2 · ((1− cos(x,y)) + (1− cos(y, z))) + (‖y‖2 − ‖x‖2) · (1− cos(y, z))

≤ ‖x‖2 · (1− cos(x, z)) + (‖y‖2 − ‖x‖2) · (1− cos(y, z))

≤ Dϕ̌ (x‖z) + (‖y‖2 − ‖x‖2) · (1− cos(y, z))

≤ Dϕ̌ (x‖z) , (45)

since ‖y‖2 ≤ ‖x‖2. We have used the fact that (1− cos(x,y)) is half the Euclidean distance between
unit-normalized vectors.

Another good property is that Dϕ̌(x‖µ) can be related to the log-likelihood of a von Mises-Fisher
distribution with expected direction µ, which happens to be useful in text analysis [Reisinger et al.,
2010].

Row II — Let ϕ(x)
.

= (1/2) · (u2 + ‖x‖2
q), for q > 1 [Kivinen et al., 2006]. We have

ϕ

(
1

g(x)
· x
)

=
u2

2
+

1

2
·
∥∥∥∥

1

g(x)
· x
∥∥∥∥

2

q

=
u2

2
+

1

2g2(x)
· ‖x‖2

q . (46)
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We also have

(
1

g(x)
· x
)>
∇ϕ

(
1

g(x)
· x
)

=
1

g(x)
·
∑

i

xi · sign
(

1
g(x)
· xi
) ∣∣∣ 1

g(x)
· xi
∣∣∣
q−1

∥∥∥ 1
g(x)
· x
∥∥∥
q−2

q

=
∑

i

∣∣∣ 1
g(x)
· xi
∣∣∣
q

∥∥∥ 1
g(x)
· x
∥∥∥
q−2

q

=
1

g2(x)
· ‖x‖2

q . (47)

To have the condition of Theorem 1 satisfied, we therefore need

‖x‖q = ug(x) , (48)

So we use g(x) = ‖x‖q/W and u = W , observing that ϕ is 1-homogeneous on the Lp sphere. We
check that

ϕ̌(x) = W · ‖x‖q . (49)

and we obtain

Dϕ̌(w‖w′) = W · ‖w‖q −W ·
∑

i

wi · sign(w′i) · |w′i|q−1

‖w′‖q−1
q

. (50)

Row III — As in Buss and Fillmore [2001], we assume ‖x‖2 ≤ π, or we renormalize or change the
radius of the ball) We first lift the data points using the Sphere lifting map Rd 3 x 7→ xS ∈ Rd+1:

xS
.

= [x1 x2 · · · xd rx cot rx]> , (51)

where rx
.

= ‖x‖2 is the Euclidean norm of x. Notice that the last coordinate is a coordinate of the
Hessian of the geodesic distance to the origin on the sphere [Buss and Fillmore, 2001]. We then let
g(xS)

.
= rx/ sin rx (notice that g is computed uding the first d coordinates). Finally, for X = Rd+1

and u > 1, consider ϕ(xS) = (u2 + ‖xS‖2
2)/2. The set of points for which ϕ(xS) = (xS)>∇ϕ(xS) is

equivalently the subset Xg ⊆ Rd+1 such that

Xg
.

= {xS : g2(xS) = u2} . (52)

So ϕ satisfies the restricted positive homogeneity of degree 1 on Xg and we can apply Theorem 1. We
first remark that:

‖xS‖2
2 = r2

x + r2
x cot2 rx

=
r2
x

sin r2
x

= g2(xS) , (53)
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and

ϕ̌(xS) =
rx

sin rx
· ϕ
(

sin rx
rx
· xS

)
=

rx
sin rx

·
(

sin rx
rx

)2

· ‖xS‖2
2 = ‖xS‖2 , (54)

and finally, because of the spherical law of cosines,

sin rx sin ry cos(x,y) + cos rx cos ry = cosDG(x,y) , (55)

where we recall from eq. (16) that DG(x,y) is the geodesic distance between the image of the expo-
nential maps of x and y on the sphere. We then derive

g(xS) ·Dϕ

(
1

g(xS)
· xS‖ 1

g(yS)
· yS

)

=
rx

2 sin rx
·
∥∥∥∥

sin rx
rx
· xS − sin ry

ry
· yS

∥∥∥∥
2

2

=
rx

2 sin rx
·
(

sin2 rx
‖x‖2

2

· ‖xS‖2
2 +

sin2 ry
‖y‖2

2

· ‖yS‖2
2 − 2 · sin rx

rx
· sin ry

ry
· (xS)>yS

)

=
rx

sin rx
·
(

1− sin rx
rx
· sin ry

ry
· (xS)>yS

)
(56)

=
rx

sin rx
·
(

1− sin rx
rx
· sin ry

ry
·
(
x>y + rxry cot rx cot ry

))
(57)

=
rx

sin rx
· (1− sin rx sin ry · (cos(x,y) + cot rx cot ry))

=
rx

sin rx
· (1− (sin rx sin ry cos(x,y) + cos rx cos ry))

=
rx

sin rx
· (1− cosDG(x,y)) . (58)

In Equation (56), we use Equation (53), and we use Equation (55) in Equation (58). We also check

Dϕ̌(xS‖yS) = ‖xS‖2 − ‖yS‖2 −
1

‖yS‖2

· (xS − yS)>yS

= ‖xS‖2 −
1

‖yS‖2

· (xS)>yS

= ‖xS‖2 ·
(

1− (xS)>yS

‖xS‖2‖yS‖2

)
(59)

=
rx

sin rx
· (1− cosDG(x,y)) . (60)

To obtain (60), we use the fact that

(xS)>yS

‖xS‖2‖yS‖2

=
sin rx
rx
· sin ry

ry
·
(
x>y + rxry cot rx cot ry

)
, (61)

and then plug it into Equation (60), which yields the identity between Equation (57) (and thus (58))
and (60). So Theorem 1 holds in this case as well. We also remark that (1/g(xS)) · xS = exp0(x) is
the exponential map for the sphere [Buss and Fillmore, 2001].
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Row IV — In the same way as we did for row IV, we first create a lifting map, but this time complex
valued, the Hyperboloid lifting map H: Rd 3 x 7→ xH ∈ Rd × C. With an abuse of notation, it is
given by

xH
.

= [x1 x2 · · · xd irx coth rx]> , (62)

and we let g(xH)
.

= −rx/ sinh rx, with coth and sinh defining respectively the hyperbolic cotangent
and hyperbolic sine. We let 0 coth 0 = 0/ sinh 0 = 1. Notice that the complex number is pure imagi-
nary and so H defines a d dimensional manifold that lives in Rd+1 assuming that the last coordinate is
the imaginary axis. Let expq(x)

.
= (1/g(xH) · xH . Notice that

∥∥expq(x)
∥∥2

2
=

sinh2 rx
r2
x

·
(
r2
x + i2r2

x coth2 rx
)

= sinh2 rx + i2 cosh2 rx

= sinh2 rx − cosh2 rx = −1 , (63)

so expq(x) defines a lifting map from Rd to the hyperboloid model Hd of hyperbolic geomety [Galperin,
1993]. In fact, it defines the exponential map for the plane TqHd tangent to Hd in point

q
.

= [0 0 · · · 0 i] = 0H .

To see this, remark that we can express the geodesic distance DG with the hyperbolic metric between
xH and yH as

DG(xH ,yH)
.

= cosh−1(−(xH)>yH) , (64)

where cosh−1 is the inverse hyperbolic cosine. So, for any x ∈ TqHd, since rx = ‖x− 0‖2, we have

DG(expq(x), q) = cosh−1(−(xH)>0H)

= cosh−1(−i2 cosh rx)

= rx = ‖x− 0‖2 , (65)

and expq(x) is indeed the exponential map for TqHd. Now, remark that

expq(x)> expq(y) =
sinh rx
rx

· sinh ry
ry

· (xH)>yH

=
sinh rx
rx

· sinh ry
ry

·
(
x>y + i2rxry coth rx coth ry

)

= sinh rx sinh ry · (cos(x,y)− coth rx coth ry)

= sinh rx sinh ry cos(x,y)− cosh rx cosh ry

= − coshDG(xH ,yH) . (66)

Eq. (66) holds by the hyperbolic law of cosines. Now, we let ϕ(xH) = (u2 + ‖xH‖2
2)/2 and

Xg
.

= {xH : ‖xH‖2
2 = u2} . (67)
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We check that ϕ(xH) = u2 = (xH)>∇ϕ(xH) for any xH ∈ Xg, so we can apply Theorem 1. We then
use eqs. (63) and (66) and derive

g(xH) ·Dϕ

(
1

g(xH)
· xH‖ 1

g(yH)
· yH

)

= − rx
2 sinh rx

·
∥∥expq(x)− expq(y)

∥∥2

2

= − rx
2 sinh rx

·
(∥∥expq(x)

∥∥2

2
+
∥∥expq(y)

∥∥2

2
− 2 expq(x)> expq(y)

)

= − rx
sinh rx

·
(
coshDG(xH ,yH)− 1

)
. (68)

Note that eq. (68) is a negative-valued and concave distortion.

Row V — for X = Rd
+∗, consider ϕ(x) =

∑
i xi log xi − xi and g(x) = 1>x (we normalize on the

simplex). Since g is linear, we do not need to check for the homogeneity of ϕ, and we directly obtain:

g(x) ·Dϕ

(
1

g(x)
· x‖ 1

g(y)
· y
)

=
∑

i

xi log xi − (1>x) log(1>x)− 1>x

−1>x

1>y
·
∑

i

yi log yi − (1>x) log(1>y) + 1>x

−(1>x) ·
∑

i

(
xi
1>x

− yi
1>y

)
· log

yi
1>y

=
∑

i

xi log
xi
yi
− (1>x) · log

1>x

1>y
. (69)

Furthermore,

ϕ̌(x) = 1>x ·
(∑

i

xi
1>x

· log
xi
1>x

− 1

)
=
∑

i

xi log xi − (1>x) log(1>x)− 1>x . (70)

Noting that ϕ̌(x) is the sum of three terms, one of which is linear and can be removed for the diver-
gence, so the divergence is just the sum of the two divergences with the two generators, which is found
to be Equation (69) as well. Remark that while the KL divergence is convex in its both arguments,
Dϕ̌(x‖y) may not be (jointly) convex. Indeed, its Hessian in y equals:

Hy(Dϕ̌) = Diag({xi/y2
i }i)−

1>x

(1>y)2
· 11> , (71)

which may be indefinite.
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Row VI — for X = Rd
+∗, consider ϕ(x) = −d −∑i log xi and g(x) = (πx)1/d, where we let

πx
.

=
∏

i xi (we normalize with the geometric average). It comes

ϕ̌(x) = (πx)1/d ·
(
−d−

∑

i

log
xi

(πx)1/d

)
= −d · (πx)1/d . (72)

g is not linear (but it is homogeneous of degree 1), and we have

ϕ(x) = −d = x>∇ϕ(x) ,∀x :
∏

i

xi = 1 , (73)

so ϕ is 1-homogeneous on Xg, and we can apply Theorem 1. We have

g(x) ·Dϕ

(
1

g(x)
· x‖ 1

g(y)
· y
)

= (πx)1/d ·
∑

i

(
xi(πy)1/d

yi(πx)1/d
− log

xi(πy)1/d

yi(πx)1/d

)
− d(πx)1/d

=
∑

i

xi(πy)1/d

yi
− d(πx)1/d log(πx)1/d − (πx)1/d log πy + (πx)1/d log πy

+d(πx)1/d log(πx)1/d − d(πx)1/d

=
∑

i

xi(πy)1/d

yi
− d(πx)1/d . (74)

We also have
∂

∂xi
ϕ̌(x) = −(1/xi) · (πx)1/d , (75)

and so

Dϕ̌ (x‖y) = −d(πx)1/d + d(πy)1/d + ·
∑

i

(xi − yi) ·
(πy)1/d

yi

= −d(πx)1/d + d(πy)1/d +
∑

i

xi(πy)1/d

yi
− d(πy)1/d

=
∑

i

xi(πy)1/d

yi
− d(πx)1/d , (76)

which is equal to Equation (74), so we check that Theorem 1 applies in this case.

Row VII — We use the following fact Kulis et al. [2009]. Let X = ULU> and Y = VTV> be the
eigendecomposition of symmetric positive definite matrices X and Y, with L

.
= Diag(l), T

.
= Diag(t),

and U
.

= [u1|u2| · · · |ud], V
.

= [v1|v2| · · · |vd] orthonormal; let ϕ = tr (X log X − X). Then we have

Dϕ (X‖Y) =
∑

i,j

(u>i vj)
2 ·Dϕ2(li‖tj) , (77)
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with ϕ2(x) = x log x− x. We pick g(X) = tr (X) =
∑

i li, which brings from Equation (69)

g(X) ·Dϕ

(
1

g(X)
· X‖ 1

g(Y)
· Y

)

=
∑

i,j

(u>i vj)
2 · tr (X) ·Dϕ2

(
li

tr (X)
‖ tj

tr (Y)

)

=
∑

i,j

(u>i vj)
2 · tr (X) ·

(
li

tr (X)
· log

li · tr (Y)

tj · tr (X)
− li

tr (X)
+

tj
tr (Y)

)

=
∑

i,j

(u>i vj)
2 ·
(
li log

li
tj
− li + tj

)
+ log

(
tr (Y)

tr (X)

)
·
∑

i,j

(u>i vj)
2 · li

+
tr (X)

tr (Y)
·
∑

i,j

(u>i vj)
2 · tj −

∑

i,j

(u>i vj)
2 · tj . (78)

Because U, V are orthonormal, we also get
∑

i,j(u
>
i vj)

2 · li =
∑

i li
∑

j cos2(ui,vj) =
∑

i li = tr (X)

and
∑

i,j(u
>
i vj)

2 · tj = tr (y), and so Equation (78) becomes

g(X) ·Dϕ

(
1

g(X)
· X‖ 1

g(Y)
· Y

)

= tr (X log X − X log Y)− tr (X) + tr (Y) + tr (X) · log

(
tr (Y)

tr (X)

)
+ tr (X)− tr (Y)

= tr (X log X − X log Y)− tr (X) · log

(
tr (X)

tr (Y)

)
. (79)

We also check that

ϕ̌(X) = tr (X) · tr
(

1

tr (X)
· X log

(
1

tr (X)
· X

)
− 1

tr (X)
· X

)

= tr

(
X log

(
1

tr (X)
· X

))
− tr (X) , (80)

and

X log

(
1

tr (X)
· X

)
= ULU>U log

(
1

1>l
· L

)
U>

= UL log

(
1

1>l
· L

)
U> (81)

= UL log LU> − log tr (X) · ULU> , (82)

so that ϕ̌(X) = tr (X log X − X)− tr (X) · log tr (X). Let ϕ3(X)
.

= tr (X) · log tr (X). We have∇ϕ3(X) =
(1+log tr (X))· I. Since a (Bregman) divergence involving a sum of generators is the sum of (Bregman)
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divergences, we get

Dϕ̌ (X‖Y) = tr (X log X − X log Y − X + Y)− tr (X) · log tr (X) + tr (Y) · log tr (Y)

+(1 + log tr (Y)) · tr (X − Y)

= tr (X log X − X log Y)− tr (X) · log tr (X) + tr (X) · log tr (Y)

= tr (X log X − X log Y)− tr (X) · log

(
tr (X)

tr (Y)

)
, (83)

which is Equation (79).

Row VIII — We have the same property as for Row V, but this time with ϕ2 = −d − log x [Kulis
et al., 2009]. We check that whenever det(X) = 1, we have

ϕ(X) = −d− log det(X) = −d
= − det(X)tr (I)

= tr
(
det(X)X−1X

)
= tr

(
∇ϕ(X)>X

)
. (84)

For g(X)
.

= det X1/d, we get:

ϕ̌(X) = det X1/d ·
(
−d− log det

(
1

det X1/d
· X

))

= det X1/d ·
(
−d− log

1

det X
· det X

)
= −d · det X1/d , (85)

and furthermore

∇ϕ̌(X) = −d · ∇(det X1/d)(X)

= − det(X1/d) · X−1 (86)

So,

Dϕ̌ (X‖Y) = −d · det X1/d + d · det Y1/d + tr
(
det(Y1/d) · Y−1(X − Y)

)

= −d · det X1/d + d · det Y1/d + det(Y1/d)tr
(

XY−1
)
− d · det Y1/d

= det(Y1/d)tr
(

XY−1
)
− d · det X1/d . (87)

We check that it is equal to:

g(X) ·Dϕ

(
1

g(X)
· X‖ 1

g(Y)
· Y

)

= det X1/d ·
∑

i,j

(u>i vj)
2 ·
(
li det Y1/d

tj det X1/d
− log

li det Y1/d

tj det X1/d
− d
)

. (88)
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To check it, we use the fact that, since U and V are orthonormal,

∑

i,j

(u>i vj)
2 · log

li det Y1/d

tj det X1/d

=
∑

i,j

(u>i vj)
2 · log li −

∑

i,j

(u>i vj)
2 · log det X1/d

+
∑

i,j

(u>i vj)
2 · log det Y1/d −

∑

i,j

(u>i vj)
2 · log tj

=
∑

i

log li − d · log det X1/d

︸ ︷︷ ︸
=0

+ d · log det Y1/d −
∑

j

log lj

︸ ︷︷ ︸
=0

= 0 , (89)

which yields

g(X) ·Dϕ

(
1

g(X)
· X‖ 1

g(Y)
· Y

)
= det X1/d ·

∑

i,j

(u>i vj)
2 ·
(
li det Y1/d

tj det X1/d
− d
)

= det Y1/d ·
∑

i,j

(u>i vj)
2 · li
tj
− d · det X1/d

= det Y1/d · tr
(

XY−1
)
− d · det X1/d , (90)

which is equal to Equation (87).
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IV Going deep: higher-order identities
We can generalize Theorem 1 to higher order identities. For this, consider k > 0 an integer, and let
g1, g2, ..., gk : X → R∗ be a sequence of differentiable functions. For any `, `′ ∈ [k]∗ such that ` ≤ `′,
we let g̃`,`′ be defined recursively as:

g̃`,`′(x)
.

=

{
g̃`−1,`′(x) · g`′−(`−1)

(
1

g̃`−1,`′ (x)
· x
)

if 1 < ` ≤ `′ ,

g`′(x) if ` = 1 ,
(91)

and, for any ` ∈ [k],

ϕ̌(`)(x)
.

=

{
g`(x) · ϕ̌(`−1)

(
1

g`(x)
· x
)

if 0 < ` ≤ k ,

ϕ(x) if ` = 0 .
(92)

Notice that even when all g. are affine, this does not guarantee that some g̃`,`′ for ` 6= 1 is going to
be affine. However, if for example g`′ is affine and all “preceeding” g` (` ≤ `′) are homogeneous
of degree 1, then all g̃`,`′ (∀` ≤ `′) are affine. The following result can be seen as extension of the
functional composition rules known for generalized perspective transforms of functions [Maréchal,
2005b] to composition rules for perspective transforms of divergences (See Section VIII).

Corollary L For any k ∈ N∗, let ϕ : X → R be convex differentiable, and g` : X → R∗ (` ∈ [k]) a
sequence of k differentiable functions. Then the following relationship holds, for any `, `′ ∈ [k]∗ with
` ≤ `′:

g̃`,`′(x) ·Dϕ̌(`′−`)

(
1

g̃`,`′(x)
· x‖ 1

g̃`,`′(y)
· y
)

= Dϕ̌(`′) (x‖y) ,∀x,y ∈ X , (93)

with g̃`,`′ defined as in Equation (91) and ϕ̌(`′) defined as in Equation (92), if and only if at least one
of the two following conditions hold:

(i) g̃`,`′ is affine on X;

(ii) ϕ̌(`′−`) is positive homogeneous of degree 1 on X`,`′
.

= {(1/g̃`,`′(x)) · x : x ∈ X}.

We check that whenever ϕ is convex and all g. are non-negative, then all ϕ̌(`) are convex (∀` ∈ [k]). To
prove this, we choose `′ = ` and rewrite Equation (3), which brings, since ϕ̌(`′−`) = ϕ̌(0) = ϕ,

g̃`,`(x) ·Dϕ

(
1

g̃`,`(x)
· x‖ 1

g̃`,`(y)
· y
)

= Dϕ̌(`) (x‖y) ,∀x,y ∈ X . (94)

Since ϕ is convex, a sufficient condition to prove our result is to show that g̃`,` is non-negative —
which will prove that the right hand side of (94) is non-negative, and therefore ϕ̌(`) is convex —.
This can easily be proven by induction from the expression of g̃`,`′ in (91) and the fact that all g. are
non-negative.
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One interesting candidate for simplification is when all g. are the same affine function, say g`(x) =
a>x+ b,∀` ∈ [k]. In this case, we have indeed:

g̃`,`′(x) = a>x+ b · g̃`−1,`′(x)

= b` + a>x ·
`−1∑

j=1

bj , (95)

ϕ̌(`′)(x) =

(
b`
′
+ a>x ·

`′−1∑

j=1

bj

)
· ϕ
(

1

b`′ + a>x ·∑`′−1
j=1 b

j
· x
)

. (96)

Proof [Proof of Corollary L] To check eq. (4), we first remark (`′ being fixed) that it holds for ` = 1
(this is eq. (4)), and then proceed by an induction from the induction base hypothesis that, for some
` ≤ `′,

ϕ̌(`′)(x) = g̃`,`′(x) · ϕ̌(`′−`)
(

1

g̃`,`′(x)
· x
)

. (97)

We now have

ϕ̌(`′)(x)

=
g̃`+1,`′(x)

g`′−`

(
1

g̃`,`′ (x)
· x
) · ϕ̌(`′−`)

(
1

g̃`,`′(x)
· x
)

(98)

=
g̃`+1,`′(x)

g`′−`

(
1

g̃`,`′ (x)
· x
) · g`′−`

(
1

g̃`,`′(x)
· x
)
· ϕ̌(`′−(`+1))


 1

g̃`,`′(x)g`′−`

(
1

g̃`,`′ (x)
· x
) · x


 (99)

= g̃`+1,`′(x) · ϕ̌(`′−(`+1))


 1

g̃`,`′(x)g`′−`

(
1

g̃`,`′ (x)
· x
) · x




= g̃`+1,`′(x) · ϕ̌(`′−(`+1))

(
1

g̃`+1,`′(x)
· x
)

. (100)

Eq. (98) comes from eq. (97) and the definition of g̃` in (91), eq. (99) comes from the definition of
ϕ̌(`′−`) in (92), eq. (100) is a second use of the definition of g̃` in (91).

Notice the eventual high non-linearities introduced by the composition in eqs (91,92), which justifies
the ”deep” characterization.
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V Additional application: perspective transform of exponential
families

Let ϕ be the cumulant function of a regular ϕ-exponential family with pdf pϕ(.|θ), where θ ∈ X is its
natural parameter. Let Ω(.) be a norm on X. Let θΩ be the image of θ ∈ X by the application from X

onto the Ω-ball of unit norm defined by x 7→ (1/Ω(x)) · x. For any two θ,θ′ ∈ X, let

KLϕ(θ‖θ′) .
=

∫
pϕ(x|θ) log

pϕ(x|θ)

pϕ(x|θ′)dx (101)

be the KL divergence between the two densities pϕ(.|θ) and pϕ(.|θ′). A function is called regular if
Φ

.
= {θ : ϕ(θ)�∞} is open.

Lemma M (perspective transform of exponential families) For any convex regular ϕ which is re-
stricted positive 1-homogeneous on XΩ, the KL-divergence between two members of the same ϕ-
exponential family satisfies:

Ω(θ′) ·KLϕ(θΩ‖θ′Ω) = Dϕ̌(θ′‖θ) = KLϕ̌(θ‖θ′) . (102)

Proof We know that KL(θ‖θ′) = Dϕ(θ′‖θ) [Boissonnat et al., 2010]. Hence,

Dϕ̌(θ′‖θ) = Ω(θ′) ·Dϕ

(
1

Ω(θ′)
· θ′‖ 1

Ω(θ)
· θ
)

= Ω(θ′) ·Dϕ(θ′Ω‖θΩ)

= Ω(θ′) ·KLϕ(θΩ‖θ′Ω) , (103)

as claimed. To prove the rest of the Lemma, we remark that Φ̌ is open because Φ is open and ϕ̌ is
convex because Ω(θ) ≥ 0 and ϕ is convex, so ϕ̌ is convex regular and defines the cumulant of a regular
exponential family for which Dϕ̌(θ′‖θ) = KLϕ̌(θ‖θ′) [Banerjee et al., 2005].

The interest in Lemma M is to provide an integral-free expression of the KL-divergence when natural
parameters are scaled by non-trivial transformations (left inequality). Furthermore, the equality

Ω(θ′) ·KLϕ

(
1

Ω(θ)
· θ
∥∥∥∥

1

Ω(θ′)
· θ′
)

= KLϕ̌(θ‖θ′) (104)

states a valid generalized perspective transform equality because Ω is proper convex [Maréchal, 2005a,b].
Notice however that the rescaling of the KL divergence on the left uses its right parameter, unlike in
Theorem 1. To summarize the content of Lemma M, we first ”polarize” (left / right) the perspective
transform of a Bregman divergence as a reference of which parameter is used to rescale the divergence.
We also define as the perspective transform of an exponential family as the new distribution whose cu-
mulant is the perspective transform of the cumulant (we do not change the natural parameter). We can
then summarize eq. (104) by:

”the right perspective transform of the KL divergence between two distributions of the same
exponential family is the KL divergence between the perspective transform of the distributions”

Finally, it is out of the scope of this paper, but Lemma M can also be extended to generalized expo-
nential families [Fongillo and Reid, 2013].
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VI Additional application: computational information geometry
Two important objects of central importance in (computational) geometry are balls and Voronoi di-
agrams induced by a distortion, with which we can characterize the topological and computational
aspects of major structures (Voronoi diagrams, triangulations, nearest neighbor topologies, etc.) [Bois-
sonnat et al., 2010].

VI.1 Bregman balls
Since a Bregman divergence is not necessarily symmetric, there are two types of (dual) balls that can
be defined, the first or second types, where the variable x is respectively placed in the left or right
position. The first type Bregman balls are convex while the second type are not necessarily convex. A
(closed) Bregman ball of the second type (with center c and ”radius” r) is defined as:

B′(c, r|X, ϕ)
.

= {x ∈ X : Dϕ(c‖x) ≤ r} . (105)

It turns out that any divergence Dϕ̌ induces a ball of the second type, which is not necessarily ana-
lytically a Bregman ball (when ϕ̌ is not convex), but turns out to define the same ball as a Bregman
ball over properly scaled arguments (notice that the scaling is the same for both arguments, the ball’s
center and radius).

Theorem N Let (ϕ, g, ϕ̌) satisfy the conditions of Theorem 1, with g non negative and g(c) 6= 0. Then

B′(c, r|ϕ̌,X) = B′
(

1

g(c)
· c, r

g(c)

∣∣∣∣ϕ,Xg

)
. (106)

Proof From Theorem 1, we have

Dϕ̌(c‖x) ≤ r (107)

iff

Dϕ

(
1

g(c)
· c
∥∥∥∥

1

g(c)
· x
)
≤ 1

g(c)
· r . (108)

Hence,

B′(c, r|ϕ̌,X) = {x ∈ X : Dϕ̌(c‖x) ≤ r}

=

{
x ∈ X : Dϕ

(
1

g(c)
· c
∥∥∥∥

1

g(x)
· x
)
≤ r

g(c)

}

= B′
(

1

g(c)
· c, r

g(c)

∣∣∣∣ϕ,Xg

)
, (109)

as claimed.

In other words and to be a little bit more specific,

28



”any x belongs to the ball of the second type induced by Dϕ̌ over X iff (1/g(x)) · x (∈ Xg) belongs
to the Bregman ball of the second type induced by Dϕ over Xg (obtained by scaling both the center

and radius by g(c)).”

This property is not true for balls of the first type. What Theorem N says is that the topology induced
by Dϕ̌ over X is just no different from that induced by Dϕ over Xg.

VI.2 Bregman Voronoi diagrams
Let us now investigate Bregman Voronoi diagrams. In the same way as there exists two types of
Bregman balls, we can define two types of Bregman Voronoi diagrams that depend on the equation of
the Bregman bisector [Boissonnat et al., 2010]. Of particular interest is the Bregman bisector of the
first type:

BBϕ(x,y|X) = {z ∈ X : Dϕ(z‖x) = Dϕ(z‖y)} . (110)

Let us define x,y as the Bregman bisector parameters. It turns out that any divergence Dϕ̌ induces
a bisector of the first type which is not necessarily analytically a Bregman bisector (when ϕ̌ is not
convex), but turns out to define the same bisector as a Bregman bisector over transformed coordinates.

Theorem O Let (ϕ, g, ϕ̌) satisfy the conditions of Theorem 1. Then

BBϕ̌(x,y|X) = BBϕ(x,y|Xg) . (111)

(proof similar to Theorem N) Again, we get more precisely

”any x belongs to a Bregman bisector of the first type induced by Dϕ̌ over X iff (1/g(x)) · x (∈ Xg)
belongs to the corresponding Bregman bisector of the first type induced by Dϕ over Xg (obtained by

scaling both bisector parameters by g(.)).”

This property is not true for Bregman bisectors of the second type (obtained by permuting z with the
Bregman bisector parameters in eq . (110)).

VI.3 Consequences
Theorems N, O have several important algorithmic consequences, some of which are listed now:

• the Voronoi diagram (resp. Delaunay triangulation) of the first type associated to ϕ̌ can be
constructed via the Voronoi diagram (resp. Delaunay triangulation) of the first type associated
to ϕ [Boissonnat et al., 2010];

• range search using ball trees on Dϕ̌ can be efficiently implemented using Bregman divergence
Dϕ on Xg [Cayton, 2009];

• the minimum enclosing ball problem, the one-class clustering problem (an important problem in
machine learning), with balls of the second type onDϕ̌ can be solved via the minimum Bregman
enclosing ball problem on Dϕ [Nock and Nielsen, 2005].
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VII Review: binary density ratio estimation
For completeness, we quickly review the central result of Menon and Ong [2016, Proposition 3]. Let
(P,Q, π) be densities giving P(X|Y = 1),P(X = x|Y = −1),P(Y = 1) respectively, and M giving
P(X = x) accordingly. Let r(x)

.
= P(X = x|Y = 1)/P(X = x|Y = −1) be the density ratio of the

class-conditional densities, and η(x)
.

= P[Y = 1|X = x] be the class-probability function. Then, we
have the following, which extends [Menon and Ong, 2016, Proposition 6] for the case π 6= 1

2
.

Lemma P Given a class-probability estimator η̂ : X→ [0, 1], let the density ratio estimator r̂ be

r̂(x) =
1− π
π
· η̂(x)

1− η̂(x)
. (112)

Then for any convex differentiable ϕ : [0, 1]→ R,

EX∼M [Dϕ(η(X)‖η̂(X))] = π · EX∼Q [Dϕ̌(r(X)‖r̂(X))] . (113)

where ϕ̌ is as per Equation 4 with g(z)
.

= 1−π
π

+ z .

Proof [Proof of Lemma P] Note that

1

g(r(x))
· r(x) =

πP(X = x|Y = −1)

P(X = x)
· P(X = x|Y = 1)

P(X = x|Y = −1)

=
πP(X = x|Y = 1)

P(X = x)

= η(x) , (114)

and furthermore

P(X = x) = (1− π)P(X = x|Y = −1) + πP(X = x|Y = 1)

= π ·
(

1− π
π

+
P(X = x|Y = 1)

P(X = x|Y = −1)

)
· P(X = x|Y = −1)

= π · g(r(x)) · P(X = x|Y = −1) . (115)

So,

EX∼M [Dϕ(η(X)‖η̂(X))] = π · EX∼Q [g(r(X)) ·Dϕ(η(X)‖η̂(X))] (116)

= π · EX∼Q

[
g(r(X)) ·Dϕ

(
1

g(r(X))
· r(X)

∥∥∥∥ η̂(X)

)]
(117)

= π · EX∼Q

[
g(r(X)) ·Dϕ

(
1

g(r(X))
· r(X)

∥∥∥∥
1

g(r̂(X))
· r̂(X)

)]
(118)

= π · EX∼Q [Dϕ̌(r(X)‖r̂(X))] , (119)

as claimed. Equation (116) comes from (115), Equation (117) comes from (114), Equation (118)
comes from (112) and the definition of g. Equation (119) comes from Theorem 1, noting that g is
linear.
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X̌

y

Figure 3: A depiction of the adaptive isometry that Theorem 1 provides. To simplify the picture as
much as possible, we have used the shorthands x̌ .

= (1/g(x)) · x, X̌ .
= Xg. Double bars mean same

metric length with respect to the (square root of) the Hessians in parenthesis.

VIII Comments on Theorem 1

VIII.1 Theorem 1 vs scaled isometries
Theorem 1 states in fact an isometry under some conditions, but an adaptive one in the sense that
metrics involved rely on all parameters, and in particular on the points involved in the divergences
(See Figure 3). Indeed, a simple Taylor expansion of the equation (2) (main file) shows that any such
Bregman distortion with a twice differentiable generator can be expressed as:

Dϕ(x‖y) =
1

2
· (x− y)>Hϕ(x− y) , (120)

for some value of the Hessian Hϕ depending on x,y (see for example [Kivinen et al., 2006, Appendix
I], [Amari and Nagaoka, 2000]). Hence, under the constraint that both ϕ and ϕ̌ are twice differentiable,
eq. (3) becomes

g(x) ·
(

1

g(x)
· x− 1

g(y)
· y
)>

Hϕ

(
1

g(x)
· x− 1

g(y)
· y
)

= (x− y)>Hϕ̌(x− y) . (121)
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Notice that eq. (121) holds even when Hϕ̌ is indefinite. Assuming g non-negative (which, by the way,
enforces the convexity of ϕ̌ and prevents Hϕ̌ from being indefinite), we get by taking square roots,

√
g(x) ·

∥∥∥∥
1

g(x)
· x− 1

g(y)
· y
∥∥∥∥

Hϕ

= ‖x− y‖Hϕ̌
, (122)

which is a scaled isometry relationship between Xg (left) and X (right), but again the metrics involved
depend on the arguments. Nevertheless, eq. (122) displays a sophisticated relationship between dis-
tances in Xg and in X which may prove useful in itself. With this in mind and keeping into account the
restrictions on g, Theorem 1 states via eq. (122) that

”distances on X with metric H1/2
ϕ̌ equal scaled distances after mapping x 7→ (1/g(x)) · x (∈ Xg)

with metric H1/2
ϕ ”.

VIII.2 Theorem 1 vs generalized perspective transforms
Perspective transforms, also defined as epi-multiplication [Bauschke et al., 2008], are well known
objects in convex analysis, and used in machine learning in particular to design and analyse loss func-
tions [Reid and Williamson, 2011]. [Maréchal, 2005a,b] has defined a generalized notion of perspec-
tive transforms which coincidentally happens to define ϕ̌ when assumptions are made about g. More
precisely, Maréchal’s generalized perspective transform of functions ϕ and g is defined as:

(ϕ4 g)(x,y)
.

=





g(y) · ϕ
(

1
g(y)
· x
)

if g(y) ∈ (0,+∞)

ϕ0+(x) if g(y) = 0
∞ if g(y) = +∞

(123)

where ϕ0+ is the recession function of ϕ. For the definition to be valid, both ϕ and g have to be proper
convex and g has to be positive. In this case, one remarks that

ϕ̌(x) = (ϕ4 g)(x,x) , (124)

but of course this holds only when significant restrictions are put on g. This does not prevent very
interesting cases for the application of Theorem 1, as witnessed by the application to exponential
families given in Section V, as well as several examples in Table A1 (rows I, II, III, V, VII). In this case,
Theorem 1 gives an indication of how to define the generalized perspective transform of a Bregman
divergence, which would be just the left hand side of eq. (4) in Theorem 1. To our knowledge, the
use perspective transforms in machine learning has been limited to the definition of Csiszar’s duals
for loss function and divergences [Reid and Williamson, 2011], and they have not been used to define
the perspective of a divergence. Our results indicate that such objects would not be just mathematical
curiosities, but could eventually be the ground for new methods to deal with popular problems. This
is out of the scope of this paper, but if we resort to perspectives, then Theorem 1 can be roughly
summarized by the property that

”the perspective transform of the divergence equals the divergence of the perspective transform”.
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Figure 4: Density ratio estimate divergence EX∼PC
[Dϕ̌(r(X), r̂(X))] as a function of # of training

samples.

IX Additional experiments: Multiclass density ratio experiments
We consider a synthetic multiclass density ratio estimation problem. We fix X = R2, and consider
C = 3 classes. We consider a distribution where the class-conditionals Pr(X|Y = c) are multivariate
Gaussians with means µc and covariance σ2

c · Id. As the class-conditionals have a closed form, we can
explicitly compute η, as well the density ratio r to the reference class c∗ = C.

For fixed class prior π = Pr(Y = c), we draw NTr samples from Pr(X,Y). From this, we es-
timate the class-probability η̂ using multiclass logistic regression. This can be seen as minimising
EX∼M [Dϕ(η(X)‖η̂(X))] where ϕ(z) =

∑
i zi log zi is the generator for the KL-divergence.

We then use Equation 6 (main file) to estimate the density ratios r̂ from η̂. On a fresh sample ofNte

instances from Pr(X,Y), we estimate the right hand side of Lemma 2, viz. EX∼PC
[Dϕ̌(r(X)‖r̂(X))],

where ϕ̌ uses the g as specified in Lemma 2. From the result of Lemma 2, we expect this divergence
to be small when η̂ is a good estimator of η.

We perform the above for sample sizes N ∈ {44, 45, . . . , 410}, with NTr = 0.8N and NTe = 0.2N .
For each sample size, we perform T = 25 trials, where in each trial we randomly draw π uniformly
over (1/C)1 + (1 − 1/C) · [0, 1]C , µc from 0.1 ·N (0, 1), and σc uniformly from [0.5, 1]. Figure 4
summarises the mean divergence across the T trials for each sample size. We see that, as expected,
with more training samples the divergence decreases in a monotone fashion.
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X Additional experiments: Adaptive filtering experiments
Tables A2 – A7 present in extenso the experiments of p-LMS vs DN-p-LMS, as a function of (p, q),
whether target u is sparse or not, and the misestimation factor ρ for Xp. We refer to Kivinen et al.
[2006] for the formal definitions used for sparse / dense targets as well as for the experimental setting,
which we have reproduced with the sole difference that the signal changes periodically each 1 000
iterations.
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