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1 Proofs

1.1 Proof of Lemma 1

Before proving Lemma 1, we first state the following lemma which is from [4] and will be useful in
our proof.

Lemma 2 (co-coercivity). If f(x) : Rd → R is convex and its gradient is L-Lipschitz continuous,
then

‖∇f(x)−∇f(y)‖22 ≤ L(x− y)>(∇f(x)−∇f(y)), ∀x, y ∈ Rd.

Now we prove Lemma 1.
Proof of Lemma 1. Let vtit = ∇fit(xt) − ∇fit(x̃k) + ∇F (x̃k) for the k-th epoch of SVRG-I or
SVRG-BB. Then,

E‖vtit‖
2
2 =E ‖(∇fit(xt)−∇fit(x∗)) − (∇fit(x̃k)−∇fit(x∗)) +∇F (x̃k)‖

2
2

≤2E ‖∇fit(xt)−∇fit(x∗)‖
2
2 + 4E ‖∇fit(x̃k)−∇fit(x∗)‖

2
2 + 4‖∇F (x̃k)‖22

≤2LE
[
(xt − x∗)>(∇fi(xt)−∇fi(x∗))

]
+ 4L2‖x̃k − x∗‖22 + 4L2‖x̃k − x∗‖22

=2L(xt − x∗)>∇F (xt) + 8L2‖x̃k − x∗‖22,

where in the first inequality we used the inequality (a − b)2 ≤ 2a2 + 2b2 twice, in the second
inequality we applied Lemma 2 to fit(x) and used the Lipschitz continuity of ∇fit and ∇F , and in
the last equality we used the facts that E[∇fit(x)] = ∇F (x) and ∇F (x∗) = 0.

In the next, we bound the distance of xt+1 to x∗ conditioned on xt and x̃k.

E‖xt+1 − x∗‖22
=E‖xt − ηkvtit − x

∗‖22
=‖xt − x∗‖22 − 2ηkE[(xt − x∗)>vtit ] + η2kE‖vtit‖

2
2

=‖xt − x∗‖22 − 2ηk(xt − x∗)>∇F (xt) + η2kE‖vtit‖
2
2

≤‖xt − x∗‖22 − 2ηk(xt − x∗)>∇F (xt) + 2η2kL(xt − x∗)>∇F (xt) + 8η2kL
2‖x̃k − x∗‖22

=‖xt − x∗‖22 − 2ηk(1− ηkL)(xt − x∗)>∇F (xt) + 8η2kL
2‖x̃k − x∗‖22

≤‖xt − x∗‖22 − 2ηkµ(1− ηkL)‖xt − x∗‖2 + 8η2kL
2‖x̃k − x∗‖22

=[1− 2ηkµ(1− ηkL)]‖xt − x∗‖22 + 8η2kL
2‖x̃k − x∗‖22,
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where in the third equality we used the fact that E[vtit ] = ∇F (xt), and in the second inequality we
used the strong convexity of F (x).

By recursively applying the above inequality over t, and noting that x̃k = x0 and x̃k+1 = xm, we
can obtain

E‖x̃k+1 − x∗‖22

≤ [1− 2ηkµ(1− ηL)]m ‖x̃k − x∗‖22 + 8η2kL
2
m−1∑
j=0

[1− 2ηkµ(1− ηL)]j ‖x̃k − x∗‖22

<

[
(1− 2ηkµ(1− ηL))m +

4ηkL
2

µ(1− ηkL)

]
‖x̃k − x∗‖22

=αk‖x̃k − x∗‖22.

1.2 Proof of Theorem 1

Proof of Theorem 1. Using the strong convexity of function F (x), it is easy to obtain the following
upper bound for the BB step size computed in Algorithm 1.

ηk =
1

m
· ‖x̃k − x̃k−1‖22
(x̃k − x̃k−1)>(gk − gk−1)

≤ 1

m
· ‖x̃k − x̃k−1‖

2
2

µ‖x̃k − x̃k−1‖22
=

1

mµ
.

Similarly, by the L-Lipschitz continuity of ∇F (x), it is easy to obtain that ηk is uniformly lower
bounded by 1/(mL). Therefore, αk in (8) can be bounded as:

αk ≤
[
1− 2µ

mL

(
1− L

mµ

)]m
+

4L2

mµ2[1− L/(mµ)]

≤ exp

{
− 2µ

mL

(
1− L

mµ

)
·m
}
+

4L2

mµ2[1− L/(mµ)]

= exp

{
−2µ

L
+

2

m

}
+

4L2

mµ2 − Lµ
,

Substituting (10) into the above inequality yields

αk < exp

{
−2µ

L
+ log(1− 2θ) +

2µ

L

}
+

4L2

4L2/θ + Lµ− Lµ
= (1− 2θ) + θ = 1− θ.

The desired result follows by applying Lemma 1.

2 SAG-BB Algorithm

The stochastic averaged gradient method with BB step size (SAG-BB) is shown in Algorithm 3.
Because we choose φ(k) ≡ 1 in the smoothing technique, it is easy to see the smoothed step size η̃t
is equal to the geometric mean of all previous BB step sizes.

3 Sensitivity of SVRG-BB to m

In this section, we empirically study the sensitivity of SVRG-BB to its inner iteration number: m.
We tested both SVRG-BB and SVRG for several choices of m. The initial step sizes η0 of SVRG-BB
were randomly chosen, and we used the best-tuned fixed step sizes for SVRG. The comparison results
are shown in Figure 3.

From Figure 3, we can see that for the same m, SVRG-BB usually needs slightly more number of
passes over the data, to obtain the same sub-optimality compared to SVRG with best-tuned step size.
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Algorithm 3 SAG with BB step size (SAG-BB)

Parameters: update frequency m, initial step sizes η0 and η1 (only used in the first two epochs),
weighting parameter β ∈ (0, 1), initial point x̃0
yi = 0 for i = 1, . . . , n
for k = 0, 1, · · · do

if k > 0 then
ηk = 1

m · ‖x̃k − x̃k−1‖
2
2/|(x̃k − x̃k−1)>(ĝk − ĝk−1)|

η̃k =
(∏k

j=2 ηj

) 1
k−1

. smoothing technique
end if
x0 = x̃k
ĝk+1 = 0
for t = 0, · · · ,m− 1 do

Randomly pick it ∈ {1, . . . , n}
yit = ∇fit(xt)
xt+1 = xt − ηk

n

∑n
i=1 yi . SAG update

ĝk+1 = β∇fit(xt) + (1− β)ĝk+1

end for
x̃k+1 = xm

end for
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Figure 3: Comparison of SVRG-BB and best-tuned SVRG over different values of m. The x-axes all
denote the number of passes over the data, and the y-axes all denote the sub-optimality F (xk)−F (x∗).
In each sub-figure, the solid lines stand for SVRG-BB, while dashed lines with the same colors stand
for SVRG with the same m.

However, after a few number of passes over the data, SVRG-BB reaches the same sub-optimality as
SVRG with best-tuned step size. These results are consistent with our previous experimental results
in Section 5.1 of the paper. Further more, when m is small, the performance of SVRG-BB is usually
close to or even superior than SVRG with best-tuned step size. This is natural because step sizes are
updates more frequently when m is small, and the initialization time spent by SVRG-BB in adjusting
step sizes is thus almost ignorable.

4 Numerical Comparisons with Other Methods

In this section, we compare our SVRG-BB (Algorithm 1,) SGD-BB (Algorithm 2) and SAG-BB
(Algorithm 3) with several existing methods: MISO-2 [3], AdaGrad [1], Adam [2], vSGD [6], SAG
with line search (denoted as SAG-L) [5], and a stochastic quasi-Newton method: oLBFGS [7]. For
SVRG-BB, we set m = 2n; while for both SGD-BB and SAG-BB, we set m = n and β = 10/m.
Because these methods have very different per-iteration complexity, we compare their CPU times
needed to achieve the same sub-optimality.

Figures 4(a), 4(b) and 4(c) show the comparison results of SVRG-BB and MISO-2. We see from
these figures that SVRG-BB is faster than MISO-2.

Figures 4(d), 4(e) and 4(f) show the comparison results of SGD-BB and AdaGrad. From these figures
we see that AdaGrad usually has a very quick start, but in many cases the convergence becomes slow
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(a) MISO-2 versus SVRG-BB (b) MISO-2 versus SVRG-BB (c) MISO-2 versus SVRG-BB

(d) AdaGrad versus SGD-BB (e) AdaGrad versus SGD-BB (f) AdaGrad versus SGD-BB

(g) Others versus SGD-BB (h) Others versus SGD-BB (i) Others versus SGD-BB

(j) SAG-L versus SAG-BB (k) SAG-L versus SAG-BB (l) SAG-L versus SAG-BB

Figure 4: Comparison between SVRG-BB, SGD-BB and SAG-BB with some existing related
methods. The x-axes all denote the CPU time (in seconds). The y-axes all denote the sub-optimality
F (xk)− F (x∗). In the first row, solid lines stand for SVRG-BB, and dashed lines stand for MISO-2;
In the second and third rows, solid lines stand for SGD-BB, and dashed lines stand for AdaGrad,
Adam, vSGD and oLBFGS respectively; In the final row, solid lines denote SAG-BB, while dashed
ones stand for SAG with line search.

in later iterations. Besides, AdaGrad is still somewhat sensitive to the initial step sizes. Especially,
when a small initial step size is used, AdaGrad is not able to increase the step size to a suitable level.
As a contrast, SGD-BB converges very fast in all three tested problems, and it is not sensitive to the
initial step size η0.

In Figures 4(g), 4(h) and 4(i), we further compared SGD-BB with Adam, vSGD and oLBFGS. Again,
we observed that our SGD-BB is faster than these compared methods.
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Figures 4(j), 4(k) and 4(l) show the comparison results of SAG-BB and SAG-L. From these figures
we see that the SAG-L is quite robust and is not sensitive to the choice of η0. However, SAG-BB is
faster than SAG-L to reach the same sub-optimality on the tested problems.
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