Supplementary Materials: Barzilai-Borwein Step Size
for Stochastic Gradient Descent

Conghui Tan Shigian Ma
The Chinese University of Hong Kong The Chinese University of Hong Kong
chtan@se.cuhk.edu.hk sgma@se.cuhk.edu.hk
Yu-Hong Dai Yuqiu Qian
Chinese Academy of Sciences, Beijing, China The University of Hong Kong
dyh@lsec.cc.ac.cn qyq79Q@connect .hku.hk

1 Proofs

1.1 Proof of Lemma 1

Before proving Lemmal[I] we first state the following lemma which is from [4] and will be useful in
our proof.

Lemma 2 (co-coercivity). If f(z) : R? — R is convex and its gradient is L-Lipschitz continuous,
then

IVf(z) = VW3 < L(z —y) " (Vf(x) = Vf(y), Va,yeR™

Now we prove Lemmal[I]

Proof of Lemmall] Let v}, = Vf; (x;) — Vf;,(Z1) + VF(&}) for the k-th epoch of SVRG-I or

SVRG-BB. Then,

E|lo}, 15 =E |(V fi, () = V fi, (&%) = (Vfi, (&) = V fi,(27)) + VF (@) I3

<R ||V fi, (21) = V fi, (2[5 + 4B |V fi, (@) = V fi, ()l + 4| VF (@) |13
<OLE (3 — ") (¥ filo) — VA")] + 412 — 2 [+ AL 70 — o7
=2L(x; — 2) ' VF(2) + 8L%|| & — 213,

where in the first inequality we used the inequality (a — b)? < 2a® + 2b? twice, in the second

inequality we applied Lemmato fi, (x) and used the Lipschitz continuity of V f;, and VF, and in
the last equality we used the facts that E[V f;, ()] = VF(z) and VF(z*) = 0.

In the next, we bound the distance of x4 to z* conditioned on x; and Z.
|z — z*3
=E|lx; — mvf, — 2|3
=l — a3 — 2mEl(ze — 2*) "o},] +RElv], |13
=zt — 2|3 — 20k (e — 2*) TV F (2,) + 7;Elv], |13
<llwy — 2|3 — 204 (2 — 2*) TV F(20) + 208 L@y, — 2*) TV F (2,) + 802 LP|| 2, — 2*|[3
=llxr — (|5 = 2mk (1 — mL) (e — &™) TV F (24) + 80 L2 |35 — 273
<l = a*|5 = 2mep(1 = miL) ||z — 2% + SR L2 || &), — 2|3
=[1 = 2np(l — mL)]l|we — 2|13 + 8 L2 (|2, — ™13,

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

where in the third equality we used the fact that]E[vft] = VF(x;), and in the second inequality we
used the strong convexity of F'(x).

By recursively applying the above inequality over ¢, and noting that £j, = ¢ and Tyy1 = T, We
can obtain

E[|Zp+1 — 2”13

Ju

m—
< (1= 2nep(L = nL))™ |25 — 2[5+ 80 L*) [1 = 2nep(L — nL)) |2k — 2713
j=0

47]kL2

< | (1 =2nep(l —nL m+] Tp — 2|3
((=)™ + s |l =

=o|E — 2*|3.

1.2 Proof of Theorem[]]

Proof of Theorem([l} Using the strong convexity of function F'(z), it is easy to obtain the following
upper bound for the BB step size computed in Algorithm|T]

o= - % — Z—113
m (T — Tp—1)" (gr — Gr—1)
< 1 |l@k —a@p-af3 1

mo |z = Teally - omp

Similarly, by the L-Lipschitz continuity of VF'(z), it is easy to obtain that 7, is uniformly lower
bounded by 1/(mL). Therefore, vy, in (8] can be bounded as:

eli 28] s

2u+ 2 N 4I72
= eX _— —_— e —
P L m mp? — Ly’

Substituting (T0) into the above inequality yields

21 21 4L?
—— +log(1 —20) + — =(1-20)+0=1-46.
ak<exp{ L+0g()+L}+4L2/0+LuLu ()+
The desired result follows by applying Lemmall} O

2 SAG-BB Algorithm

The stochastic averaged gradient method with BB step size (SAG-BB) is shown in Algorithm [3]
Because we choose ¢(k) = 1 in the smoothing technique, it is easy to see the smoothed step size 7;
is equal to the geometric mean of all previous BB step sizes.

3 Sensitivity of SVRG-BB to m

In this section, we empirically study the sensitivity of SVRG-BB to its inner iteration number: m.
We tested both SVRG-BB and SVRG for several choices of m. The initial step sizes g of SVRG-BB
were randomly chosen, and we used the best-tuned fixed step sizes for SVRG. The comparison results
are shown in Figure 3]

From Figure[3] we can see that for the same m, SVRG-BB usually needs slightly more number of
passes over the data, to obtain the same sub-optimality compared to SVRG with best-tuned step size.

Algorithm 3 SAG with BB step size (SAG-BB)

Parameters: update frequency m, initial step sizes 79 and 7; (only used in the first two epochs),
weighting parameter § € (0, 1), initial point Zo
y; =0fori=1,...,n
fork=0,1,--- do
if £ > 0 then
M= o 18k = T l3/1(@ — Ex-1) T (6 — Gx—1)|

N = (H§:2 Wj) o > smoothing technique
end if
To = Tp
gr+1 =0
fort=0,---,m—1do
Randomly pick i; € {1,...,n}

Yi, = vflr (mt)
Topr =2 — B0y > SAG update
Grk+1 = BV fi,(xe) + (1 = B)Jr+1
end for
:Ek+1 = Tm
end for

. 5 . s .
N hJ 13 PANS . 13 - hJ
20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
number of passes over data number of passes over data number of passes over data

(a) rcv1.binary (b) w8a (c) ijennl

Figure 3: Comparison of SVRG-BB and best-tuned SVRG over different values of m. The x-axes all
denote the number of passes over the data, and the y-axes all denote the sub-optimality F'(zy)—F(x™*).
In each sub-figure, the solid lines stand for SVRG-BB, while dashed lines with the same colors stand
for SVRG with the same m.

However, after a few number of passes over the data, SVRG-BB reaches the same sub-optimality as
SVRG with best-tuned step size. These results are consistent with our previous experimental results
in Section[5.1] of the paper. Further more, when m is small, the performance of SVRG-BB is usually
close to or even superior than SVRG with best-tuned step size. This is natural because step sizes are
updates more frequently when m is small, and the initialization time spent by SVRG-BB in adjusting
step sizes is thus almost ignorable.

4 Numerical Comparisons with Other Methods

In this section, we compare our SVRG-BB (Algorithm [T}) SGD-BB (Algorithm [2) and SAG-BB
(AlgorithmE[) with several existing methods: MISO-2 3], AdaGrad [1], Adam [2], vSGD [6], SAG
with line search (denoted as SAG-L) [3]], and a stochastic quasi-Newton method: oLBFGS [7]]. For
SVRG-BB, we set m = 2n; while for both SGD-BB and SAG-BB, we set m = n and 8 = 10/m.
Because these methods have very different per-iteration complexity, we compare their CPU times
needed to achieve the same sub-optimality.

Figures [()] and i(c)| show the comparison results of SVRG-BB and MISO-2. We see from
these figures that SVRG-BB is faster than MISO-2.

Figures[d(d)] ()] and [A(f)] show the comparison results of SGD-BB and AdaGrad. From these figures
we see that AdaGrad usually has a very quick start, but in many cases the convergence becomes slow

rcv1.binary w8a ijennl

10° 10° 10°
10 10 10 m=10"
102 102 102 = N
107 102 107 R — m=10
10 10+ 04 SN\ T — m=10"
10 10° 10 -= MISO2 K
10° 10°¢ 10°
107 107 107
10°® 10°® 10°
107 10° 10°
1010 1070 1010
o o o
1012 1012 1012
100 104 1073
100 o 105
200 400 600 800 1000 1200 1400 500 1000 1500 2000 200 400 600 800 1000 1200
Epoch k Epoch k Epoch k
(a) MISO-2 versus SVRG-BB (b) MISO-2 versus SVRG-BB (c) MISO-2 versus SVRG-BB
10° 10° 10°
.~ == =01 == 7p=0.01 AR == p=10"
— == n=t 1ot — == m=01 o TTTTTmeeee —— =10
0t Tmeeea] — == =10 DI —_ - p=10"
10 100 200 300 400 500 600 700 800 10% 200 400 600 800 1000 1200 100 200 300 400 500 600 700 800
Time (s) Time (s) Time (s)
(d) AdaGrad versus SGD-BB (e) AdaGrad versus SGD-BB (f) AdaGrad versus SGD-BB
10° 10° 10°
m=0.1 == Adam m=0.01 == Adam w=10" == Adam
. —_ =1 == VSGD ‘. — =01 == VSGD ’ — =102 == VSGD
% — p=10 == OLBFGS o pON —_ n::l == OLBFGS o " == OLBFGS

N

100 200 300 400 500 600 700 800 200 400 600 800 1000 1200 100 200 300 400 500 600 700 800
Time (s) Time (s) Time (s)
(g) Others versus SGD-BB (h) Others versus SGD-BB (i) Others versus SGD-BB
10° 10° 10°
101 - :: ?:T,l 101 == p=10 : o1 == =10 !
02 b 102 —_— - =10 —_— - =102
— . -
10 100 ATt m=10 102 _.___w.:i_:\”_)
104 10* 103 RN
10°
10° 106 104
10 107 10°
107 10¢
10° 109 10
10 o 107
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 50 100 150 200 250
Time (s) Time (s) Time (s)
(G) SAG-L versus SAG-BB (k) SAG-L versus SAG-BB (1) SAG-L versus SAG-BB

Figure 4: Comparison between SVRG-BB, SGD-BB and SAG-BB with some existing related
methods. The z-axes all denote the CPU time (in seconds). The y-axes all denote the sub-optimality
F(zy) — F(z*). In the first row, solid lines stand for SVRG-BB, and dashed lines stand for MISO-2;
In the second and third rows, solid lines stand for SGD-BB, and dashed lines stand for AdaGrad,
Adam, vSGD and oLBFGS respectively; In the final row, solid lines denote SAG-BB, while dashed
ones stand for SAG with line search.

in later iterations. Besides, AdaGrad is still somewhat sensitive to the initial step sizes. Especially,
when a small initial step size is used, AdaGrad is not able to increase the step size to a suitable level.
As a contrast, SGD-BB converges very fast in all three tested problems, and it is not sensitive to the
initial step size 7.

In Figures [@(g)] (h) and ()] we further compared SGD-BB with Adam, vSGD and oLBFGS. Again,
we observed that our SGD-BB is faster than these compared methods.

Figures A()} B(k)| and (D) show the comparison results of SAG-BB and SAG-L. From these figures
we see that the SAG-L is quite robust and is not sensitive to the choice of ng. However, SAG-BB is
faster than SAG-L to reach the same sub-optimality on the tested problems.

References

[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.

[2] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arX-
iv:1412.6980, 2014.

[3] J. Mairal. Incremental majorization-minimization optimization with application to large-scale
machine learning. SIAM Journal on Optimization, 25(2):829-855, 2015.

[4] Y. Nesterov. Introductory lectures on convex optimization, volume 87. Springer Science &
Business Media, 2004.

[5] R. L. Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Advances in Neural Information Processing Systems,
pages 2663-2671, 2012.

[6] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. ICML (3), 28:343-351, 2013.

[7]1 N. N. Schraudolph, J. Yu, and S. Giinter. A stochastic quasi-newton method for online convex
optimization. In International Conference on Artificial Intelligence and Statistics, pages 436443,
2007.

	Proofs
	Proof of Lemma 1
	Proof of Theorem 1

	SAG-BB Algorithm
	Sensitivity of SVRG-BB to m
	Numerical Comparisons with Other Methods

