Supplementary Materials: Barzilai-Borwein Step Size
for Stochastic Gradient Descent

Conghui Tan Shigian Ma
The Chinese University of Hong Kong The Chinese University of Hong Kong
chtan@se.cuhk.edu.hk sgma@se.cuhk.edu.hk
Yu-Hong Dai Yuqiu Qian
Chinese Academy of Sciences, Beijing, China The University of Hong Kong
dyh@lsec.cc.ac.cn qyq79Q@connect .hku.hk

1 Proofs

1.1 Proof of Lemma 1

Before proving Lemmal[I] we first state the following lemma which is from [4] and will be useful in
our proof.

Lemma 2 (co-coercivity). If f(z) : R? — R is convex and its gradient is L-Lipschitz continuous,
then

IVf(z) = VW3 < L(z —y) " (Vf(x) = Vf(y), Va,yeR™

Now we prove Lemmal[I]

Proof of Lemmall] Let v}, = Vf; (x;) — Vf;,(Z1) + VF(&}) for the k-th epoch of SVRG-I or

SVRG-BB. Then,
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where in the first inequality we used the inequality (a — b)? < 2a® + 2b? twice, in the second

inequality we applied Lemmato fi, (x) and used the Lipschitz continuity of V f;, and VF, and in
the last equality we used the facts that E[V f;, ()] = VF(z) and VF(z*) = 0.

In the next, we bound the distance of x4 to z* conditioned on x; and Z.
|z — z*3
=E|lx; — mvf, — 2|3
=l — a3 — 2mEl(ze — 2*) "o}, ] +RElv], |13
=zt — 2|3 — 20k (e — 2*) TV F (2,) + 7;Elv], |13
<llwy — 2|3 — 204 (2 — 2*) TV F(20) + 208 L@y, — 2*) TV F (2,) + 802 LP|| 2, — 2*|[3
=llxr — (|5 = 2mk (1 — mL) (e — &™) TV F (24) + 80 L2 |35 — 273
<l = a*|5 = 2mep(1 = miL) ||z — 2% + SR L2 || &), — 2|3
=[1 = 2np(l — mL)]l|we — 2|13 + 8 L2 (|2, — ™13,
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where in the third equality we used the fact that ]E[vft] = VF(x;), and in the second inequality we
used the strong convexity of F'(x).

By recursively applying the above inequality over ¢, and noting that £j, = ¢ and Tyy1 = T, We
can obtain
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1.2 Proof of Theorem[]]

Proof of Theorem([l} Using the strong convexity of function F'(z), it is easy to obtain the following
upper bound for the BB step size computed in Algorithm|T]

o= - % — Z—113
m (T — Tp—1)" (gr — Gr—1)
< 1 |l@k —a@p-af3 1

mo |z = Teally - omp

Similarly, by the L-Lipschitz continuity of VF'(z), it is easy to obtain that 7, is uniformly lower
bounded by 1/(mL). Therefore, vy, in (8] can be bounded as:
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Substituting (T0) into the above inequality yields

21 21 4L?
—— +log(1 —20) + — =(1-20)+0=1-46.
ak<exp{ L+0g( )+L}+4L2/0+LuLu ( )+
The desired result follows by applying Lemmall} O

2 SAG-BB Algorithm

The stochastic averaged gradient method with BB step size (SAG-BB) is shown in Algorithm [3]
Because we choose ¢(k) = 1 in the smoothing technique, it is easy to see the smoothed step size 7;
is equal to the geometric mean of all previous BB step sizes.

3 Sensitivity of SVRG-BB to m

In this section, we empirically study the sensitivity of SVRG-BB to its inner iteration number: m.
We tested both SVRG-BB and SVRG for several choices of m. The initial step sizes g of SVRG-BB
were randomly chosen, and we used the best-tuned fixed step sizes for SVRG. The comparison results
are shown in Figure 3]

From Figure[3] we can see that for the same m, SVRG-BB usually needs slightly more number of
passes over the data, to obtain the same sub-optimality compared to SVRG with best-tuned step size.



Algorithm 3 SAG with BB step size (SAG-BB)

Parameters: update frequency m, initial step sizes 79 and 7; (only used in the first two epochs),
weighting parameter § € (0, 1), initial point Zo
y; =0fori=1,...,n
fork=0,1,--- do
if £ > 0 then
M= o 18k = T l3/1(@ — Ex-1) T (6 — Gx—1)|

N = (H§:2 Wj) o > smoothing technique
end if
To = Tp
gr+1 =0
fort=0,---,m—1do
Randomly pick i; € {1,...,n}

Yi, = vflr (mt)
Topr =2 — B0y > SAG update
Grk+1 = BV fi,(xe) + (1 = B)Jr+1
end for
:Ek+1 = Tm
end for
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Figure 3: Comparison of SVRG-BB and best-tuned SVRG over different values of m. The x-axes all
denote the number of passes over the data, and the y-axes all denote the sub-optimality F'(zy)—F(x™*).
In each sub-figure, the solid lines stand for SVRG-BB, while dashed lines with the same colors stand
for SVRG with the same m.

However, after a few number of passes over the data, SVRG-BB reaches the same sub-optimality as
SVRG with best-tuned step size. These results are consistent with our previous experimental results
in Section[5.1] of the paper. Further more, when m is small, the performance of SVRG-BB is usually
close to or even superior than SVRG with best-tuned step size. This is natural because step sizes are
updates more frequently when m is small, and the initialization time spent by SVRG-BB in adjusting
step sizes is thus almost ignorable.

4 Numerical Comparisons with Other Methods

In this section, we compare our SVRG-BB (Algorithm [T}) SGD-BB (Algorithm [2) and SAG-BB
(AlgorithmE[) with several existing methods: MISO-2 3], AdaGrad [1], Adam [2], vSGD [6], SAG
with line search (denoted as SAG-L) [3]], and a stochastic quasi-Newton method: oLBFGS [7]]. For
SVRG-BB, we set m = 2n; while for both SGD-BB and SAG-BB, we set m = n and 8 = 10/m.
Because these methods have very different per-iteration complexity, we compare their CPU times
needed to achieve the same sub-optimality.

Figures [()] and i(c)| show the comparison results of SVRG-BB and MISO-2. We see from
these figures that SVRG-BB is faster than MISO-2.

Figures[d(d)] ()] and [A(f)] show the comparison results of SGD-BB and AdaGrad. From these figures
we see that AdaGrad usually has a very quick start, but in many cases the convergence becomes slow
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Figure 4: Comparison between SVRG-BB, SGD-BB and SAG-BB with some existing related
methods. The z-axes all denote the CPU time (in seconds). The y-axes all denote the sub-optimality
F(zy) — F(z*). In the first row, solid lines stand for SVRG-BB, and dashed lines stand for MISO-2;
In the second and third rows, solid lines stand for SGD-BB, and dashed lines stand for AdaGrad,
Adam, vSGD and oLBFGS respectively; In the final row, solid lines denote SAG-BB, while dashed
ones stand for SAG with line search.

in later iterations. Besides, AdaGrad is still somewhat sensitive to the initial step sizes. Especially,
when a small initial step size is used, AdaGrad is not able to increase the step size to a suitable level.
As a contrast, SGD-BB converges very fast in all three tested problems, and it is not sensitive to the
initial step size 7.

In Figures [@(g)] (h) and ()] we further compared SGD-BB with Adam, vSGD and oLBFGS. Again,
we observed that our SGD-BB is faster than these compared methods.



Figures A()} B(k)| and (D) show the comparison results of SAG-BB and SAG-L. From these figures
we see that the SAG-L is quite robust and is not sensitive to the choice of ng. However, SAG-BB is
faster than SAG-L to reach the same sub-optimality on the tested problems.
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