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Abstract

We present a novel deep recurrent neural network architecture that learns to build
implicit plans in an end-to-end manner purely by interacting with an environment
in reinforcement learning setting. The network builds an internal plan, which is
continuously updated upon observation of the next input from the environment.
It can also partition this internal representation into contiguous sub-sequences
by learning for how long the plan can be committed to – i.e. followed without
replaning. Combining these properties, the proposed model, dubbed STRategic At-
tentive Writer (STRAW) can learn high-level, temporally abstracted macro-actions
of varying lengths that are solely learnt from data without any prior information.
These macro-actions enable both structured exploration and economic computation.
We experimentally demonstrate that STRAW delivers strong improvements on
several ATARI games by employing temporally extended planning strategies (e.g.
Ms. Pacman and Frostbite). It is at the same time a general algorithm that can
be applied on any sequence data. To that end, we also show that when trained
on text prediction task, STRAW naturally predicts frequent n-grams (instead of
macro-actions), demonstrating the generality of the approach.

1 Introduction
Using reinforcement learning to train neural network controllers has recently led to rapid progress
on a number of challenging control tasks [15, 17, 26]. Much of the success of these methods has
been attributed to the ability of neural networks to learn useful abstractions or representations of
the stream of observations, allowing the agents to generalize between similar states. Notably, these
agents do not exploit another type of structure – the one present in the space of controls or policies.
Indeed, not all sequences of low-level controls lead to interesting high-level behaviour and an agent
that can automatically discover useful macro-actions should be capable of more efficient exploration
and learning. The discovery of such temporal abstractions has been a long-standing problem in
both reinforcement learning and sequence prediction in general, yet no truly scalable and successful
architectures exist.

We propose a new deep recurrent neural network architecture, dubbed STRategic Attentive Writer
(STRAW), that is capable of learning macro-actions in a reinforcement learning setting. Unlike the
vast majority of reinforcement learning approaches [15, 17, 26], which output a single action after
each observation, STRAW maintains a multi-step action plan. STRAW periodically updates the plan
based on observations and commits to the plan between the replanning decision points. The replanning
decisions as well as the commonly occurring sequences of actions, i.e. macro-actions, are learned
from rewards. To encourage exploration with macro-actions we introduce a noisy communication
channel between a feature extractor (e.g. convolutional neural network) and the planning modules,
taking inspiration from recent developments in variational auto-encoders [11, 13, 24]. Injecting noise
at this level of the network generates randomness in plans updates that cover multiple time steps and
thereby creates the desired effect.
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Our proposed architecture is a step towards more natural decision making, wherein one observation
can generate a whole sequence of outputs if it is informative enough. This provides several important
benefits. First and foremost, it facilitates structured exploration in reinforcement learning – as the
network learns meaningful action patterns it can use them to make longer exploratory steps in the
state space [4]. Second, since the model does not need to process observations while it is committed
to its action plan, it learns to allocate computation to key moments thereby freeing up resources
when the plan is being followed. Additionally, the acquisition of macro-actions can aid transfer and
generalization to other related problems in the same domain (assuming that other problems from the
domain share similar structure in terms of action-effects).

We evaluate STRAW on a subset of Atari games that require longer term planning and show that
it leads to substantial improvements in scores. We also demonstrate the generality of the STRAW
architecture by training it on a text prediction task and show that it learns to use frequent n-grams as
the macro-actions on this task.

The following section reviews the related work. Section 3 defines the STRAW model formally.
Section 4 describes the training procedure for both supervised and reinforcement learning cases.
Section 5 presents the experimental evaluation of STRAW on 8 ATARI games, 2D maze navigation
and next character prediction tasks. Section 6 concludes.

2 Related Work
Learning temporally extended actions and temporal abstraction in general are long standing problems
in reinforcement learning [5, 6, 7, 8, 12, 20, 21, 22, 23, 25, 27, 28, 30]. The options framework [21,
28] provides a general formulation. An option is a sub-policy with a termination condition, which
takes in environment observations and outputs actions until the termination condition is met. An agent
picks an option using its policy-over-options and subsequently follows it until termination, at which
point the policy-over-options is queried again and the process continues. Notice, that macro-action is
a particular, simpler instance of options, where the action sequence (or a distribution over them) is
decided at the time the macro-action is initiated. Options are typically learned using subgoals and
’pseudo-rewards’ that are provided explicitly [7, 8, 28]. For a simple, tabular case [30], each state
can be used as a subgoal. Given the options, a policy-over-options can be learned using standard
techniques by treating options as actions. Recently [14, 29] have demonstrated that combining
deep learning with pre-defined subgoals delivers promising results in challenging environments like
Minecraft and Atari, however, subgoal discovery remains an unsolved problem. Another recent
work by [1] shows a theoretical possibility of learning options jointly with a policy-over-options by
extending the policy gradient theorem to options, but the approach was only tested on a toy problem.

In contrast, STRAW learns macro-actions and a policy over them in an end-to-end fashion from only
the environment’s reward signal and without resorting to explicit pseudo-rewards or hand-crafted
subgoals. The macro-actions are represented implicitly inside the model, arising naturally from the
interplay between action and commitment plans within the network. Our experiments demonstrate
that the model scales to a variety of tasks from next character prediction in text to ATARI games.

3 The model
STRAW is a deep recurrent neural network with two modules. The first module translates environment
observations into an action-plan – a state variable which represents an explicit stochastic plan of
future actions. STRAW generates macro-actions by committing to the action-plan and following
it without updating for a number of steps. The second module maintains commitment-plan – a
state variable that determines at which step the network terminates a macro-action and updates the
action-plan. The action-plan is a matrix where one dimension corresponds to time and the other to
the set of possible discrete actions. The elements of this matrix are proportional to the probability
of taking the corresponding action at the corresponding time step. Similarly, the commitment plan
represents the probabilities of terminating a macro-action at the particular step. For updating both
plans we use attentive writing technique [11], which allows the network to focus on parts of a plan
where the current observation is informative of desired outputs. This section formally defines the
model, we describe the way it is trained later in section 4.

The state of the network at time t is comprised of matrices At ∈ RA×T and ct ∈ R1×T . Matrix
At is the action-plan. Each element At

a,τ is proportional to the probability of outputting a at time
t + τ . Here A is a total number of possible actions and T is a maximum time horizon of the plan.
To generate an action at time t, the first column of At (i.e. At

•0) is transformed into a distribution
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Figure 1: Schematic illustration of STRAW playing a maze navigation game. The input frames
indicate maze geometry (black = corridor, blue = wall), red dot corresponds to the position of the
agent and green to the goal, which it tries to reach. A frame is first passed through a convolutional
network, acting as a feature extractor and then into STRAW. The top two rows depict the plans A
and c. Given a gate gt, STRAW either updates the plans (steps 1 and 4) or commits to them.

over possible outputs by a SoftMax function. This distribution is then sampled to generate the action
at. Thereby the content of At corresponds to the plan of future actions as conceived at time t. The
single row matrix ct represents the commitment-plan of the network. Let gt be a binary random
variable distributed as follows: gt ∼ ct−11 . If gt = 1 then at this step the plans will be updated,
otherwise gt = 0 means they will be committed to. Macro-actions are defined as a sequence of
outputs {at}t2−1t1 produced by the network between steps where gt is ‘on’: i.e gt1 = gt2 = 1 and
gt′ = 0,∀t1 < t′ < t2. During commitment the plans are rolled over to the next step using the
matrix time-shift operator ρ, which shifts a matrix by removing the first column and appending a
column filled with zeros to its rear. Applying ρ to At or ct reflects the advancement of time. Figure 1
illustrates the workflow. Notice that during commitment (step 2 and 3) the network doesn’t compute
the forward pass, thereby saving computation.

Attentive planning. An important assumption that underpins the usage of macro-actions is that
one observation reveals enough information to generate a sequence of actions. The complexity of the
sequence and its length can vary dramatically, even within one environment. Therefore the network
has to focus on the part of the plan where the current observation is informative of desired actions.
To achieve this, we apply differentiable attentive reading and writing operations [11], where attention
is defined over the temporal dimension. This technique was originally proposed for image generation,
here instead it is used to update the plans At and ct. In the image domain, the attention operates over
the spatial extent of an image, reading and writing pixel values. Here it operates over the temporal
extent of a plan, and is used to read and write action probabilities. The differentiability of the attention
model [11] makes it possible to train with standard backpropagation.

An array of Gaussian filters is applied to the plan, yielding a ‘patch’ of smoothly varying location
and zoom. Let A be the total number of possible actions and K be a parameter that determines the
temporal resolution of the patch. A grid of A ×K one-dimensional Gaussian filters is positioned
on the plan by specifying the coordinates of the grid center and the stride distance between adjacent
filters. The stride controls the ‘zoom’ of the patch; that is, the larger the stride, the larger an area of
the original plan will be visible in the attention patch, but the lower the effective resolution of the
patch will be. The filtering is performed along the temporal dimension only. Let ψ be a vector of
attention parameters, i.e.: grid position, stride, and standard deviation of Gaussian filters. We define
the attention operations as follows:

D = write(p, ψAt ); βt = read(At, ψAt ) (1)

The write operation takes in a patch p ∈ RA×K and attention parameters ψAt . It produces a matrix D
of the same size as At, which contains the patch p scaled and positioned according to ψAt with the
rest set to 0. Analogously the read operation takes the full plan At together with attention parameters
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Figure 2: Schematic illustration of an action-plan update. Given zt, the network produces an action-
patch and attention parameters ψAt . The write operation creates an update to the action-plan by
scaling and shifting the action-patch according to ψAt . The update is then added to ρ(At).

ψAt and outputs a read patch β ∈ RA×K , which is extracted from At according to ψAt . We direct
readers to [11] for details.

Action-plan update. Let zt be a feature representation (e.g. the output of a deep convolutional
network) of an observation xt. Given zt, gt and the previous state At−1 STRAW computes an update
to the action-plan using the Algorithm 1. Here fψ and fA are linear functions and h is two layer
perceptron. Figure 2 gives an illustration of an update to At.

Algorithm 1 Action-plan update
Input: zt, gt,At−1

Output: At, at
if gt = 1 then

Compute attention parameters ψAt = fψ(zt)
Attentively read the current state of the action-plan βt = read(At−1, ψAt );
Compute intermediate representation ξt = h([βt, zt])
Update At = ρ(At−1) + gt · write(fA(ξt), ψAt )

else // gt = 0
Update At = ρ(At−1) //just advance time

end if
Sample an action at ∼ SoftMax(At

0)

Commitment-plan update. Now we introduce a module that partitions the action-plan into macro-
actions by defining the temporal extent to which the current action-plan At can be followed without
re-planning. The commitment-plan ct is updated at the same time as the action-plan, i.e. when gt = 1
or otherwise it is rolled over to the next time step by ρ operator. Unlike the planning module, where
At is updated additively, ct is overwritten completely using the following equations:

gt ∼ ct−11 if gt = 0 then ct = ρ(ct−1)

else ψct = f c([ψAt , ξt]) ct = Sigmoid(b+ write(e, ψct )); (2)

Here the same attentive writing operation is used, but with only one Gaussian filter for attention over
c. The patch e is therefore just a scalar, which we fix to a high value (40 in our experiments). This
high value of e is chosen so that the attention parameters ψct define a time step when re-planning is
guaranteed to happen. Vector b is of the same size as dt filled with a shared, learnable bias b, which
defines the probability of re-planning earlier than the step implied by ψct .

Notice that gt is used as a multiplicative gate in algorithm 1. This allows for retroactive credit
assignment during training, as gradients from write operation at time t + τ directly flow into the
commitment module through state ct – we set ∇ct−11 ≡ ∇gt as proposed in [3]. Moreover, when
gt = 0 only the computationally cheap operator ρ is invoked. Thereby more commitment significantly
saves computation.

3.1 Structured exploration with macro-actions
The architecture defined above is capable of generating macro-actions. This section describes
how to use macro-actions for structured exploration. We introduce STRAW-explorer (STRAWe),
a version of STRAW with a noisy communication channel between the feature extractor (e.g. a
convolutional neural network) and STRAW planning modules. Let ζt be the activations of the
last layer of the feature extractor. We use ζt to regress the parameters of a Gaussian distribution
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Q(zt|ζt) = N(µ(ζt), I · σ(ζt)) from which zt is sampled. Here µ is a vector and σ is a scalar.
Injecting noise at this level of the network generates randomness on the level of plan updates that
cover multiple time steps. This effect is reinforced by commitment, which forces STRAWe to execute
the plan and experience the outcome instead of rolling the update back on the next step. In section 5
we demonstrate how this significantly improves score on games like Frostbite and Ms. Pacman.

4 Learning
The training loss of the model is defined as follows:

L =

T∑
t=1

(
Lout(At) + gt · αKL(Q(zt|ζt)|P (zt)) + λct1

)
, (3)

where Lout is a domain specific differentiable loss function defined over the network’s output. For
supervised problems, like next character prediction in text, Lout can be defined as negative log
likelihood of the correct output. We discuss the reinforcement learning case later in this section. The
two extra terms are regularisers. The first is a cost of communication through the noisy channel,
which is defined as KL divergence between latent distributions Q(zt|ζt) and some prior P (zt). Since
the latent distribution is a Gaussian (sec. 3.1), a natural choice for the prior is a Gaussian with a zero
mean and standard deviation of one. The last term penalizes re-planning and encourages commitment.

For reinforcement learning we consider the standard setting where an agent is interacting with an
environment in discrete time. At each step t, the agent observes the state of the environment xt and
selects an action at from a finite set of possible actions. The environment responds with a new state
xt+1 and a scalar reward rt. The process continues until the terminal state is reached, after which
it restarts. The goal of the agent is to maximize the discounted return Rt =

∑∞
k=0 α

krt+k+1. The
agent’s behaviour is defined by its policy π – mapping from state space into action space. STRAW
produces a distribution over possible actions (a stochastic policy) by passing the first column of
the action-plan At through a SoftMax function: π(at|xt; θ) = SoftMax(At

•0). An action is then
produced by sampling the output distribution.

We use a recently proposed Asynchronous Advantage Actor-Critic (A3C) method [18], which directly
optimizes the policy of an agent. A3C requires a value function estimator V (xt) for variance
reduction. This estimator can be produced in a number of ways, for example by a separate neural
network. The most natural solution for our architecture is to create value-plan containing the estimates.
To keep the architecture simple and efficient, we simply add an auxiliary row to the action plan which
corresponds to the value function estimation. It participates in attentive reading and writing during
the update, thereby sharing the temporal attention with action-plan. The plan is then split into action
part and the estimator before the SoftMax is applied and an action is sampled. The policy gradient
update for Lout in L is defined as follows:

∇Lout = ∇θ log π(at|xt; θ)(Rt − V (xt; θ)) + β∇θH(π(at|xt; θ)) (4)

Here H(π(at|xt; θ)) is entropy of the policy, which stimulates the exploration of primitive actions.
The network contains two random variables – zt and gt, which we have to pass gradients through. For
zt we employ the re-parametrization trick [13, 24]. For gt, we set∇ct−11 ≡ ∇gt as proposed in [3].

5 Experiments
The goal of our experiments was to demonstrate that STRAW learns meaningful and useful macro-
actions. We use three domains of increasing complexity: supervised next character prediction in
text [10], 2D maze navigation and ATARI games [2].

5.1 Experimental setup

Architecture. The read and write patches are A× 10 dimensional, and h is a 2 layer perceptron
with 64 hidden units. The time horizon T = 500. For STRAWe (sec. 3.1) the Gaussian distribution
for structured exploration is 128-dimensional. Ablative analysis for some of these choices is provided
in section 5.5. Feature representation of the state space is particular for each domain. For 2D mazes
and ATARI it is a convolutional neural net (CNN) and it is an LSTM [9] for text. We provide more
details in the corresponding sections.

Baselines. The experiments employ two baselines: a simple feed forward network (FF) and a
recurrent LSTM network, both on top of a representation learned by CNN. FF directly regresses
the action probabilities and value function estimate from feature representation. The LSTM [9]
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architecture is a widely used recurrent network and it was demonstrated to perform well on a suite
of reinforcement learning problems [18]. It has 128 hidden units and its inputs are the feature
representation of an observation and the previous action of the agent. Action probabilities and the
value function estimate are regressed from its hidden state.

Optimization. We use the A3C method [18] for all reinforcement learning experiments. It was
shown to achieve state-of-the-art results on several challenging benchmarks [18]. We cut the trajectory
and run backpropagation through time [19] after 40 forward passes of a network or if a terminal signal
is received. The optimization process runs 32 asynchronous threads using shared RMSProp. There
are 4 hyper-parameters in STRAW and 2 in the LSTM and FF baselines. For each method, we ran 200
experiments, each using randomly sampled hyperparameters. Learning rate and entropy penalty were
sampled from a LogUniform(10−4, 10−3) interval. Learning rate is linearly annealed from a sampled
value to 0. To explore STRAW behaviour, we sample coding cost α ∼ LogUniform(10−7, 10−4) and
replanning penalty λ ∼ LogUniform(10−6, 10−2). For stability, we clip the advantageRt−V (xt; θ)
(eq. 4) to [−1, 1] for all methods and for STRAW(e) we do not propagate gradients from commitment
module into planning module through ψAt and ξt. We define a training epoch as one million
observations.
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Figure 3: Detailed analysis. a) re-planning in random maze b) transfer to farther goals c) learned
macro-actions for next character prediction d) commitment on ATARI.

5.2 Text
STRAW is a general sequence prediction architecture. To demonstrate that it is capable of learning
output patterns with complex structure we present a qualitative experiment on next character prediction
using Penn Treebank dataset [16]. Actions in this case correspond to emitting characters and macro-
actions to their sequences. For this experiment we use an LSTM, which receives a one-hot-encoding
of 50 characters as input. A STRAW module is connected on top. We omit the noisy Gaussian
channel, as this task is fully supervised and does not require exploration. The actions now correspond
to emitting characters. The network is trained with stochastic gradient descent using supervised
negative log-likelihood loss (sec. 4). At each step we feed a character to the model which updates the
LSTM representation, but only update the STRAW plans according to the commitment plan ct. For
a trained model we record macro-actions – the sequences of characters produced when STRAW is
committed to the plan. If STRAW adequately learns the structure of the data, then its macro-actions
should correspond to common n-grams. Figure 3.c plots the 20 most frequent macro-action of length
4 produced by STRAW. On x-axis is the rank of the frequency at which macro-action is used by
STRAW, on y-axis is it’s actual frequency rank as a 4-gram. Notice how STRAW correctly learned to
predict frequent 4-grams such as ’the’, ’ing’, ’and’ and so on.

5.3 2D mazes
To investigate what macro-actions our model learns and whether they are useful for reinforcement
learning we conduct an experiment on a random 2D mazes domain. A maze is a grid-world with
two types of cells – walls and corridors. One of the corridor cells is marked as a goal. The agent
receives a small negative reward of −r every step, and double that if it tries to move through the wall.
It receives as small positive reward r when it steps on the goal and the episode terminates. Otherwise
episode terminates after 100 steps. Therefore to maximize return an agent has to reach the goal as
fast as possible. In every training episode the position of walls, goal and the starting position of the
agent are randomized. An agent fully observes the state of the maze. The remainder of this section
presents two experiments in this domain. Here we use STRAWe version with structured exploration.
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For feature representation we use a 2-layer CNN with 3x3 filters and stride of 1, each followed by a
rectifier nonlinearity.

In our first experiment we train a STRAWe agent on an 11 x 11 random maze environment. We then
evaluate a trained agent on a novel maze with fixed geometry and only randomly varying start and
goal locations. The aim is to visualize the positions in which STRAWe terminates macro-actions
and re-plans. Figure 3.a shows the maze, where red intensity corresponds to the ratio of re-planning
events at the cell normalized with the total amount of visits by an agent. Notice how some corners
and areas close to junctions are highlighted. This demonstrates that STRAW learns adequate temporal
abstractions in this domain. In the next experiment we test whether these temporal abstractions are
useful.

The second experiment uses a larger 15 x 15 random mazes. If the goal is placed arbitrarily far from
an agent’s starting position, then learning becomes extremely hard and neither LSTM nor STRAWe
can reliably learn a good policy. We introduce a curriculum where the goal is first positioned very
close to the starting location and is moved further away during the progress of training. More
precisely, we position the goal using a random walk starting from the same point as an agent. We
increase the random walks length by one every two epochs, starting from 2. Although the task gets
progressively harder, the temporal abstractions (e.g. follow the corridor, turn the corner) remain the
same. If learnt early on, they should make adaptation easy. The Figure 3.b plots episode reward
against training steps for STRAW, LSTM and the optimal policy given by Dijkstra algorithm. Notice
how both learn a good policy after approximately 200 epochs, when the task is still simple. As the
goal moves away LSTM has a strong decline in reward relative to the optimal policy. In contrast,
STRAWe effectively uses macro-actions learned early on and stays close to the optimal policy at
harder stages. This demonstrates that temporal abstractions learnt by STRAW are useful.

Table 1: Comparison of STRAW, STRAWe, LSTM and FF baselines on 8 ATARI games. The score
is averaged over 100 runs of top 5 agents for each architecture after 500 epochs of training.

Frostbite Ms. Pacman Q-bert Hero Crazy cl. Alien Amidar Breakout

STRAWe 8074 6673 23430 36948 142686 3191 1833 363
STRAW 4138 6557 21350 35692 144004 2632 2120 423

LSTM 1409 4135 21591 35642 128351 2917 1382 632
FF 1543 2302 22281 39610 128146 2302 1235 95

5.4 ATARI
This section presents results on a subset of ATARI games. All compared methods used the same CNN
architecture, input preprocessing, and an action repeat of 4. For feature representation we use a CNN
with a convolutional layer with 16 filters of size 8 x 8 with stride 4, followed by a convolutional layer
with with 32 filters of size 4 x 4 with stride 2, followed by a fully connected layer with 128 hidden
units. All three hidden layers were followed by a rectifier nonlinearity. This is the same architecture
as in [17, 18], the only difference is that in pre-processing stage we keep colour channels.

We chose games that require some degree of planning and exploration as opposed to purely reactive
ones: Ms. Pacman, Frostbite, Alien, Amidar, Hero, Q-bert, Crazy Climber. We also added a reactive
Breakout game to the set as a sanity check. Table. 1 shows the average performance of the top
5 agents for each architecture after 500 epochs of training. Due to action repeat, here an epoch
corresponds to four million frames (across all threads). STRAW or STRAWe reach the highest
score on 6 out of 8 games. They are especially strong on Frostbite, Ms. Pacman and Amidar. On
Frostbite STRAWe achieves more than 6× improvement over the LSTM score. Notice how structured
exploration (sec. 3.1) improves the performance on 5 out of 8 games; on 2 out of 3 other games
(Breakout and Crazy Climber) the difference is smaller than score variance. STRAW and STRAWe
do perform worse than an LSTM on breakout, although they still achieves a very good score (human
players score below 100). This is likely due to breakout requiring fast reaction and action precision,
rather than planning or exploration. FF baseline scores worst on every game apart from Hero, where
it is the best. Although the difference is not very large, this is still a surprising result, which might be
due to FF having fewer parameters to learn.

Figure 4 demonstrates re-planning behaviour on Amidar. In this game, agent explores a maze with a
yellow avatar. It has to cover all of the maze territory without colliding with green figures (enemies).
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Figure 4: Re-planning behaviour in Amidar. The agent controls yellow figure, which scores points by
exploring the maze, while avoiding green enemies. At time t the agent has explored the area to the
left and below and is planning to head right to score more points. At t+ 7 an enemy blocks the way
and STRAW retreats to the left by drastically changing the plan At. It then resorts the original plan
on step t+14 when the path is clear and heads to the right. Notice, that when the enemy is near (t+7
to t+ 12) it plans for smaller macro-actions – ct has a high value (white spot) closer to the origin.

Notice how the STRAW agent changes its plan as an enemy comes near and blocks its way. It
backs off and then resumes the initial plan when the enemy takes a turn and danger is avoided.
Also, notice that when the enemy is near, the agent plans for shorter macro-actions as indicated by
commitment-plan ct. Figure 3.d shows the percentage of time the best STRAWe agent is committed
to a plan on 4 different games. As training progresses, STRAWe learns to commit more and converges
to a stable regime after about 200 epochs. The only exception is breakout, where meticulous control
is required and it is beneficial to re-plan often. This shows that STRAWe is capable of adapting to the
environment and learns temporal abstractions useful for each particular case.

Figure 5: Ablative analysis on Ms. Pacman game. Figures plot episode reward against seen
frames for different configurations of STRAW. From left to right: varying action patch size, varying
replanning modules on Frostbite and on Ms. Pacman. Notice, that models here are trained for only
100 epochs, unlike models in Table 1 that were trained for 500 epochs.

5.5 Ablative analysis
Here we examine different design choices that were made and investigate their impact on final
performance. Figure 5 presents the performance curves of different versions of STRAW trained for
100 epochs. From left to right, the first plot shows STRAW performance given different resolution of
the action patch on Ms. Pacman game. The greater the resolution, the more complex is the update
that STRAW can generate for the action plan. In the second and third plot we investigate different
possible choices for the re-planning mechanism on Frostbite and Ms. Pacman games: we compare
STRAW with two simple modifications, one re-plans at every step, the other commits to the plan
for a random amount of steps between 0 and 4. Re-planning at every step is not only less elegant,
but also much more computationally expensive and less data efficient. The results demonstrate that
learning when to commit to the plan and when to re-plan is beneficial.

6 Conclusion
We have introduced the STRategic Attentive Writer (STRAW) architecture, and demonstrated its
ability to implicitly learn useful temporally abstracted macro-actions in an end-to-end manner.
Furthermore, STRAW advances the state-of-the-art on several challenging Atari domains that require
temporally extended planning and exploration strategies, and also has the ability to learn temporal
abstractions in general sequence prediction. As such it opens a fruitful new direction in tackling an
important problem area for sequential decision making and AI more broadly.
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