
Cooperative Inverse Reinforcement Learning:
Supplementary Material

October 27, 2016

Abstract

This document contains supplementary material and proofs for the NIPS sub-
mission Cooperative Inverse Reinforcement Learning. Some parts of the main text
are repeated for completeness.

1 CIRL Formulation
This section formulates CIRL as a two-player Markov game with identical payoffs,
reduces the problem of computing an optimal equilibrium for a CIRL game to solving
a POMDP, and characterizes apprenticeship learning as a subclass of CIRL games.

1.1 CIRL Formulation
Definition 1. A cooperative inverse reinforcement learning (CIRL) game M is a two-
player Markov game with identical payoffs between a human or principal, H, and a
robot or agent, R. The game is described by a tuple,M = 〈S, {AH,AR}, T (·|·, ·, ·), {Θ, R(·, ·, ·; ·)}, P0(·, ·), γ〉,
with the following definitions:

S a set of world states: s ∈ S.
AH a set of actions for H: aH ∈ AH.
AR a set of actions for R: aR ∈ AR.
T (·|·, ·, ·) a conditional distribution on the next world state, given previous state

and action for both agents: T (s′|s, aH, aR).
Θ a set of possible static reward parameters, only observed by H: θ ∈ Θ.
R(·, ·, ·; ·) a parameterized reward function that maps world states, joint actions,

and reward parameters to real numbers. R : S ×AH ×AR ×Θ→ R.
P0(·, ·) a distribution over the initial state, represented as tuples: P0(s0, θ)
γ a discount factor: γ ∈ [0, 1].

We write the reward for a state–parameter pair asR(s, aH, aR; θ) to distinguish the
static reward parameters θ from the changing world state s.

The game proceeds as follows. First, the initial state, a tuple (s, θ), is sampled from
P0. H observes θ. This parameter represents the human’s internal reward function. This
observation models that only the human knows the reward function, while both actors

1



know a prior distribution over possible reward functions. At each timestep t, H and R
observe the current state st and select their actions aHt , a

R
t . Both actors receive reward

rt = R(st, a
H
t , a

R
t ; θ) and observe each other’s action selection. A state for the next

timestep is sampled from the transition distribution, st+1 ∼ PT (s′|st, aHt , aRt ), and the
process repeats.

Behavior in a CIRL game is defined by a pair of policies, (πH, πR), that determine
action selection for H and R respectively. In general, these policies can be arbitrary
functions of their observation histories; πH :

[
AH ×AR × S

]∗ × Θ → AH, πR :[
AH ×AR × S

]∗ → AR. The optimal joint policy is the policy that maximizes value.
The value of a state is the expected sum of discounted rewards under the initial distri-
bution of reward parameters and world states.

Remark 1. A key property of CIRL is that the human and the robot get rewards deter-
mined by the same reward function. This incentivizes the human to teach and the robot
to learn without explicitly encoding these as objectives of the actors.

1.2 Structural Results for Optimal Equilibrium Computation
The analogue in CIRL to computing an optimal policy for an MDP is the problem of
computing an optimal policy pair. This is a pair of policies that maximizes the expected
sum of discounted rewards. This is not the same as ‘solving’ a CIRL game, as a real
world implementation of a CIRL agent must account for coordination problems and
strategic uncertainty (Boutilier, 1999). The optimal policy pair represents the best H
and R can do if they can coordinate perfectly before H observes θ.

Computing an optimal joint policy for a cooperative game is the solution to a
decentralized-partially observed Markov decision process (Dec-POMDP). Unfortunately,
Dec-POMDPs are NEXP-complete (Bernstein et al., 2000) so general Dec-POMDP algo-
rithms have a computational complexity that is doubly exponential. Fortunately, CIRL
games have special structure that makes optimal equilibrium computation more effi-
cient.

Nayyar et al. (2013) shows that a Dec-POMDP can be reduced to a coordination-
POMDP. The actor in this POMDP is a coordinator that observes all common observa-
tions and specifies a policy for each actor. These policies map each actor’s private infor-
mation to an action. The structure of a CIRL game implies that the private information
is limited to H’s initial observation of θ. This allows the reduction to a coordination-
POMDP to preserve the size of the (hidden) state space, making the problem easier.

Definition 2. Let M be a CIRL game between H and R. The corresponding coordi-
nation POMDP MC is a POMDP where the single actor is a coordinator C. States are
tuples of world state and reward parameters: Sc = S ×Θ. The intial state distribution
places the same distribution on S × Θ as P0. C’s actions are tuples (δH, aR) that
specify an action for R and a decision rule for H that maps its private information (θ)
to an action δH : Θ → AH. C observes H’s action and the world state. Transitions
are defined analogously to those in M .

Theorem 1. Let M be an arbitrary CIRL game with state space S and reward space
Θ. There exists a (single-actor) POMDP MC with (hidden) state space SC such that
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|SC| = |S| · |Θ| and, for any policy pair in M , there is a policy in MC that achieves
the same sum of discounted rewards.

Proof. We take MC to be the coordination POMDP associated associated with M .
The second component of C’s action is an action for R. R has no private observations,
so for any policy πR R could choose to follow, Ccan match it by simulating πR and
outputting the corresponding action. Similarly, C only observes common observations,
so R can implement any coordinator strategy by simulating C and directly executing
the appropriate action.

By a similar arguement, H can also simulate any given πC to compute her decision
rule δH, and then execute the corresponding action. To see that there is a πC that can
reproduce the behavior of any πH, let h be the action-observation history for H. C can
choose the following decision rule

δH(θ) = πH(θ;h)

to produce the same behavior.

Corollary 1. Let M be a CIRL game. There exist optimal policies (πH∗, πR∗) that
only depend on the current state and R’s belief.

πH∗ : S ×∆Θ ×Θ→ AH, πR∗ : S ×∆Θ → AR.

Proof. Smallwood & Sondik (1973) showed that an optimal policy in a POMDP only
depends on the belief state. R’s belief uniquely determines the belief for C. From this,
an appeal to Theorem 1 shows the result.

2 Apprenticeship CIRL
Example. Consider an example apprenticeship task where R needs to help H make
office supplies. H and R can make paperclips and staples and the unobserved θ de-
scribe H’s preference for paperclips vs staples. We model the problem as an ACIRL in
which the learning and deployment phase each consist of an individual action.

The world state in this problem is a tuple (ps, qs, t) where ps and qs respectively
represent the number of paperclips and staples H owns. t is the round number. An
action is a tuple (pa, qa) that produces pa paperclips and qa staples. The human can
make 2 items total: AH = {(0, 2), (1, 1), (2, 0)}. The robot has different capabili-
ties. It can make 50 units of each item or it can choose to make 90 of a single item:
AR = {(0, 90), (50, 50), (90, 0)}.

We let Θ = [0, 1] and define R so that θ indicates the relative preference between
paperclips and staples:R(s, (pa, qq); θ) = θpa + (1− θ)qa.R’s action is ignored when
t = 0 and H’s is ignored when t = 1. At t = 2, the game is over, so we transition to
a sink state, (0, 0, 2). Initially, there are no paperclips or staples and we use a uniform
prior on θ.

H only acts in the initial state, so πHcan be entirely describe by a single decision
rule δH : [0, 1]→ AH. R only observes one action from H and so the reachable beliefs
are in one-to-one correspondence with H’s actions. This lets us characterize R’s policy
as πR : AH → AR.

3



Theorem 2. Let M be an ACIRL game. In the deployment phase, the optimal policy
for R maximizes reward in the MDP induced by the mean θ.

Proof. If R never observes another action from H, then there are no common observa-
tions so the coordination POMDP has no observations. The unobserved component of
the state is static, so this distribution does not change over time. This reduces the prob-
lem to solving an MDP under a fixed distribution over reward functions so Theorem 3
from Ramachandran & Amir (2007) shows the result.

The DBE assumption in our example assumes that H maximize reward in the first
round. Let θ = 0.49. H maximizes reward and chooses to make 0 paperclips and 2
staples. R observes this and updates its belief (using δE to define the observation dis-
tribution). In this case, we get bR = Unif([0, 0.5)). Given this belief, R’s maximizes
expected reward and chooses to make 0 paperclips and 90 staples. Thus, the expert
decision rule δE and its best response br(δE) are defined by

δE(θ) =

 (0, 2) θ < 0.5
(1, 1) θ = 0.5
(2, 0) θ > 0.5

, (1)

br(δE)(aH) =

 (0, 90) aH = (0, 2)
(50, 50) aH = (1, 1)
(90, 0) aH = (2, 0)

. (2)

Note that when θ = 0.49 H would prefer R to choose (50, 50). H is willing to
forgo immediate reward during the demonstration to communicate this to R: the best
response chooses (1, 1) when θ = 0.49. This leads to the following result.

Theorem 3. There exist ACIRL games where the best-response for H to πR violates
the expert demonstrator assumption. In other words, if br(π) is the best response to π,
then br(br(πE)) 6= πE.

Proof. Our office supply example gives a counter example that shows the theorem.
When H accounts for R’s actions under br(δE), H is faced with a choice between 0
paperclips and 92 staples, 51 of each, or 92 paperclips and 0 staples. It is straightfor-
ward to show that the optimal decision rule is given by

δH(θ) =


(0, 2) θ < 41

92

(1, 1) 41
92 ≤ θ ≤

51
92

(2, 0) θ > 51
92

.

This is distinct from Equation 1 so we conclude the result.
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