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Abstract

Building large models with parameter sharing accounts for most of the success of
deep convolutional neural networks (CNNGs). In this paper, we propose doubly con-
volutional neural networks (DCNNs), which significantly improve the performance
of CNNs by further exploring this idea. In stead of allocating a set of convolutional
filters that are independently learned, a DCNN maintains groups of filters where
filters within each group are translated versions of each other. Practically, a DCNN
can be easily implemented by a two-step convolution procedure, which is supported
by most modern deep learning libraries. We perform extensive experiments on
three image classification benchmarks: CIFAR-10, CIFAR-100 and ImageNet, and
show that DCNNSs consistently outperform other competing architectures. We have
also verified that replacing a convolutional layer with a doubly convolutional layer
at any depth of a CNN can improve its performance. Moreover, various design
choices of DCNNSs are demonstrated, which shows that DCNN can serve the dual
purpose of building more accurate models and/or reducing the memory footprint
without sacrificing the accuracy.

1 Introduction

In recent years, convolutional neural networks (CNNs) have achieved great success to solve many
problems in machine learning and computer vision. CNNs are extremely parameter efficient due
to exploring the translation invariant property of images, which is the key to training very deep
models without severe overfitting. While considerable progresses have been achieved by aggressively
exploring deeper architectures [1} 2|13, 4] or novel regularization techniques [} 6] with the standard
"convolution + pooling" recipe, we contribute from a different view by providing an alternative to the
default convolution module, which can lead to models with even better generalization abilities and/or
parameter efficiency.

Our intuition originates from observing well trained CNNs where many of the learned filters are the
slightly translated versions of each other. To quantify this in a more formal fashion, we define the
k-translation correlation between two convolutional filters within a same layer W;, W as:
< W;, T(Wj, €, y) >f
max )
s ye{—kkh@n#£00)  [Wil2l|W;|2

p(Wi, W;) = (1)

where T'(-, z,y) denotes the translation of the first operand by (x, y) along its spatial dimensions,
with proper zero padding at borders to maintain the shape; < -,- > denotes the flattened inner
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Figure 1: Visualization of the 11 x 11 sized first layer filters learned by AlexNet [1]]. Each column
shows a filter in the first row along with its three most 3-translation-correlated filters. Only the first
32 filters are shown for brevity.
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Figure 2: Illustration of the averaged maximum I-translation correlation, together with the standard
deviation, of each convolutional layer for AlexNet [1]] (Ieft), and the 19-layer VGGNet [2]] (right),
respectively. For comparison, for each convolutional layer in each network, we generate a filter set
with the same shape from the standard Gaussian distribution (the blue bars). For both networks, all
the convolutional layers have averaged maximum 1-translation correlations that are significantly
larger than their random counterparts.

product, where the two operands are flattened into column vectors before taking the standard inner
product; || - || denotes the ¢3 norm of its flattened operand. In other words, the k-translation
correlation between a pair of filters indicates the maximum correlation achieved by translating one
filter up to k steps along any spatial dimension. As a concrete example, Figure [T demonstrates
the 3-translation correlation of the first layer filters learned by the AlexNet [1]], with the weights
obtained from the Caffe model zoo [7]]. In each column, we show a filter in the first row and its three
most 3-translation-correlated filters (that is, filters with the highest 3-translation correlations) in the
second to fourth row. Only the first 32 filters are shown for brevity. It is interesting to see for most
filters, there exist several filters that are roughly its translated versions.

In addition to the convenient visualization of the first layers, we further study this property at
higher layers and/or in deeper models. To this end, we define the averaged maximum k-translation
correlation of alayer W as py(W) = + vazl maxé-vzl’j# pr(W;, W), where N is the number
of filters. Intuitively, the pj of a convolutional layer characterizes the average level of translation
correlation among the filters within it. We then load the weights of all the convolutional layers of
AlexNet as well as the 19-layer VGGNet [2]] from the Caffe model zoo, and report the averaged
maximum 1-translation correlation of each layer in Figure[2] In each graph, the height of the red
bars indicates the p; calculated with the weights of the corresponding layer. As a comparison,
for each layer we have also generated a filter bank with the same shape but filled with standard
Gaussian samples, whose p; are shown as the blue bars. We clearly see that all the layers in both
models demonstrate averaged maximum translation correlations that are significantly higher than
their random counterparts. In addition, it appears that lower convolutional layers generally have
higher translation correlations, although this does not strictly hold (e.g., conv3_4 in VGGNet).

Motivated by the evidence shown above, we propose the doubly convolutional layer (with the double
convolution operation), which can be plugged in place of a convolutional layer in CNNs, yielding
the doubly convolutional neural networks (DCNNs). The idea of double convolution is to learn
groups filters where filters within each group are translated versions of each other. To achieve this, a
doubly convolutional layer allocates a set of meta filters which has filter sizes that are larger than the
effective filter size. Effective filters can be then extracted from each meta filter, which corresponds to
convolving the meta filters with an identity kernel. All the extracted filters are then concatenated, and
convolved with the input. Optionally, one can also choose to pool along activations produced by filters
from the same meta filter, in a similar spirit to the maxout networks [8]]. We also show that double
convolution can be easily implemented with available deep learning libraries by utilizing the efficient
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Figure 3: The architecture of a convolutional layer (left) and a doubly convolutional layer (right). A
doubly convolutional layer maintains meta filters whose spatial size z’ x 2z’ is larger than the effective
filter size z x z. By pooling and flattening the convolution output, a doubly convolutional layer
produces (‘2/_7”1)2 times more channels for the output image, with s X s being the pooling size.

S

convolutional kernel. In our experiments, we show that the additional level of parameter sharing by
double convolution allows one to build DCNNSs that yield an excellent performance on several popular
image classification benchmarks, consistently outperforming all the competing architectures with a
margin. We have also confirmed that replacing a convolutional layer with a doubly convolutional
layer consistently improves the performance, regardless of the depth of the layer. Last but not least,
we show that one is able to balance the trade off between performance and parameter efficiency by
leveraging the architecture of a DCNN.

2 Model

2.1 Convolution

We define an image Z € ReXwxh a4 3 real-valued 3D tensor, where ¢ is the number of channels;

w, h are the width and height, respectively. We define the convolution operation, denoted by
T = 7 « WY, as follows:

4+1 __ 4 £
Ik:,i,j - Z Wk:,c’,i/,j’IC',’i-‘ri'—l,j-‘,-j’—l)
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Lo bt . . o1y, . .
Here 7¢ € RS *w *I" ig the input image; Wt e ReT X X2X2 g g get of ¢!t filters, with each

filter of shape ¢! x z x z; ! ¢ ReTxw TR o the output image. The spatial dimensions
of the output image w’**, h*1 are by default w’ + z — 1 and A’ + 2z — 1, respectively (aka, valid
convolution), but one can also pad a number of zeros at the borders of Z to achieve different output
spatial dimensions (e.g., keeping the spatial dimensions unchanged). In this paper, we use a loose
notation by freely allowing both the LHS and RHS of * to be either a single image (filter) or a set of
images (filters), with proper convolution along the non-spatial dimensions.

A convolutional layer can thus be implemented with a convolution operation followed by a nonlinearity
function such as ReLU, and a convolutional neural network (CNN) is constructed by interweaving
several convolutoinal and spatial pooling layers.

2.2 Double convolution

We next introduce and define the double convolution operation, denoted by Z**! = 7¢ @ W¥, as
follows:

Ot =W I/

1,5,k Li(itz—1),5:(j+2—1)°
Z—z+1
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Here T € R xw'xh' gqpd T0+1 ¢ pre’ ' xw ™ xh™™ gre the input and output image, respectively.
£ 2 ’ ’ . .

Wt e ReTxe X% gare a set of ¢! meta filters, with filter size 2’ x 2,2 > z; (’)fﬂC €

R('==+1)x(z"=2+1) g the intermediate output of double convolution; pool,(-) defines a spatial

pooling function with pooling size s x s (and optionally reshaping the output to a column vector,

inferred from the context); * is the convolution operator defined previously in Equation 2]

In words, a double convolution applies a set of ¢/*! meta filters with spatial dimensions 2’ x 2/,

which are larger than the effective filter size z x z. Image patches of size z X z at each location
(i, 4) of the input image, denoted by If ii(it2—1),j:(j+2—1)» AT€ then convolved with each meta filter,
resulting an output of size 2’ — z + 1 X 2’ — z + 1, for each (i, j). A spatial pooling of size s X s is
then applied along this resulting output map, whose output is flattened into a column vector. This
produces an output feature map with nc/™! channels. The above procedure can be viewed as a two
step convolution, where image patches are first convolved with meta filters, and the meta filters then

slide across and convolve with the image, hence the name double convolution.

A doubly convolutional layer is by analogy defined as a double convolution followed by a nonlinearity;
and substituting the convolutional layers in a CNN with doubly convolutional layers yields a doubly
convolutional neural network (DCNN). In Figure [3] we have illustrated the difference between a
convolutional layer and a doubly convolutional layer. It is possible to vary the combination of z, 2’, s
for each doubly convolutional layer of a DCNN to yield different variants, among which three extreme
cases are:

(1) CNN: Setting 2’ = z recovers the standard CNN; hence, DCNN is a generalization of CNN.

(2) ConcatDCNN: Setting s = 1 produces a DCNN variant that is maximally parameter efficient.
This corresponds to extracting all sub-regions of size z X z from a 2’ x 2’ sized meta filter, which
are then stacked to form a set of (2’ — z + 1)? filters with size z x z. With the same amount of
parameters, this produces % times more channels for a single layer.

(3) MaxoutDCNN: Setting s = 2’ — z + 1, i.e., applying global pooling on O**!, produces a DCNN
variant where the output image channel size is equal to the number of the meta filters. Interestingly,
this yields a parameter efficient implementation of the maxout network [8]]. To be concrete, the
maxout units in a maxout network are equivalent to pooling along the channel (feature) dimension,
where each channel corresponds to a distinct filter. MaxoutDCNN, on the other hand, pools along
channels which are produced by the filters that are translated versions of each other. Besides the
obvious advantage of reducing the number of parameters required, this also acts as an effective
regularizer, which is verified later in the experiments at Section

Implementing a double convolution is also readily supported by most main stream GPU-compatible
deep learning libraries (e.g., Theano which is used in our experiments), which we have summarized
in Algorithm[I] In particular, we are able to perform double convolution by two steps of convolution,
corresponding to line 4 and line 6, together with proper reshaping and pooling operations. The first
convolution extracts overlapping patches of size z x z from the meta filters, which are then convolved
with the input image. Although it is possible to further reduce the time complexity by designing a
specialized double convolution module, we find that Algorithm [1|scales well to deep DCNNs, and
large datasets such as ImageNet.

3 Related work

The spirit of DCNNSs is to further push the idea of parameter sharing of the convolutional layers,
which is shared by several recent efforts. [9] explores the rotation symmetry of certain classes of
images, and hence proposes to rotate each filter (or alternatively, the input) by a multiplication of
90° which produces four times filters with the same amount of parameters for a single layer. [[10]
observes that filters learned by ReLU CNNs often contain pairs with opposite phases in the lower
layers. The authors accordingly propose the concatenated ReLU where the linear activations are
concatenated with their negations and then passed to ReLU, which effectively doubles the number of
filters. [L1] proposes the dilated convolutions, where additional filters with larger sizes are generated
by dilating the base convolutional filters, which is shown to be effective in dense prediction tasks
such as image segmentation. [12] proposes a multi-bias activation scheme where k, k£ < 1, bias
terms are learned for each filter, which produces a k times channel size for the convolution output.



Algorithm 1: Implementation of double convolution with convolution.

) T IEE N . .
Input: Input image Z¢ € R® % *"" meta filters W* € RS *# *# _effective filter size
z X z, pooling size s X s.

Output: Output image Z¢*! € Rre T T i = M
1 begin
2 I « IdentityMatriz(c’z?) ;
3 Reorganize I to shape ¢‘ 2% x ¢’ x z x z;
4 W’ W I /* output shape: c“*'xcf22x (2 —z41)x (2 —z+41) */
5 Reorganize W to shape ¢/*1(2' — 2z +1)? x ¢! x z x z;
6 O T« W' /* output shape: ¢ 1(2 —z41)% x w*t x KL x/
7 Reorganize O“* to shape ¢ T AT x (2 — 24+ 1) x (2 — 2+ 1) ;
8 T < pools (O*FY); /* output shape: ‘Tl AT x @ X @ */
9 Reorganize Z°*! to shape ce"'l(z/*%“f x wiTh x piL

Additionally, [13| [14]] have investigated the combination of more than one transformations of filters,
such as rotation, flipping and distortion. Note that all the aforementioned approaches are orthogonal
to DCNNSs and can theoretically be combined in a single model. The need of correlated filters in
CNN s is also studied in [[LS)], where similar filters are explicitly learned and grouped with a group
sparsity penalty.

While DCNNs are designed with better performance and generalization ability in mind, they are
also closely related to the thread of work on parameter reduction in deep neural networks. The
work of Vikas and Tara [16] addresses the problem of compressing deep networks by applying
structured transforms. [[17] exploits the redundancy in the parametrization of deep architectures by
imposing a circulant structure on the projection matrix, while allowing the use of FFT for faster
computations. [18] attempts to obtain the compression of the fully-connected layers of the AlexNet-
type network with the Fastfood method. Novikov et al. [19] use a multi-linear transform (Tensor-Train
decomposition) to attain reduction of the number of parameters in the linear layers of CNNs. These
work differ from DCNNs as most of their focuses are on the fully connected layers, which often
accounts for most of the memory consumption. DCNNSs, on the other hand, apply directly to the
convolutional layers, which provides a complementary view to the same problem.

4 Experiments

4.1 Datasets

We conduct several sets of experiments with DCNN on three image classification benchmarks:
CIFAR-10, CIFAR-100, and ImageNet. CIFAR-10 and CIFAR-100 both contain 50,000 training
and 10,000 testing 32 x 32 sized RGB images, evenly drawn from 10 and 100 classes, respectively.
ImageNet is the dataset used in the ILSVRC-2012 challenge, which consists of about 1.2 million
images for training and 50,000 images for validation, sampled from 1,000 classes.

4.2 1Is DCNN an effective architecture?
4.2.1 Model specifications

In the first set of experiments, we study the effectiveness of DCNN compared with two different
CNN designs. The three types of architectures subject to evaluation are:

(1) CNN: This corresponds to models using the standard convolutional layers. A convolutional layer
is denoted as C-<c>-<z>, where ¢, z are the number of filters and the filter size, respectively.

(2) MaxoutCNN: This corresponds to the maxout convolutional networks [8]], which uses the maxout
unit to pool along the channel (feature) dimensions with a stride k. A maxout convolutional layer is
denoted as MC-<c>-<z>-<k>, where ¢, z, k are the number of filters, the filter size, and the feature
pooling stride, respectively.



Table 1: The configurations of the models used in Section The architectures on the CIFAR-10
and CIFAR-100 datasets are the same, except for the top softmax layer (left). The architectures on the
ImageNet dataset are variants of the 16-layer VGGNet [2]] (right). See the details about the naming
convention in Section[4.2.1}

CNN DCNN MaxoutCNN

C-64-3 DC-64-4-3-2 MC-256-3-4
C-64-3 DC-64-4-3-2 MC-256-3-4

CNN DCNN MaxoutCNN ™
C-128-3  DC-128-4-3-2  MC-512-3-4
C-1283  DC-1284-32  MC-512-3-4 C-128-3  DC-128-4-3-2  MC-512-3-4
C-128-3  DC-128-4-32  MC-512-3-4
j )
p-2
C-128-3  DC-128-4-3-2 MC-512-3-4 C-256-3 DC-256-4-3-2  MC-1024-3-4
1283 DC-128-4-32  MC-512-3-4 ~236-3 -236-4-3- -1024-3-
1283 C-128-4-3 5123 C-256-3 DC-256-4-3-2  MC-1024-3-4
P2 C-256-3 DC-256-4-32  MC-1024-3-4
C-128-3 DC-1284-32  MC-512-3-4 P-2

C-128-3 DC-128-4-3-2 MC-512-3-4
C-512-3  DC-512-4-3-2  MC-2048-3-4

P-2 C-512-3  DC-512-4-3-2  MC-2048-3-4
C-512-3  DC-512-4-3-2  MC-2048-3-4

C-128-3  DC-128-4-3-2  MC-512-3-4

C-128-3  DC-12843-2  MC-512-3-4 P2
P2 C-512-3  DC-512432  MC-2048-3-4
, , C-512-3  DC-51243-2  MC-2048-3-4
Global Average Pooling C-5123  DC-5124-3-2  MC-2048-3-4
Softmax P-2

Global Average Pooling

Softmax

(3) DCNN: This corresponds to using the doubly convolutional layers. We denote a doubly convolu-
tional layer with c filters as DC-<c>-<z'>-<z>-<s>, where 2’ z, s are the meta filter size, effective
filter size and pooling size, respectively, as in Equation[3] In this set of experiments, we use the
MaxoutDCNN variant, whose layers are readily represented as DC-<c>-<z'>-<z>-<z' — 2z + 1>.

We denote a spatial max pooling layer as P-<s> with s as the pooling size. For all the models, we
apply batch normalization [6]] immediately after each convolution layer, after which ReLU is used as
the nonlinearity (including MaxoutCNN, which makes out implementation slightly different from
[8]]). Our model design is similar to VGGNet [2]] where 3 x 3 filter sizes are used, as well as Network
in Network [20] where fully connected layers are completely eliminated. Zero padding is used before
each convolutional layer to maintain the spatial dimensions unchanged after convolution. Dropout is
applied after each pooling layer. Global average pooling is applied on top of the last convolutional
layer, which is fed to a Softmax layer with a proper number of outputs.

All the three models on each dataset are of the same architecture w.r.t. the number of layers and the
number of units per layer. The only difference thus resides in the choice of the convolutional layers.
Note that the architecture we have used on the ImageNet dataset resembles the 16-layer VGGNet [2],
but without the fully connected layers. The full specification of the model architectures is shown in
Table [l

4.2.2 Training protocols

We preprocess all the datasets by extracting the mean for each pixel and each channel, calculated on
the training sets. All the models are trained with Adadelta [21] on NVIDIA K40 GPUs. Bath size is
set as 200 for CIFAR-10 and CIFAR-100, and 128 for ImageNet.

Data augmentation has also been explored. On CIFAR-10 and CIFAR-100, We follow the simple
data augmentation as in [2]. For training, 4 pixels are padded on each side of the images, from which
32 x 32 crops are sampled with random horizontal flipping. For testing, only the original 32 x 32
images are used. On ImageNet, 224 x 224 crops are sampled with random horizontal flipping; the
standard color augmentation and the 10-crop testing are also applied as in AlexNet [[1].



4.2.3 Results

The test errors are summarized in Table [2]and Table[3] where the relative # parameters of DCNN and
MaxoutCNN compared with the standard CNN are also shown. On the moderately-sized datasets
CIFAR-10 and CIFAR-100, DCNN achieves the best results of the three control experiments, with
and without data augmentation. Notably, DCNN consistently improves over the standard CNN with a
margin. More remarkably, DCNN also consistently outperforms MaxoutCNN, with 2.25 times less
parameters. This on the one hand proves that the doubly convolutional layers greatly improves the
model capacity, and on the other hand verifies our hypothesis that the parameter sharing introduced
by double convolution indeed acts as a very effective regularizer. The results achieved by DCNN on
the two datasets are also among the best published results compared with [20, 22} 23| 24].

Besides, we also note that DCNN does not have difficulty scaling up to a large dataset as Ima-
geNet, where consistent performance gains over the other baseline architectures are again observed.
Compared with the results of the 16-layer VGGNet in [2] with multiscale evaluation, our DCNN
implementation achieves comparable results, with significantly less parameters.

Table 2: Test errors on CIFAR-10 and CIFAR-100 with and without data augmentation, together with
the relative # parameters compared with the standard CNN.

Without Data Augmentation With Data Augmentation

Model # Parameters —~rmp CIFAR-100 CIFAR-10 _ CIFAR-100
CNN 1. 9.85% 34.26% 9.59% 33.04%
MaxoutCNN 4. 9.56% 33.52% 9.23% 32.37%
DCNN 1.78 8.58% 30.35% 7.24% 26.53%
NIN [20] 0.92 10.41% 35.68% 8.81% -
DSN [22] : 9.78% 34.57% 8.22% .
APL [23] - 9.59% 34.40% 7.51% 30.83%
ELU [24] - - : 6.55% 24.28%

4.3 Does double convolution contribute to every layer?

In the next set of experiments, we study the effect of applying double convolution to layers at
various depths. To this end, we replace the convolutional layers at each level of the standard CNN
defined in[d.2.T) with a doubly convolutional layer counterpart (e.g., replacing a C-128-3 layer with a
DC-128-4-3-2 layer). We hence define DCNN[i-j] as the network resulted from replacing the i — jth
convolutional layer of a CNN with its doubly convolutional layer counterpart, and train { DCNN[1-2],
DCNN[3-4], DCNN[5-6], DCNN[7-8]} on CIFAR-10 and CIFAR-100 following the same protocol
as that in Section[#.2.2] The results are shown in Table[d] Interestingly, the doubly convolutional
layer is able to consistently improve the performance over that of the standard CNN regardless of the
depth with which it is plugged in. Also, it seems that applying double convolution at lower layers
contributes more to the performance, which is consistent with the trend of translation correlation
observed in Figure[2}

Table 3: Test errors on ImageNet, evaluated on the validation set, together with the relative #
parameters compared with the standard CNN.

Model Top-5 Error Top-1 Error # Parameters
CNN 10.59% 29.42% 1.
MaxoutCNN 9.82% 28.4% 4.
DCNN 8.23% 26.27 % 1.78
VGG-16 [2] 7.5% 24.8% 9.3
ResNet-152 [4] 5.71% 21.43% 4.1
GooglLeNet [3]] 7.9% - 0.47




Table 4: Inserting the doubly convolutional layer at different depths of the network.

Model CIFAR-10 CIFAR-100

CNN 9.85% 34.26%
DCNN[1-2] 9.12% 32.91%
DCNN[3-4] 9.23% 33.27%
DCNN[5-6] 9.45% 33.58%
DCNNJ[7-8] 9.57% 33.72%
DCNNJ1-8] 8.58% 30.35%

4.4 Performance vs. parameter efficiency

In the last set of experiments, we study the behavior of DCNNs under various combinations of its
hyper-parameters, 2’, z, s. To this end, we train three more DCNNs on CIFAR-10 and CIFAR-100,
namely {DCNN-32-6-3-2, DCNN-16-6-3-1, DCNN-4-10-3-1}. Here we have overloaded the notation
for a doubly convolutional layer to denote a DCNN which contains correspondingly shaped doubly
convolutional layers (the DCNN in Table[I] thus corresponds to DCNN-128-4-3-2). In particular,
DCNN-32-6-3-2 produces a DCNN with the exact same shape and number of parameters of those of
the reference CNN; DCNN-16-6-3-1, DCNN-4-10-3-1 are two ConcatDCNN instances from Section
[2.2] which produce larger sized models with same or less amount of parameters. The results, together
with the effective layer size and the relative number of parameters, are listed in Table[5] We see that
all the variants of DCNN consistently outperform the standard CNN, even when fewer parameters
are used (DCNN-4-10-3-1). This verifies that DCNN is a flexible framework which allows one to
either maximize the performance with a fixed memory budget, or on the other hand, minimize the
memory footprint without sacrificing the accuracy. One can choose the best suitable architecture of a
DCNN by balancing the trade off between performance and the memory footprint.

Table 5: Different architecture configurations of DCNNss.

Model CIFAR-10 CIFAR-100 Layersize # Parameters
CNN 9.85% 34.26% 128 1.
DCNN-32-6-3-2 9.05% 32.28% 128 1.
DCNN-16-6-3-1 9.16% 32.54% 256 1.
DCNN-4-10-3-1 9.65% 33.57% 256 0.69
DCNN-128-4-3-2 8.58% 30.35% 128 1.78

5 Conclusion

We have proposed the doubly convolutional neural networks (DCNNs), which utilize a novel double
convolution operation to provide an additional level of parameter sharing over CNNs. We show that
DCNNs generalize standard CNNs, and relate to several recent proposals that explore parameter
redundancy in CNNs. A DCNN can be easily implemented by modern deep learning libraries
by reusing the efficient convolution module. DCNNs can be used to serve the dual purpose of 1)
improving the classification accuracy as a regularized version of maxout networks, and 2) being
parameter efficient by flexibly varying their architectures. In the extensive experiments on CIFAR-10,
CIFAR-100, and ImageNet datasets, we have shown that DCNNSs significantly improves over other
architecture counterparts. In addition, we have shown that introducing the doubly convolutional
layer to any layer of a CNN improves its performance. We have also experimented with various
configurations of DCNNSs, all of which are able to outperform the CNN counterpart with the same or
fewer number of parameters.
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