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In this supplementary material, we give the comprehensive proof of the theorems in the main text and
give more detailed and precise statements of the theorems.

A Proof of linear convergence of the alternating minimization procedure

Suppose that we have got an estimator f = ( f(nk))’hlﬂ ¥ = (0,), and now we are updating the
(r, k)-th element as f(’r B € f(nk) and 0. « 0.

A.1 Convergence analysis

Let {f(r &)}k be any functions such that Hk, 1 f(r gy = Upr ngl f(rl7k,), and, as a par-
ticular choice of such functions, we set f(7 k) = f(,/ wy (VK" # k,¥r' € [d]) and f(,.l,k) =
O fipy (W # 7). Let fo, k) = = fo, k/)/”f(r’ mlle. = Forr s/ | Fr o lla (V7)€
[d] x [K]) and &, = TT5—y | firr iy llne = @ TLi—y I fow llzs (997 € [d]). The newly up-
dated (r, k)-th element is denoted by f(r %) (see Eq. (@) and we denote by .. the updated value of v,

correspondingly: v, = Hf(r il Tz | fr-k || 1o~ We also denote by f (k) = f(rk /||f (|2

For the simplicity of the notation, we denote by f, := H k=1 J(r,k)- Similarly, we use notations like

x, ﬁ, fr to express the r-th component.

Define Pf = [ f(X)dPx(X) and P, f := L 3" | f(«;) for a function f : X — R. For the
estimator f = { (.5} s, define

~

doo (f) := (179%6¥){UT’||JF(W,IC’) ('r’ k') L + Ve — O]},

where f and o are Note that doo(f) is uniquely defined by f This is equivalent to do ( 1, ) in the
main text, but we employ the above notation because of the notational simplicity.
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For A1, > 0 and A ,, > 0, we define
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where Cj, C’S, C'! are constants depending on s, sg, ¢, ¢ that will be given in Lemma Lemma

[ATT]and Lemma[A-T5|respectively.

K K
Let 7, = {f —g | [ = Ilpcifes 9 = Ilpeq9r Where fu, g € Heg |frlla,. <
L llgllae,.. <1 (k€ [KD}and Ty = {(fom) (@) = f 0y (@) Tl fo0y @) | Sy /iy €
Hoeto | Fr) 3¢ < L AF gy 12, < 1} Then Corollary and Lemma [A.16]yield that there
exist universal constants C' and C such that

(P-P,) J‘if’l
Iff Ny +A2,

holds with probability 1 — exp(—7) for all 7 > 0, and all of the following inequalities are simultane-
ously satisfied with probability 1 — exp(—7) for all 7 > 0:

mMax, . SUPfeT, pre7., < C'log(d)¢, max{1,7} (S-1)

f? 5 /
max sup [(P—P,) | ———— || £ Clog(dK)¢, max{1,7}, (S-2a)
SISk g, 17201 + 23,0
max su 1 En _af(@) < CLlog(dK)¢, max{1,7} (S-2b)
rsrsbiSesk em [ S\l + A3, )|

sup < Clog(dK)¢, max{1,7}.  (S-2¢)

max
1<r<d,1<k<K fetr ksl flla, , <1

1flles + A3,

Let Tk = {(fory = Flos) Tl forar = U Fowy) | Soay gy €
Hewrs 1franlm, o < LI rnlla,,, < 1 (K € [K])}. Then Lemma [A.14] indicates that
there exists a universal constant C’ > 0 such that, for any 0 < ), all of the following two inequalities
simultaneously hold with probability 1 — exp(—7):

1< (@i .
max sup |— L&c)l < C'Llog(dK)¢, max{1, 7}, (S-3a)
1<rSdiShsk peg |0\ [l + AL,
!
max sup |(P—P,) L; < C'log(dK)¢, max{1,7}. (S-3b)
rerdishen ooy, 170+ 2F,

We define an event &; so that all inequalities in Eq. (S-I), Eq. (S-2) and Eq. (S-3) are satisfied. Then
P(&1) > 1 — 3exp(—7) by the argument given above. Based on (,,(A1,,) and ¢, (A2 ,,), define

&n =&AL, 7) == max{C, ", C'L}log(dK)(y (Ar,n) max{1, 7},
and ~
& =& (Aan, 7) = Cmax{l, L}log(dK)(, (A2,n) max{1,7}.
Let R = 2R and R = 8R/ min{vm;n, 1}. The following theorem is a detailed version of Theorem

in the main text.

Theorem A.1. Suppose that Assumptions are satisfied. We also assume the the following
conditions.



~

deo (f) and p* are sufficiently small so that there exists i > 0 such that

4 (F
e (5-4)
Correspondingly, we define
4 3\ K1
cp=(d— 1)(3K + u) (2) pf=2, (S-5)
o Let
2K (1 +2R¥)¢, - A 4RK?  ~  [1-
Qn = %%&(dfl)(Kfl)ﬁnRK+4KRK§n+cu+Tdm( f)+ 852.
and

Sn =AEL N2+ (d+ 2)E N + 1267

481/32 2 2 H2(K—1)(1 2
s —g—[(d = 1)es] /32 (1 4 QU ) 2RI - (A ms2) [2£2/ 52
o n is sufficiently large so that
1 H2 1/2 2x —1
G0+ N <

e The RKHS-norms of the functions { f(r,’ k) } are bounded as
_ 14
1ferwnllae o < SR (V(r',K") # (r,k)). (S-6)
Then, in the event £1, we have that

(ol Ty — Sl 18— 0rl)” < 27Q200(F)? + 185, 2°5

In particular, for a sufficiently large n and small c,, such that Q? < 1/54, we have

_ 2 1 —~ R
(0l iy = Fiziole + 19 = vr]) " < o () + 185,25

Moreover, if we denote by n,, the right hand side of the above inequality, then it holds that
2

Uy — vV 77n

This theorem immediately gives the following corollary.

I=o)

1ty i <

Corollary A.2. Let f be the estimat()r after the t-th iteration. Suppose that d( f[l ) satisfies the

assumptions ofTheorem. < 1/54, doo(f[l]) < 2. /8 and 185, R?K < v2. /8. Then it
holds that

min

. 3\t . .
doo (fit4+1))? < max { (4> doo (f11))?, 54SnR2K}
forallt=2,3,... in the event &.

By substituting A\ ,, = K_%id_l%sn_ﬁ and Ag , = n_ﬁls, we have that
S, =0 (n—ﬁ v (nfllﬁ*(lfsz)min{ulﬂss)»52(11+s)}p01y(d7 K)))

Thus, for s, < 1, we have 5, < C’nfﬁ for sufficiently large n with a constant C'. Since Lemma
states that { f(,. )} are p-incoherent under the assumptions of Theorem , thus Lemma

gives that
2

IF = £ < KA (F? + S due (P + Ko ()

min

By applying this inequality to f = f[t] , we obtain the following theorem.



Theorem A.3. In addition to the conditions in Corollary if doo (f[l]) <1/VK and p < 1/(dK),

then we have
| fir = £12 = O (aKn™75 log(dK) + dK (3/4)")
Sor sufficiently large n and all t = 2,3, ... with probability 1 — 3 exp(—T7).

This means that after 7 > L log(n) iterations, we obtain the estimation accuracy O(dKn~ 1+ ). This
computational complexity is quite advantageous. The estimation accuracy is d X K times the optimal

1 . . . . . .. . .
rate n~ T+s to estimate one function f(*r k)" This is intuitively natural because we are estimating
d x K functions { f(*r k) }r k. Indeed, it has been shown that this accuracy bound is minimax optimal.

Proof. (Theorem |A.1)) Throughout the proof, we fix (r, k). There is a freedom of the scaling factor
to define f(, ;..\ (k" =1,..., K). Thus, we may set the scaling factor of f* as

frk/ f(rk/)Hf(rk’)HLz for k' 7&]{: frk) UTf(Tjk)/Hk’;ék Hf(r,k/)”Lz'
Note that f: = Hk:’:l f(*T,k/ Up Hk' 1 f(,r. )
Since ||f(r7k/) |l = 1, the Ly-norm of ||f(r7k/) Iz, is evaluated as
1ok llza = ||f(r,k'>||L2/||f(r,k/>|\n = e Lo/ I frper ln = 1/1Fer ke ln- (S-7)
By the assumption (S=6) that || f( x1)[13, ., < R (K # k), Eq. (S-20) gives that
F f A 1/2
[ i) I = i 1] < E0B2 (14 A0,

By the definition of f(,. ), we have || f,. )|, = 1. Therefore, ||| f,.1)||2 — 1| < € R*(1+ )\1/2)
Then, by the assumption that &/ R2(1 + )\1/ 2) < 212 +K£11’ we have
5 —

2~ /K < % < ol/K, (S-8)
I iy 12

1/2 < I 1fownllzs <2

k' #k

This and Eq. (S7) give that 275 < || f 4|1, < 21K for k' # k, and concludes that

Therefore, by the assumption (A[I}2), we have that

* UT”f*'r‘*k ||H7‘,: ~
1fop o, = D <9R = R. (5-9)
| | PR Y (PN

Moreover, by the assumption Eq. (S-6), we have that, for all ¥’ # k,

Pl UK
Ml 25 5 p (S-10)
1f ey I 2

[k 1,0 =

We denote by F'(f) the objective function of the optimization problem (@) for the update of f(’r k) On
fixed (r, k). Then by the optimality condition, for the Fréchet derivative V F'( f( ) in the RKHS
H i, it holds that (VF(f(T 5 f (k) = Sy 7o < 0. Thatis,

Z(f(’[‘k;) xz H f(rk’ xz Z'Ur fr z ) H f(rk’ xz Tk)( ) fz;k)(xz))

k' #k 'y k'#k
<0, (S-11)



where we used that ;. ;) is in the feasible set because || f(,. 13, < < R (see Eq. (59)). By using
the relation y; = f*(x;) + ¢; and arranging the terms in Eq. (S-TT), we obtain that

P, (.f(/r,k’) - f(*r,k))Q( H f(Tvk'))Q

k'#k
Zqu @) Py (5) = £ ()
nia k' #k
=P [ o = 120+ Sy CTT oy = TT Foon) | TT Ferr (o = S0
r'#r k'#k k' #k k' #k

(S-12)

Ey = (P - Py) (Z(ﬁ —f:/))!? » By=(P = Fa) | [ ( H forkry — H f(*r,kf))ﬁ ;

k' £k k' Ak
Es = —P{Z(fr' - f:’)g:|a E¢:=—-P |:f(*r,k)( H Formy — H f(*r,k))g:|'

rir k' #k k' Ak
Then, we can easily see that Eq. (S-12) gives

6
P(3%) <Y EB; <|Ei|+ |Bs| + |Bs| + | Ea| + |Bs| + |E|.
j=1

From now on, we are going to bound each term E; (j = 1,...,6).

(1) (Bounding E; and E») Since ||f~(r7k/) ”an’ <R (VK" # k) (Eq. (S-10)), ||f(’;7k) 7, < R (Eq.
S9). ||f('r’k) 2, , < R by the construction, Lemmagives upper bounds of |F1| and |Es| as

(Bl < 2R5€, (1] o + AT RS) + RE€0(2K 3] Ladoc (F)/vmin + A2 R,
1Bl < 26, (1] + M/w BY) + € (2K 3] 22doo (F) /omin + A7 R).

(3) (Bounding F3) Eq. (S-1)) gives an upper bound of E5 as

1/2
1Bl < D21 = Po)[(for = £70311 < D2 alll(Fr = £72)3lm, + AR,
/#7 /¢T
Now we evaluate the term ||(f,» — ) Jllz,- By a slight abuse of notation, we change the scaling

of fas firur) = foray (VK # kv’ # v) and fioo iy = 1 ollio ooy = B Fory (917 # 1),
in particular, fr/ = Hk, 1fr k). Similarly, we set f(r, k) f(r,,k,) (Vk' # Ek,r" # r) and
fGr iy = v [ 4y (V1" # 7). Then, by the assumption (S-6), it holds that

~

< (v +deo(f))

l\D‘ :U>
1\3‘ m>

I a9t = Ooll Frr iyl < O (S-13)

Hence, the term ||(f,» — f)§| L, is bounded as

(For = £33, = Pl(Jor — £7)?5"]



=P (f f(w k) ) H f(*w,k/) +J;(r’,k)( H f(r’,k’) - H f(*w,k/)) (frk) f(r k) (H f( k ))

k' £k k' £k k' £k k' £k
SQP{(f(r/,k) — Foo ) CLT 50> Gloiy = £3on) 2 (T Firiy)
k' £k k' £k
+ f(zrl,k)( H .f(?"/ k") H f(r’ k’ 7" k) f(r k) ( H f(’f‘,k/))z}
k' £k k' £k k' £k
@ - N .
<2|[fer k) = Fr 1y 15 PLG*( H Foo 1y)?] + 407 LRE P H Forr ) H For I,
k' 2k k' £k k' £k
) r3 * r3 * ?
<2\ fr k) = S |12 Pld H For 1)+ AR P(g%)0} ( Z | fer hry — f(w,k')HLz)
k' 2k k' £k
(c) ~ ~12
<2\ fr iy = £ 2 PG (LT £ )] + 4RPH P(3) [2(K = 1)doo ()],
k' £k

where the inequalities (a), (b) and (c) are shown as follows: (a) first, we notice that || f(,/7 i) | oo
< N ferrnllr,

INIA

1 fr 13,0 o = ol Forr i 14,0 <0
R by Eq. (S-10), and then we obtain

2N | FETEN ) F YRGS AN Y | B

e k' 4k k' #k
S e TT Wi P [Giesy = 0] P | (T o = TT S
pobr? WA WA
J) R ry * £ 1 £ *
S’U?/RQKP (f(/T»k) — f(r’k))Q H f(2r,k’) P—~2P (H f(’l”,k’) - H f(’l“’,k’))g
s (Hk’;ﬁk f(r,k’)) k' #k k'#k

<op BNl 2, P | (TT forwy = 1T f6 i)
k' £k k' £k

(b) is shown by the equalities ||f(r/7k/)||l_/2 = /G wllz. = 1 and B = | forr iyl a- () is
shown as ’l_)r/ ”f(r’,k") — f(*r’,k’) ||L2 = Upr ||f(7"',k') — f(*r’,k/) HLZ + |’l_)r/ — U’r‘/|||f(7“’,k’) —_ f(*r’,k/) ||L2 g
2(vpr || frr ey — S wnllpe + 10 — vp|) < 2deo(f). Here, by Assumptionand Eq. (S-13), we
have

ey = £l iy lloo

< eallfiriy = £ ol 2 Feviy = B

< eo(| forrmy = oo Fer iyl s + ||vr'f(r/,k) — [ i) T2 frr iy — formlai,,

= o100 — ol o iy 22+ 0ol Fer iy = FE0 122 =2 iy = iy I52,

< epdoo (F)' 2[R+ (v + deo ()R] < C2d ()21 + 20max) R]™,

where the last inequality is shown, by the assumption (S-4), 1 > p > 2= °°(f ) > 9dlf) °°(f ),
Therefore, it holds that

| B3| <(d — 1)&, [2¢2(1 + 20max) 2 doo (F)1 2 RE142|3 1, + 4(K — DRE Ao (P13, + A1 R .

1,n



(4) (Bounding E,) Eq. (S-1)) gives that

Ba| < £ f{i,m( T for— 11 fa,k,))g a2

k'#k k'#k L
The RHS is bounded as
f;;,k)( [T Fose = T fisr )3
k'#k k' £k L
= fiem) H < H Forary = 1T J6 > IT for

k' £k k' £k Lo

<2R|g||z, x 2KR" oo (f )/vmin,

where we used the following relation in the last inequality:
1m0 Py = Foao)me < M F G ool Frry = Sl 22
< f iy lloo 1y = il @I TT Formn l22)

k'#k

= 2| £t ool (Flriy = i) T Fereny e < 2RI
k'#k

H( 1 fosr - 1 f(;k/> I1 Fosr

k' #k k'#k k'#k

<RE T forn = 1T foomn

k' £k k' £k Lo

Lo

f('r,k:’) - f(*r,k:’)

=R T oy = T £Gn|| < BEH[ D2 = 1T e lles

K #k k' #k Ly k' #£k 1wyl k' #£k

<2KREL o (f) /vmin-
Therefore, we have
|Ba] < 4K R o (P12 + EuM R
(5) Lemma[A.3] gives an upper bound of the first term of the RHS as
B3l = |P| S0 - 1203 | < G (Pl
r’#r
(6) Lemma[A-6] bounds the second term of the RHS as

= ARK?> ~
[Bo| = P[fz;,k)(Hfu,k)— Hfs:,m)a} < =1l .doc (P

k/#k k/;ﬁk min

Combining the results from (1) to (6), we have that
P(3%) <2(1+ R¥)&, (1], + Al RE) + (1 4+ RF)6u 2K 311, doo (F) /omin + A1/ RY)

+(d-1)& {202(1 + 20max) 2 doo ()72 RS2 1, + 4(K — D)oo (/)RS 2,



4RK? - -

+ 4K RS + e+ ——doo(F) | [13l]2.doe ()
+[(d = D& + EaM R
=2(1+ RE)EL gl + 204~ Dénea(1 + 2uman) 2 doc (F) 2R g1,
2K (1 + RE)Ye, R R ARK? | N
i | O g0 1) (0~ D& BN + KR G+ 6t e ()| 200 (D)

+ 201+ RGNS+ (RE + (d+ DR)EN).
Then, by using the Cauchy-Schwarz inequality and the Young’s inequality,
2(1 4+ RF)& 1311, +2(d = 1)nea (1 + 20max) 2 doo (/) 72 RE 7122 g .,

~ 7 1 ~ s Nl—ss PK—1+s
<lalz, +6(1+RF)ET 4 CllglE, + 6[(d — Dénea(l+ 2umax) 2o ()12 R 1022

2

~ P 2
<3111z, +6(1+ RT)*¢,

1— - .
+ 882 doo (f)? + 526%/5280752)/%2[(d — 1) ey (1 + 2upmax ) RE 1 Te2)2 222052
and, we also have
1-— So N2
doo
3 (f)+
2K (1 + 2R¥)¢, . R ARK? | N
2K+ 2R ) . X +4(d—1)(K = 1)&,R" + 4KR™ &, 4 ¢, + ;dm(f)l 19l 2,doo(f)
1,. 3 ~
<=lglli, + 5Qidoo(f)2,
where
2K (1 +2R¥)¢, - . ARK? =~ 1—
Qn _KA 2R +4(d— 1)(K — 1)& RN + AKR¥E, + ¢ + —5—doo(f) + 52

Umin min 8

Moreover, since it holds that

1+ RE) , 1p | (RE+(d+1DR¥) 1)
2V§;A2{n + o &N
1+ RK)? 1 48Y/s R
+6( 2K ! " [ ) [(d — 1)ea(1 + 20max) 2 RETITo2]2 022 2
481/52 .
§4€;)\;/3 +(d+ 2)§n/\},/3 + 125/721 + 5y 3 [(d—1)ea(1+ QUmax)SQF/S?R2(K_U<1_SZ)/SQ§?/”
=:5,,
we have that
- 1, . 3 ~ .
1917, < 51917, + 5Qndee(F)* + SR (S-14)
= 317, <3Q%dw(f)” + 28, R (S-15)

The left hand side is lower bounded as follows. Let & = [[,_, | feriy Nz (= [Tz 1y 1)
Remind that ;. = || f(, 1o T, 1 friny 22y For iy = Foor i /N Foor iy e (V' ') # (k)

_ N | mk (' k \ :
an(i f(/r,k) ~= f(/r,k)/Hf(/T,k)||L2. Then Cf(/r,k) = U:“f(/r,k)‘ Note that v, = [[X_, ||f(r7k/)||L2 _
Hf(r’k) Iz, €. Thus,

IGIZ, = 1 Gky = S 128" = 19, F oy = vef iy I L -



Here, the RHS is lower bounded as
107y = 0 Fiio s = @21 F T, = 20000 (Flrpys Fiiiy) £a + 021 FGER) 17
> (01)% — 20,0, + 02 > (7. — v,)2.
Moreover, we also have another lower bound as
||’Ba/"f(/r,k) — v fiTylle = (0] = ’U”‘)f(/'r k)t Ur(f(/r w — Sz
> =@ = v) flrmy 2z + vl foy = Fllza = =100 = ve| + el fny = Fillza-

Therefore,

** — 2
1911z, = 5 [UT”f(rk) Fllzs + 1o —vrl]™ (S-16)

Combining Eq. (S-13) and Eq. (S-16), we arrive at

1 7 *k — 2 n >

5 (vl = Fipllie + 18, = vl) < 3Q2du()? + 28, 22K,
This gives the first assertion.
Moreover, since f(’n gy = C f(’T 0 /oL,

- C, = 2 = 2 ~
1y 0 = a”f(/r,k)”?'[nk < a”f(/r,k)”?'[r,k < mR

which gives the second assertion. O

A.2 Key lemmas

Lemma A.4. Under the same setting as in Theorem[A 1) in the event &, it holds that
2 - 1/2
!f Zezg 2:)| < 26, (113l s + A2 RE) + €0(2K1Gl| Lo doo (F)/vmin + Ay BE).

and

(P = P)(@)] < 2R, (1], + A B) + RE (2K 3] 12 oo () fomin + A BE).

Proof. First, note that

D IEAEED B TT St Bl (0 = F )

i=1 i=1

ei| T fown (@) = TT fown @) | (Bl @) = fi (). (S-17)
=1 \W#k k' £k
Using Eq. (S-2b), the first term is bounded by

; 1/2 «
& (s = Fraolia + MRS TT Wil
k' £k

Since [ [z 16 a2z = Tl n ||fr i) l|lz, < 2 by the construction of f;, ., the right hand side
is upper bounded by 2¢/, (||g/lz, + )\I/QRK)

On the other hand, since Eq. (S-9) and Eq. (S-10) give max{|[f{; ;. ll#, .+ ||f(r,k')||?—thk/} <
R (YK’ # k), Eq. (S=3a) gives an upper bound of the second term as

S| I TT Forn = 11 f6omr

k'#k k' #k

ry 1/2
Mgy = Fomy s + A RE




Since || firx) 2o = 1 £ p) 122 > 1/2 (VK" # k), it holds that

I H Forwn — H T L

k' £k s
<SS T Wenleo | 1fowy = Fomnllea | TT 16 llze
KAk \ 1<k .i#k 1>k Ik
<2 T] Forer) |2 K doo (F) /-
K2k

This and ||g|, = ||f(’nk) — [l s || frky || 2, give a bound of Eq. (S-T7) as
6 (2K 312 doo (F) /omin + N TRE).

The second assertion is also proven by the similar argument to the first assertion by noticing

(H fown = T oo ) S

k' #k k' #k

( H Forwry — H Jorkr ) Flry = o)) ¥ ( H Forny + H V) ) Ty = Foomy)s

W2k Kk K2k W2k
and applying Eq. (S-24) and Eq. (S-3b) instead of Eq. (S-2b) and Eq. (S-3a). O

Lemma A.5. Suppose that the Incoherent Assumpttonzs satisfied. Then, if { f(r k) } and p* satisfy
Eq. (S3), then we have that

P[Z(fw—f:/)é] < cudoo (N9l (S-18)
r'F£r

Moreover, {f(r k) }r,k are pi-incoherent where i = 9deelf) o (f) 4 w.

min

Proof. First we show that {f (r,k) }r,k are p-incoherent. This can be shown that
[Ty Foaor o)
_|<f(r k) — f(*:,k/) + f(t?k;/y T )|
=[{fir k) — f**? dys Jar o))+ LG ey for iy — f(*rj’,k”) + f*”?/ )]

<\ Forr ey = £ lleall Far o lna + G wn Lol Faorwory = £ o | LG ys £ o)
doo(f) .
§2# +u* < p

Let Afr oy = f(r/ k') f(*r*, k) for k' # kand A f(,r )y = Uy f(r/ k) — Upr f(*r*j k- Then, for k&' # k,
O [ A Sk l[2s = o [ A, kf)||L2+|Ur'—vr Ao wy e < vl Af e wry ||L2+2|vr’—vr'\ <
2doo(f), and [Afe m)lle < e formy = ve f0 e + or — 0] < doo (f). Therefore, for
sufficiently small doo (f), the LHS of Eq. (S-T8) is bounded by

P{Z(ﬁ/ - f:/)g} < P|:Z[fr’ — (U forr iy — DS 1) H (fr k) — Af(r’,k’))}§:|

r/Zr r/Zr k'#k

< P[ Z Af(r’ k) rk) f(rk ( H f(T»k’))( H <f(7"»k") o Af(r/1kl/))>:|

vy k'#k k" 4k
+ P|: Z(f(/’l",k) — f(T k) UT r! k) ( H f ’I“ k!’ ) ( H (.f(’l“’,k”) — Af(r’,k”)) — H f(T’,k”)>:|
vy k' £k k' £k k" 4k

10



< W wy = FomleallAfe e TT Wfewnlice TT llforanllee + 1A forwmlz,)

r/£r k'#k k" #k
+ Z Z Hf(/rk;) - f(*nk)||L2’D7"||ﬁr’,k)“L2|‘Af(T’,k’)||L2
r'#£r k!'#k
< [T Wewnlee TT @lformnlles + 1A Fe wm L)
k//#k k.///#k,k/
@ 7 * P N dOO(f) et dOO(A) e
2= Doy~ Fraolles TT Weanlladoa(P) | (st ) o (e 21
K £k min min

O -
<[19llz.doo(f)(d = 1)

" K-1 M K-2
Lad 2K L
(u+ 2) + (u+ 2) ]
(c) N ~
§C;:,HgHdeoo(f)7

where, in the inequality (a), we used the relation ||Afq |z, < doo(f), e [Af o eyl <

2doo (f) for k" # k, and ||A fr pyllL, < deo () for g # k; in the inequality (b), we used the

Umin
~

assumption on p and doo(f); and, in the final inequality (c), we used the definition of c,,.
O

Lemma A.6. If]];, Hf(,}k,)HLQ > 1/2, then

P\ o (TL sy = T Fie)d

k' #£k K £k

2RK? A
| < 255t (P2

min

Proof. Because Py is a product measure given by Py = P; X --- X Py, we have that

P[fg;,k>( I 7own = 11 fz;,m)g} = P[fé‘r,m(f(nk) — £ CIT Fowr = 11 F0) 11 fw]

s s s Kk iy
= | iy = Fiao)| % P (TT Fear = T i) T o)
K £k K £k K £k
< e oo oy — fg;,k)nhp[ I 2o - I fow T1 f(r,m],
k’;ﬁk k:’;ék: k’;ﬁk

where we used the Cauchy-Schwarz inequality in the second line. Here, by the construction of J?(r, k)
we have that || [Ty . fore)ll2. = I T 2r 54y [l 22 and thus

2
s y * y 1 s *
P{ H fork) H forkny — H Sk H f(r,k/):| =3 H Jorkry — H TGk
k'#k k'#£k k' £k k'#k k'#k k'#k Lo
Here, since it holds that
H f(r,k’) - H f(t‘,k’)
k' #£k k' £k Lo
<> (”fN(r,k’) —fewnle  TT Wownle. ] ||f€<r,k’)||L2)
k' £k K<k k' £k K>k k" £k
K—1 ~ x ~ -~
2K Z | for ey = Fomny Lo/ N frpn e < 2K doo () /Vmin,
k' £k

we have that

P|:f(*7,k)( H f(T7k') - H f(*r,k’))g:| < ||f(>'ir,k)HO<>Hf(T,k) - f(*r,k:)||L22K2d00(f)2/vr2nin'
k' £k

k' #k

11



Moreover, since |17, g loe < 17l < 7 (B ©9) and [osy il > 1/2 gives
1 forty = £l < 201GllL,. we have that

~ 4RK2 ~
P[fg:,k)( TT Fow— 1 o) } AR ().
k' £k

k’ ;ﬁk mm

Lemma A.7. If {J?(r,k)}r,k and {f(,. ;. }r,k are p-incoherent, then we have
z *(|12 2 dK? \4 2 72 2
1F = f7IIz, < dEdoo(f)” + “3—doo(f)” + d° K7 pudoo(f)"

min

Proof.

d K
1F =12, = 1S T Fony Foy = £) TL £ 13

r=1k=11<k 1>k

Let
Afey = [ Ty Py = £55) TT F55-

<k 1>k

Now we set fiy = firpy (Vr € [dlk € [K = 1)), firre) = Onfrrey (9 € [d]), fip =
fitey (Vrefd k€ [K —1]),and f(, x) = vr f(7 ) (V1 € [d]). Then, it holds that, for all r € [d],

Afry =vn H Fony(Farry = 1)) H oy (Vk < K),

1<k I>k
Afrx)y = H Ty @ firgey = 0 f35))-
I<K

By the definition of Af(n %)» we have that

d K
F=r2 =0 Afww)?
r=1k=1
d K R R K R R
- Z Z A}?r,k) + Z AferaiyAfpny | + Z Z Z Af i)y Af e k-
r=1 \k=1 k#k’ r#r k=1k'=1

We evaluate each term. If £ < K, we have

P(Aj?r,k)) = U?Hf(r,k) (rk ||L2 <de (f) )

otherwise, we have

— _ _ 2
P(AT 1) = 10Ty = 0 fiaey I3 < (0l Fr) = Sy 2 + 100 = 0l oo 22 )
< doo ()%

Next we evaluate the term Af(r’k)Af(r’k/) with k £ k. If k < k' < K, then

P(Aﬁr,k)Aﬁr,k’))
< OF|P(Frpy = Fii) Frm) P UGy Py = Fen)|
2|( Pl FamD) PGy (Foean] = DI oG e = [ femllz. = 1)

| [(Fie)? = 285 Forky + (Form)) P2y Forry = (i) = (i)l
(- Hf(r,k)HLz = Hf_‘(nk)HLz = 1)

12



* 3k

= 02N fy = FaemlT Gy = Faun 12,
S doo(f)4/vr211in'
On the other hand, if k < k' = K, then, with a similar argument, we have

P(Af\(r,k)Aﬁr,k’)) < dOO(f)4/vr2nin'

Finally, we evaluate the term Af(r,k)Af(r/’k/) withr # 7' (k and k¥’ could be same). If 1 < k, k' < K,
we have

P(Af i) Af 1))
Svrvr’ ‘(PfT(r,l)ﬁr’,l)>| X ||f(r,k) - f(*rfk) ||L2 Hf(r’,k’) - f(?i’k’) HL2 < /~Ld00<f)27
else, we also have the same upper bound.

Combining these inequalities, we have that

T o2 Ao AKZ 4 2 72 72
1f = f7IIz, < dKdeo(f)” + 5—doo(f)” + d" K7 udoo(£)”

min

A.3 Technical lemmas

Here we give some technical lemmas to show the main theorem (Theorem[A.T]) .

We denote by {o;}_; the Rademacher random variable that is an i.i.d. random variable such that
o; € {£1}. It is known that, for a set of measurable functions F that is separable with respect to
oo-norm, the Rademacher complexity E[sup ;¢ » LS 0if(x;)] of F bounds the supremum of the
discrepancy between the empirical and population means of all functions f € F (see Lemma 2.3.1 of

18):

LS () - E[f])H <28

n
i=1

n

L me(ifi)

n
i=1

sup

E [sup sup
€

fer

] ) (8-19)

where the expectations are taken for both {z;}? , and {o;}} ;.

The following proposition is the key in our analysis.

Proposition A.8. Let B, C Lo(Px) be a set such that V' f € Bs o satisfies || fllL, < 6, |[flloo <
b, and it has a complexity bound like Assumption2]such that

€i(Bs.ap, La(Py)) < ai™ 3.

Then, there exist constants C’, depending only on s such that

1 o (51_SGS 2s 1—s 1
E| sup |= ) oif(x)|| <C ( \/a1+sb1+sn_1+s) :
f€Bs.ap | T ; \/H
Proof. The proof is given by combining Theorem 7.16 and Corollary 7.31 of [4]. O

Using Proposition@]and the peeling device [[1], we obtain the following lemma (see also [3l [5]]).

Lemma A.9. Under the Complexity Assumption (Assumption|2) and the Infinity-Norm Assumption
(Assumption[3), there exists a constant C; depending only on s, sy and c, ¢o such that for all X > 0

s s s _2st(1—s)s
1230 0i [y fom (@) K" 3 Ko AT e
<c, v i .
Vn nie

E sup

fermy €Hr kil () 194, <1 Hf:l 1 frmy e + Az

Proof. (Lemma Let H, 1 (8) == {f € Hot | I fll2, . <1, [Ifllr, <6}andz =2 >1. We

ko —

evaluate the entropy number of the set B = {Hszl fi | fr € Hrx(0r)}. Forall f € B, we have

13



1fllz, < H,ﬁil d1, because for f = H,[le fr it holds that || f|| ., = Hszl Il /%]l - Moreover, since
I felloo < I fell2e,.. (f € Hrk), we have || f|loc < 1forall f € B. The Ly(Px) norm between

f =TI frand f" =[], fi such that || fr, — f} ||, < €is upper bonded by

Hka—kaHLQ—HZfl i1 (e = F) g - fiells

K
< Al el llfe = Fileall fosallzs - 1 fk e < KE.
k=1

Therefore, if { f, j} | be the é-net of H, 1, (d;) where Ny, = N (€, H, 1 (dx), L2(Px)), then the set
E={f= szl f;wk | 1 < jx < N} is the Ké-net of B. Therefore, log N (€K, B, La(Py)) <
1og(1_[kK:1 N;). By the entropy condition of H,. j, there exists ¢’ (depending on ¢ and s) such
that N < /€25, thus for ¢ = €K, we have that log N'(¢, B, L(Py)) < Zkl,(zl d(e/K)~% <
¢/ K1*25¢=25 This gives that there exists C’ depending on only s and ¢ such that the entropy number
of B is bounded by

ei(B, Lo(Py)) < C'K 5§~ 2. (S-20)

Let B(0) = {f = [Tj—y fi | Iflz. < 6.fx € Hekllfillae,, < 1} and & = K5, Then
Proposmon@ the entropy number bound @) and the Infinity-Norm Assumption (Assumption
[) give that

1 K
N D) 1
Fr€Mr kil frlln,. , <1 Hk 1||fk||L2+)\2

SE[ > 1ozf<xz>|]

sup
reBx2y ||fllo, + A2

o0
+) E
=1

1 Dyl 1mf<wz>|]
sup

feB(ziAl/Q)\HTk(zHAW) I fllz, + A2

1— 1—s

o [ATE E A ez ]

) +e ’
+ C :
- A%\/ﬁ nl+s )\5 Z s \/ﬁz(i_l))\% Tllis Z(’Lil))\%

=1

2s 1—s _ 1, (A=s2)(1=s)
1 =S C;+*C21+s <)\ 2+ 2(1+s) )

!/ ~S
<4C ——Cs + 251 (1—s5)sg
1 z n -
1-=2 +s

A 225+(1—s)32 )\_ 2s5+(1—s)sg

—s S(1Fs) 2s 1—s 2(1+s)

_ / ~5 ~T1+s

_405 (205 + BTy Cs %o THs ( - >>

n 27 s(1ts)  — 1 nits

22.9+((11—.9))52 P ~12_*_5 - zs-g((llls)).eQ

s(1+s 1—s — c s s

! ~5 S

<4C!, (2 s | | & VAl A —
2

25+ (1—s)s
s(1+s) 2 -1 n nits

n1+s

2s+(1—s)so
GO

By setting Cs < 4C", (2 + WCQ ¥ ) we obtain the assertion. O
2 s(I+s) 1

The Lemma [A.9] gives the following bound.

Lemma A.10. Under the Complexity Assumption (Assumption 2)) and the Infinity-Norm Assumption
(Assumption[3), there exists a constant Cs depending only on s, sy and ¢, ¢o such that for all X > 0

sup ‘121 16lHk 1frk($1)|
fermy €Hr kil () 194, <1 Hk:l I fery Il + Az

142s

P s 142s  _ 2s+(1—s)so
K2 A2 KTt )\ 2(1+9)
< CsL Vv T .
\/ﬁ nits

E
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Proof. By applying the contraction inequality [2, Theorem 4.12] to the bound of Lemma[A9] the
assertion is proven. O

Let7,:={f—g| f= Hk e g Hszl gr wWhere fi,gr € Hrp (k=1,...,K)}. Similarly
to Lemma@[ we have the followmg bound.

Lemma A.11. Under the Complexity Assumption (Assumption[2) and the Infinity-Norm Assumption
(AssumptlonEl) there exists a constant Cl depending only on s, sy and c, co such that for all A > 0

|1 Z 10-2f(xl)f (xl)| ~ K%Qs)\_% K 1+£
<y Voo |-

GeToxT IfF s + A2
Proof. Let B={f(z)f'(x)| f € Tr, f' € T;»}. Along with the same argument with the proof of
Lemmal[A.9] the entropy number of B is bounded by

E

ei(B, Lo(Py)) < C'K 5§~

where C’g is a constant depending on only s and c. Then, using the pealing device as in Lemma
we obtain the assertion. O

Let the upper bound given in Lemmas[A.9]and be ¢, (N):
s K lﬁfs

where C; and C, are the constants appeared in each lemma respectively. Lemma and Lemma

[AI1l
In addition to Lemma [ATT] we obtain the following tail probability bound.

(N =C = maX{CS,C‘S} <K

Lemma A.12. Under the Complexity Assumption (Assumption[2) and the Infinity-Norm Assumption
(Assumption[3), there exists a universal constant C > 0 such that, for any 0 < X, it holds that

- P,) (ffll)‘ < C¢, max{1,7}

sup
1f ' lls + A2

JETr1'€Tm

with probability 1 — exp(—7) for all T > 0.

Proof. We apply Talagrand’s concentration inequality [0, [1]]. To apply Talagrand’s inequality, we
need to bound the Ly-norm and the sup-norm of each term in the supremum in the LHS. They are
bounded as

Ex <<f<X>f<X>>) <1, HOOSOL 1
FF e +A2)? Iff L, + A2~ A
Moreover, by Eq. (S-19), it holds that

E[  sup  [(P=P)(fF /(I L. +22)]

(o f")ETw X T

<2E sup

(Fof)ET- X T

LS @) P @)1 s + AI/Q))H |

=1

Therefore, by Talagrand’s concentration inequality and Lemma[A-T0] there exists a universal constant
1
R mf(:vi)f’(wi)l

C' > 0 such that
4/\—1/2
P su T T} <e T,
P €T X T 1ff e, + A2 n

for all 7 > 0. By the definition of ¢, the right hand side is upper bounded by 7C(,, max{1, ’7'}.
Then, we obtain the assertion.

ol

3\*1
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Using the same argument, the following bound also holds.

Corollary A.13. Under the Complexity Assumption (Assumption[2)) and the Infinity-Norm Assumption
(Assumption El), there exists a universal constant C' > 0 such that, for any 0 < ), it holds that

_p) (ff'>
[ff/ L, + A%

with probability 1 — exp(—7) for all T > 0.

< C'log(d)¢, max{1,7}

max sup
1srr'sd fet., feT,

Proof. Taking the uniform bound with respect to 7, 7’ of Lemma We obtain the assertion. [

Let 7o = {(ferk) = f" (o)) Lozt Sy = Lliron £ rien)) | Firkry € Hoioo f iy € Hopr (K =
1,..., K)}. Then by the same argument as Corollary |A.13] we have the following lemma.

Lemma A.14. Under the Complexity Assumption (Assumption ) and the Infinity-Norm Assumption
(Assumption El), there exists a universal constant C' > 0 such that, for any 0 < )\, it holds that

1 = & f(xi) )
n ; (f”Lz + A2

ff/ )‘ ~1
P—P)—2— )| < log(dK)¢, max{1,7
( >(”ff,”L2H2 0g(dK )G, max{1,7}

max < C'Llog(dK)¢, max{1,7},

1<r<d,1<k<K

su
f€Trk

sup
£ €Tk

195&?&31{
with probability 1 — exp(—7).
The proof is almost identical to that of Corollary [AT3]
Let 7y = {(fran @) = iy (@) Tl T @) | fow fowy € Mok [ fem o, <

LA iy I, < 1} Then Lemmagives the following bound.

Lemma A.15. Under the Complexity Assumption (Assumption[2) and the Infinity-Norm Assumption
(Assumption EI), there exists a constant C'; depending only on s and ¢ such that for all X > 0

1 ~—n _s
=D izt 0if (%5 A 1
E sup |n21710f(‘1x)‘ SC;< 2\/ . . )
retin Il +A2 Vi ipT

s

ATz 1
I = < V > S-21

¢ Vo \ipTs ( .
where C? is given in Lemma Note that ¢, is independent of K while ¢,, depends on it. Then,
going through the same argument as Lemmas[A.T0] [A.12] and[A.13] we obtain the following lemma.
Lemma A.16. Under the Complexity Assumption (Assumption[2) and the Infinity-Norm Assumption
(Assumption , there exists a universal constant C' such that all of the following three inequalities
are satisfied more than probability 1 — exp(—7) for all T > 0:

Let

(P—P,) (F) ‘ < C'og(dK)¢,, max{1,7},

max sup :
1SrSadShSK fery, PR

%i (ef(:”))‘ < O'Llog(dK)C!, max{1,7},

max sup :
isrsaisis per, |1 S\ flle, + 23

max sup
Isr<d1SE<K e, i)l fla, , <1

k=

f2 )‘ !/ !
—P) | —— )| £C'log(dK)¢, max{1,7}.
)(||f||L2+A2 og(aK)G, max{1, 7}
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