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Abstract

We introduce the general and powerful scheme of predicting information re-use
in optimization algorithms. This allows us to devise a computationally efficient
algorithm for bandit convex optimization with new state-of-the-art guarantees for
both Lipschitz loss functions and loss functions with Lipschitz gradients. This is
the first algorithm admitting both a polynomial time complexity and a regret that is
polynomial in the dimension of the action space that improves upon the original
regret bound for Lipschitz loss functions, achieving a regret of eO

�
T 11/16d3/8

�
. Our

algorithm further improves upon the best existing polynomial-in-dimension bound
(both computationally and in terms of regret) for loss functions with Lipschitz
gradients, achieving a regret of eO

�
T 8/13d5/3

�
.

1 Introduction

Bandit convex optimization (BCO) is a key framework for modeling learning problems with sequential
data under partial feedback. In the BCO scenario, at each round, the learner selects a point (or action)
in a bounded convex set and observes the value at that point of a convex loss function determined by
an adversary. The feedback received is limited to that information: no gradient or any other higher
order information about the function is provided to the learner. The learner’s objective is to minimize
his regret, that is the difference between his cumulative loss over a finite number of rounds and that
of the loss of the best fixed action in hindsight.

The limited feedback makes the BCO setup relevant to a number of applications, including online
advertising. On the other hand, it also makes the problem notoriously difficult and requires the learner
to find a careful trade-off between exploration and exploitation. While it has been the subject of
extensive study in recent years, the fundamental BCO problem remains one of the most challenging
scenarios in machine learning where several questions concerning optimality guarantees remain open.

The original work of Flaxman et al. [2005] showed that a regret of eO(T 5/6
) is achievable for bounded

loss functions and of eO(T 3/4
) for Lipschitz loss functions (the latter bound is also given in [Kleinberg,

2004]), both of which are still the best known results given by explicit algorithms. Agarwal et al.
[2010] introduced an algorithm that maintains a regret of eO(T 2/3

) for loss functions that are both
Lipschitz and strongly convex, which is also still state-of-the-art. For functions that are Lipschitz
and also admit Lipschitz gradients, Saha and Tewari [2011] designed an algorithm with a regret of
eO(T 2/3

) regret, a result that was recently improved to eO(T 5/8
) by Dekel et al. [2015].

Here, we further improve upon these bounds both in the Lipschitz and Lipschitz gradient settings. By
incorporating the novel and powerful idea of predicting information re-use, we introduce an algorithm
with a regret bound of eO

�
T 11/16

�
for Lipschitz loss functions. Similarly, our algorithm also achieves

the best regret guarantee among computationally tractable algorithms for loss functions with Lipschitz
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gradients: eO
�
T 8/13

�
. Both bounds admit a relatively mild dependency on the dimension of the action

space.

We note that the recent remarkable work by [Bubeck et al., 2015, Bubeck and Eldan, 2015] has
proven the existence of algorithms that can attain a regret of eO(T 1/2

), which matches the known
lower bound ⌦(T 1/2

) given by Dani et al.. Thus, the dependency of our bounds with respect to T is
not optimal. Furthermore, two recent unpublished manuscripts, [Hazan and Li, 2016] and [Bubeck
et al., 2016], present algorithms achieving regret eO(T 1/2

). These results, once verified, would be
ground-breaking contributions to the literature. However, unlike our algorithms, the regret bound
for both of these algorithms admits a large dependency on the dimension d of the action space:
exponential for [Hazan and Li, 2016], dO(9.5) for [Bubeck et al., 2016]. One hope is that the novel
ideas introduced by Hazan and Li [2016] (the application of the ellipsoid method with a restart button
and lower convex envelopes) or those by Bubeck et al. [2016] (which also make use of the restart
idea but introduces a very original kernel method) could be combined with those presented in this
paper to derive algorithms with the most favorable guarantees with respect to both T and d.

We begin by formally introducing our notation and setup. We then highlight some of the essential
ideas in previous work before introducing our new key insight. Next, we give a detailed description
of our algorithm for which we prove theoretical guarantees in several settings.

2 Preliminaries

2.1 BCO scenario

The scenario of bandit convex optimization, which dates back to [Flaxman et al., 2005], is a sequential
prediction problem on a convex compact domain K ⇢ Rd. At each round t 2 [1, T ], the learner
selects a (possibly) randomized action x

t

2 K and incurs the loss f
t

(x
t

) based on a convex function
f
t

: K ! R chosen by the adversary. We assume that the adversary is oblivious, so that the loss
functions are independent of the player’s actions. The objective of the learner is to minimize his
regret with respect to the optimal static action in hindsight, that is, if we denote by A the learner’s
randomized algorithm, the following quantity:

Reg

T

(A) = E
"

TX

t=1

f
t

(x
t

)

#
�min

x2K

TX

t=1

f
t

(x). (1)

We will denote by D the diameter of the action space K in the Euclidean norm: D = sup

x,y2K kx�
yk2. Throughout this paper, we will often use different induced norms. We will denote by k · k

A

the norm induced by a symmetric positive definite (SPD) matrix A � 0, defined for all x 2 Rd by
kxk

A

=

p
x>Ax. Moreover, we will denote by k · k

A,⇤ its dual norm, given by k · k
A

�1 . To simplify
the notation, we will write k · k

x

instead of k · kr2R(x), when the convex and twice differentiable
function R : int(K)! R is clear from the context. Here, int(K) is the set interior of K.

We will consider different levels of regularity for the functions f
t

selected by the adversary. We will
always assume that they are uniformly bounded by some constant C > 0, that is |f

t

(x)|  C for all
t 2 [1, T ] and x 2 K, and, by shifting the loss functions upwards by at most C, we will also assume,
without loss of generality, that they are non-negative: f

t

� 0, for all t 2 [1, T ]. Moreover, we will
always assume that f

t

is Lipschitz on K (henceforth denoted C0,1
(K)):

8t 2 [1, T ], 8x, y 2 K, |f
t

(x)� f
t

(y)|  Lkx� yk2.
In some instances, we will further assume that the functions admit H-Lipschitz gradients on the
interior of the domain (henceforth denoted C1,1

(int(K))):
9H > 0: 8t 2 [1, T ], 8x, y 2 int(K), krf

t

(x)�rf
t

(y)k2  Hkx� yk2.
Since f

t

is convex, it admits a subgradient at any point in K. We denote by g
t

one element of
the subgradient at the point x

t

2 K selected by the learner at round t. When the losses are C1,1,
the only element of the subgradient is the gradient, and g

t

= rf
t

(x
t

). We will use the shorthand
v1:t =

P
t

s=1 vs to denote the sum of t vectors v1, . . . , vt. In particular, g1:t will denote the sum of
the subgradients g

s

for s 2 [1, t].

Lastly, we will denote by B1(0) =
�
x 2 Rd

: kxk2  1

 
⇢ Rd the d-dimensional Euclidean ball of

radius one and by @B1(0) the unit sphere.
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2.2 Follow-the-regularized-leader template

A standard algorithm in online learning, both for the bandit and full-information setting is the
follow-the-regularized-leader (FTRL) algorithm. At each round, the algorithm selects the action that
minimizes the cumulative linearized loss augmented with a regularization term R : K! R. Thus,
the action x

t+1 is defined as follows:

x
t+1 = argmin

x2K

⌘g>1:tx+R(x),

where ⌘ > 0 is a learning rate that determines the tradeoff between greedy optimization and
regularization.

If we had access to the subgradients at each round, then, FTRL with R(x) = kxk22 and ⌘ =

1p
T

would yield a regret of O(
p
dT ), which is known to be optimal. But, since we only have access to the

loss function values f
t

(x
t

) and since the loss functions change at each round, a more refined strategy
is needed.

2.2.1 One-point gradient estimates and surrogate losses

One key insight into the bandit convex optimization problem, due to Flaxman et al. [2005], is that the
subgradient of a smoothed version of the loss function can be estimated by sampling and rescaling
around the point the algorithm originally intended to play.
Lemma 1 ([Flaxman et al., 2005, Saha and Tewari, 2011]). Let f : K! R be an arbitrary function
(not necessarily differentiable) and let U(@B1(0)) denote the uniform distribution over the unit
sphere. Then, for any � > 0 and any SPD matrix A � 0, the function bf defined for all x 2 K

by bf(x) = E
u⇠U(@B1(0))[f(x + �Au)] is differentiable over int(K) and, for any x 2 int(K),

bg =

d

�

f(x+ �Au)A�1u is an unbiased estimate ofr bf(x):

E
u⇠U(@B1(0))


d

�
f(x+ �Au)A�1u

�
= r bf(x).

The result shows that if at each round t we sample u
t

⇠ U(@B1(0)), define an SPD matrix A
t

and
play the point y

t

= x
t

+ �A
t

u (assuming that y
t

2 K), then bg
t

=

d

�

f(x
t

+ �A
t

u
t

)A�1
t

u
t

is an
unbiased estimate of the gradient of bf at the point x

t

originally intended: E[bg
t

] = r bf(x
t

). Thus, we
can use FTRL with these smoothed gradient estimates: x

t+1 = argmin

x2K ⌘ bg>1:tx+R(x), at the
cost of the approximation error from f

t

to bf
t

. Furthermore, the norm of these estimate gradients can
be bounded.
Lemma 2. Let � > 0, u

t

2 @B1(0) and A
t

� 0, then the norm of bg
t

=

d

�

f(x
t

+ �A
t

u
t

)A�1
t

u
t

can
be bounded as follows: kbg

t

k2
A

2
t
 d

2

�

2C
2.

Proof. Since f
t

is bounded by C, we can write kbg
t

k2
A

2
t
 d

2

�

2C
2u

t

A�1
t

A2
t

A�1
t

u
t

 d

2

�

2C
2.

This gives us a bound on the Lipschitz constant of bf
t

in terms of d, �, and C.

2.2.2 Self-concordant barrier as regularization

When sampling to derive a gradient estimate, we need to ensure that the point sampled lies within the
feasible set K. A second key idea in the BCO problem, due to Abernethy et al. [2008], is to design
ellipsoids that are always contained in the feasible sets. This is done by using tools from the theory
of interior-point methods in convex optimization.
Definition 1 (Definition 2.3.1 [Nesterov and Nemirovskii, 1994]). Let K ⇢ Rd be closed convex, and
let ⌫ � 0. A C3 function R : int(K)! R is a ⌫-self-concordant barrier for K if for any sequence
(z

s

)

1
s=1 with z

s

! @K, we have R(z
s

)!1, and if for all x 2 int(K), and y 2 Rd, the following
inequalities hold:

|r3R(x)[y, y, y]|  2kyk3
x

, |rR(x)>y|  ⌫1/2kyk
x

.
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Since self-concordant barriers are preserved under translation, we will always assume for convenience
that min

x2K R(x) = 0.

Nesterov and Nemirovskii [1994] show that any d-dimensional closed convex set admits an O(d)-
self-concordant barrier. This allows us to always choose a self-concordant barrier as regularization.

We will use several other key properties of self-concordant barriers in this work, all of which are
stated precisely in Appendix 7.1.

3 Previous work

The original paper by Flaxman et al. [2005] sampled indiscriminately around spheres and projected
back onto the feasible set at each round. This yielded a regret of eO

�
T 3/4

�
for C0,1 loss functions.

The follow-up work of Saha and Tewari [2011] showed that for C1,1 loss functions, one can run FTRL
with a self-concordant barrier as regularization and sample around the Dikin ellipsoid to attain an
improved regret bound of eO

�
T 2/3

�
.

More recently, Dekel et al. [2015] showed that by averaging the smoothed gradient estimates
and still using the self-concordant barrier as regularization, one can achieve a regret of eO

�
T 5/8

�
.

Specifically, denote by ḡ
t

=

1
k+1

P
k

i=0 bgt�i

the average of the past k + 1 incurred gradients, where
bg
t�i

= 0 for t � i  0. Then we can play FTRL on these averaged smoothed gradient estimates:
x
t+1 = argmin2K ⌘ḡ>

t

x+R(x), to attain the better guarantee.

Abernethy and Rakhlin [2009] derive a generic estimate for FTRL algorithms with self-concordant
barriers as regularization:
Lemma 3 ([Abernethy and Rakhlin, 2009]-Theorem 2.2-2.3). Let K be a closed convex set in
Rd and let R be a ⌫-self-concordant barrier for K. Let {g

t

}T
t=1 ⇢ Rd and ⌘ > 0 be such that

⌘kg
t

k
xt,⇤  1/4 for all t 2 [1, T ]. Then, the FTRL update x

t+1 = argmin

x2K g>1:tx+ R(x) admits
the following guarantees:

kx
t

� x
t+1kxt  2⌘kg

t

k
xt,⇤, 8x 2 K,

TX

t=1

g>
t

(x
t

� x)  2⌘

TX

t=1

kg
t

k2
xt,⇤ +

1

⌘
R(x).

By Lemma 2, if we use FTRL with smoothed gradients, then the upper bound in this lemma can be
further bounded by

2⌘

TX

t=1

kbg
t

k2
xt,⇤ +

1

⌘
R(x)  2⌘T

C2d2

�2
+

1

⌘
R(x).

Furthermore, the regret is then bounded by the sum of this upper bound and the cost of approximating
f
t

with bf
t

. On the other hand, Dekel et al. [2015] showed that if we used FTRL with averaged
smoothed gradients instead, then the upper bound in this lemma can be bounded as

2⌘

TX

t=1

kḡ
t

k2
xt,⇤ +

1

⌘
R(x)  2⌘T

✓
32C2d2

�2(k + 1)

+ 2D2L2

◆
+

1

⌘
R(x).

The extra factor (k + 1) in the denominator, at the cost of now approximating f
t

with ¯f
t

, is what
contributes to their improved regret result.

In general, finding surrogate losses that can both be approximated accurately and admit only a mild
variance is a delicate task, and it is not clear how the constructions presented above can be improved.

4 Algorithm

4.1 Predicting the predictable

Rather than designing a newer and better surrogate loss, our strategy will be to exploit the structure of
the current state-of-the-art method. Specifically, we draw upon the technique of predictable sequences
from [Rakhlin and Sridharan, 2013]. The idea here is to allow the learner to preemptively “guess” the
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gradient at the next step and optimize for this in the FTRL update. Specifically, if eg
t+1 is an estimate

of the time t+ 1 gradient g
t+1 based on information up to time t, then the learner should play:

x
t+1 = argmin

x2K

(g1:t + egt+1)
>x+ R(x).

This optimistic FTRL algorithm admits the following guarantee:
Lemma 4 (Lemma 1 [Rakhlin and Sridharan, 2013]). Let K be a closed convex set in Rd, and let R
be a ⌫-self-concordant barrier for K. Let {g

t

}T
t=1 ⇢ Rd and ⌘ > 0 such that ⌘kg

t

� eg
t

k
xt,⇤  1/4

8t 2 [1, T ]. Then the FTRL update x
t+1 = argmin

x2K(g1:t+egt+1)
>x+R(x) admits the following

guarantee:

8x 2 K,

TX

t=1

g>
t

(x
t

� x)  2⌘

TX

t=1

kg
t

� eg
t

k2
xt,⇤ +

1

⌘
R(x).

In general, it is not clear what would be a good prediction candidate. Indeed, this is why Rakhlin
and Sridharan [2013] called this algorithm an “optimistic” FTRL. However, notice that if we elect
to play the averaged smoothed losses as in [Dekel et al., 2015], then the update at each time is
ḡ
t

=

1
k+1

P
k

i=0 bgt�i

. This implies that the time t+ 1 gradient is ḡ
t+1 =

1
k+1

P
k

i=0 bgt+1�i

, which
includes the smoothed gradients from time t+ 1 down to time t� (k � 1). The key insight here is
that at time t, all but the (t+ 1)-th gradient are known!

This means that if we predict

eg
t+1 =

1

k + 1

kX

i=0

bg
t+1�i

� 1

k + 1

bg
t+1 =

1

k + 1

kX

i=1

bg
t+1�i

,

then the first term in the bound of Lemma 4 will be in terms of

g
t

� eg
t

=

1

k + 1

kX

i=0

bg
t�i

� 1

k + 1

kX

i=1

bg
t�i

=

1

k + 1

bg
t

.

In other words, all but the time t smoothed gradient will cancel out. Essentially, we are predicting
the predictable portion of the averaged gradient and guaranteeing that the optimism will pay off.
Moreover, where we gained a factor of 1

k+1 in the averaged loss case, we should expect to gain a
factor of 1

(k+1)2 by using this optimistic prediction.

Note that this technique of optimistically predicting the variance reduction is widely applicable. As
alluded to with the reference to [Schmidt et al., 2013], many variance reduction-type techniques,
particularly in stochastic optimization, use historical information in their estimates (e.g. SVRG
[Johnson and Zhang, 2013], SAGA [Defazio et al., 2014]). In these cases, it is possible to “predict”
the information re-use and improve the convergence rates of each algorithm.

4.2 Description and pseudocode

Here, we give a detailed description of our algorithm, OPTIMISTICBCO. At each round t, the
algorithm uses a sample u

t

from the uniform distribution over the unit sphere to define an unbiased
estimate of the gradient of bf

t

, a smoothed version of the loss function f
t

, as described in Section 2.2.1:
bg
t

 d

�

f
t

(y
t

)(r2R(x
t

))

�1/2u
t

. Next, the trailing average of these unbiased estimates over a fixed
window of length k + 1 is computed: ḡ

t

=

1
k+1

P
k

i=0 bgt�i

. The remaining steps executed at each
round coincide with the Follow-the-Regularized-Leader update with a self-concordant barrier used
as a regularizer, augmented with an optimistic prediction of the next round’s trailing average. As
described in Section 4.1, all but one of the terms in the trailing average are known and we predict
their occurence:

eg
t+1 =

1

k + 1

kX

i=1

bg
t+1�i

, x
t+1 = argmin

x2K

⌘ (ḡ1:t + egt+1)
>
x+ R(x).

Note that Theorem 3 implies that the actual point we play, y
t

, is always a feasible point in K. Figure 1
presents the pseudocode of the algorithm.
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OPTIMISTICBCO(R, �, ⌘, k, x1)

1 for t 1 to T do
2 u

t

 SAMPLE(U(@B1(0)))

3 y
t

 x
t

+ �(r2R(x
t

))

� 1
2u

t

4 PLAY(y
t

)

5 f
t

(y
t

) RECEIVELOSS(y
t

)

6 bg
t

 d

�

f
t

(y
t

)(r2R(x
t

))

� 1
2u

t

7 ḡ
t

 1
k+1

P
k

i=0 bgt�i

8 eg
t+1  1

k+1

P
k

i=1 bgt+1�i

9 x
t+1  argmin

x2K ⌘ (ḡ1:t + egt+1)
>
x+ R(x)

10 return
P

T

t=1 ft(yt)

Figure 1: Pseudocode of OPTIMISTICBCO, with R : int(K) ! R, � 2 (0, 1], ⌘ > 0, k 2 Z, and
x1 2 K.

5 Regret guarantees

In this section, we state our main results, which are regret guarantees for OPTIMISTICBCO in the
C0,1 and C1,1 cases. We also highlight the analysis and proofs for each regime.

5.1 Main results

The following is our main result for the C0,1 case.
Theorem 1 (C0,1 Regret). Let K ⇢ Rd be a convex set with diameter D and (f

t

)

T

t=1 a sequence of
loss functions with each f

t

: K ! R+ C-bounded and L-Lipschitz. Let R be a ⌫-self-concordant
barrier for K. Then, for ⌘k  �

12Cd

, the regret of OPTIMISTICBCO can be bounded as follows:

Reg

T

(OPTIMISTICBCO)  ✏LT + L�DT +

Ck

2

+

2Cd2⌘T

�2(k + 1)

2
+

1

⌘
log(1/✏)

+ LT2⌘D

"
p
3L1/2

+

p
2DLk +

p
48d
p
k

�

#
.

In particular, for ⌘ = T�11/16d�3/8, � = T�5/16d3/8, k = T 1/8d1/4, the following guarantee holds
for the regret of the algorithm:

Reg

T

(OPTIMISTICBCO) =

eO
⇣
T 11/16d3/8

⌘
.

The above result is the first improvement on the regret of Lipschitz losses in terms of T since the
original algorithm of Flaxman et al. [2005] that is realizable from a concrete algorithm as well as
polynomial in both dimension and time (both computationally and in terms of regret).
Theorem 2 (C1,1 Bound). Let K ⇢ Rd be a convex set with diameter D and (f

t

)

T

t=1 a sequence of
loss functions with each f

t

: K ! R+ C-bounded, L-Lipschitz and H-smooth. Let R be a ⌫-self-
concordant barrier for K. Then, for ⌘k  �

12d , the regret of OPTIMISTICBCO can be bounded as
follows:

Reg

T

(OPTIMISTICBCO)  ✏LT +H�2D2T

+ (TL+DHT )2⌘kD

"p
3L1/2

k
+

p
2DL+

p
48dp
k�

#
+

1

⌘
log(1/✏) + Ck + ⌘

d2T

�2(k + 1)

2
.

In particular, for ⌘ = T�8/13d�5/6, � = T�5/26d1/3, k = T 1/13d5/3, the following guarantee holds
for the regret of the algorithm:

Reg

T

(OPTIMISTICBCO) =

eO
⇣
T 8/13d5/3

⌘
.
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This result is currently the best polynomial-in-time regret bound that is also polynomial in the
dimension of the action space (both computationally and in terms of regret). It improves upon the
work of Saha and Tewari [2011] and Dekel et al. [2015].

We now explain the analysis of both results, starting with Theorem 1 for C0,1 losses.

5.2 C0,1 analysis

Our analysis proceeds in two steps. We first modularize the cost of approximating the original losses
f
t

(y
t

) incurred with the averaged smoothed losses that we treat as surrogate losses. Then we show
that the algorithm minimizes the regret against the surrogate losses effectively. The proofs of all
lemmas in this section are presented in Appendix 7.2.
Lemma 5 (C0,1 Structural bound on true losses in terms of smoothed losses). Let (f

t

)

T

t=1 be a
sequence of loss functions, and assume that f

t

: K ! R+ is C-bounded and L-Lipschitz, where
K ⇢ Rd. Denote

bf
t

(x) = E
u⇠U(@B1(0))

[f
t

(x+ �A
t

u)], bg
t

=

d

�
f
t

(y
t

)A�1
t

u
t

, y
t

= x
t

+ �A
t

u
t

for arbitrary A
t

, �, and u
t

. Let x⇤
= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2
argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Assume that we play y
t

at every round. Then the following
structural estimate holds:

Reg

T

(A) = E[
TX

t=1

f
t

(y
t

)� f
t

(x⇤
)]  ✏LT + 2L�DT +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)].

Thus, at the price of ✏LT + 2L�DT , it suffices to look at the performance of the averaged losses for
the algorithm. Notice that the only assumptions we have made so far are that we play points sampled
on an ellipsoid around the desired point scaled by � and that the loss functions are Lipschitz.
Lemma 6 (C0,1 Structural bound on smoothed losses in terms of averaged losses). Let (f

t

)

T

t=1 be
a sequence of loss functions, and assume that f

t

: K! R+ is C-bounded and L-Lipschitz, where
K ⇢ Rd. Denote

bf
t

(x) = E
u⇠U(@B1(0))

[f
t

(x+ �A
t

u)], bg
t

=

d

�
f
t

(y
t

)A�1
t

u
t

, y
t

= x
t

+ �A
t

u
t

for arbitrary A
t

, �, and u
t

. Let x⇤
= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2
argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Furthermore, denote

¯f
t

(x) =
1

k + 1

kX

i=0

bf
t�i

(x), ḡ
t

=

1

k + 1

kX

i=0

bg
t�i

.

Assume that we play y
t

at every round. Then we have the structural estimate:
TX

t=1

E

bf
t

(x
t

)� bf
t

(x⇤
✏

)

�
 Ck

2

+ LT sup

t2[1,T ],i2[0,k^t]
E[kx

t�i

� x
t

k2] +
TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
.

While we use averaged smoothed losses as in [Dekel et al., 2015], the analysis in this lemma is
actually somewhat different. Because Dekel et al. [2015] always assume that the loss functions are in
C1,1, they elect to use the following decomposition:

bf
t

(x
t

)� bf
t

(x⇤
✏

) =

bf
t

(x
t

)� ¯f
t

(x
t

) +

¯f
t

(x
t

)� ¯f
t

(x⇤
✏

) +

¯f
t

(x⇤
✏

)� bf
t

(x⇤
✏

).

This is because they can relate r ¯f
t

(x) =

1
k+1

P
k

i=0r bft�i

(x
✏

) to ḡ
t

=

1
k+1

P
k

i=0r bft�i

(x
t�i

)

using the fact that the gradients are Lipschitz. Since the gradients of C0,1 functions are not Lipschitz,
we cannot use the same analysis. Instead, we use the decomposition

bf
t

(x
t

)� bf
t

(x⇤
✏

) =

bf
t

(x
t

)� bf
t�i

(x
t�i

) +

bf
t�i

(x
t�i

)� ¯f
t

(x⇤
✏

) +

¯f
t

(x⇤
✏

)� bf
t

(x⇤
✏

).

The next lemma affirms that we do indeed get the improved 1
(k+1)2 factor from predicting the

predictable component of the average gradient.
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Lemma 7 (C0,1 Algorithmic bound on the averaged losses). Let (f
t

)

T

t=1 be a sequence of loss
functions, and assume that f

t

: K ! R+ is C-bounded and L-Lipschitz, where K ⇢ Rd. Let
x⇤

= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2 argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Assume that we play
according to the algorithm with ⌘k  �

12Cd

. Then we maintain the following guarantee:
TX

t=1

E
⇥
ḡ>
t

(x
t

� x⇤
✏

)

⇤
 2Cd2⌘T

�2(k + 1)

2
+

1

⌘
R(x⇤

✏

).

So far, we have demonstrated a bound on the regret of the form:

Reg

T

(A)  ✏LT + 2L�DT +

Ck

2

+ LT sup

t2[T ],i2[k^t]
E[kx

t�i

� x
t

k2] +
2Cd2⌘T

�2(k + 1)

2
+

1

⌘
R(x

✏

).

Thus, it remains to find a tight bound on sup

t2[1,T ],i2[0,k^t] E[kxt�i

� x
t

k2], which measures the
stability of the actions across the history that we average over. This result is similar to that of Dekel
et al. [2015], except that we additionally need to account for the optimistic gradient prediction used.
Lemma 8 (C0,1 Algorithmic bound on the stability of actions). Let (f

t

)

T

t=1 be a sequence of loss
functions, and assume that f

t

: K ! R+ is C-bounded and L-Lipschitz, where K ⇢ Rd. Assume
that we play according to the algorithm with ⌘k  �

12Cd

. Then the following estimate holds:

E[kx
t�i

� x
t

k2]  2⌘kD

 p
3L1/2

k
+

p
2DL+

p
48Cdp
k�

!
.

Proof. [of Theorem 1] Putting all the pieces together from Lemmas 5, 6, 7, 8, shows that

Reg

T

(A)✏LT+L�DT+
Ck

2

+

2Cd2⌘T

�2(k + 1)

2
+

1

⌘
R(x

✏

)+LT2⌘D

p
3L1/2

+

p
2DLk+

p
48Cd

p
k

�

�
.

Since x
✏

is at least ✏ away from the boundary, it follows from [Abernethy and Rakhlin, 2009] that
R(x

✏

)  ⌫ log(1/✏). Plugging in the stated quantities for ⌘, k, and � yields the result.

5.3 C1,1 analysis

The analysis of the C1,1 regret bound is similar to the C0,1 case. The only difference is that we leverage
the higher regularity of the losses to provide a more refined estimate on the cost of approximating f

t

with ¯f
t

. Apart from that, we will reuse the bounds derived in Lemmas 6, 7, and 8. The proof of the
following lemma, along with that of Theorem 2, is provided in Appendix 7.3.
Lemma 9 (C1,1 Structural bound on true losses in terms of smoothed losses). Let (f

t

)

T

t=1 be a
sequence of loss functions, and assume that f

t

: K! R+ is C-bounded, L-Lipschitz, and H-smooth,
where K ⇢ Rd. Denote

bf
t

(x) = E
u⇠U(@B1(0))

[f
t

(x+ �A
t

u)], bg
t

=

d

�
f
t

(y
t

)A�1
t

u
t

, y
t

= x
t

+ �A
t

u
t

for arbitrary A
t

, �, and u
t

. Let x⇤
= argmin

x2K

P
T

t=1 ft(x), and let x⇤
✏

2
argmin

y2K,dist(y,@K)>✏

ky � x⇤k. Assume that we play y
t

at every round. Then the following
structural estimate holds:

Reg

T

(A) = E[
TX

t=1

f
t

(y
t

)� f
t

(x⇤
)]  ✏LT + 2H�2D2T +

TX

t=1

E[ bf
t

(x
t

)� bf
t

(x⇤
✏

)].

6 Conclusion

We designed a computationally efficient algorithm for bandit convex optimization admitting state-
of-the-art guarantees for C0,1 and C1,1 loss functions. This was achieved using the general and
powerful technique of predicting predictable information re-use. The ideas we describe here are
directly applicable to other areas of optimization, in particular stochastic optimization.

Acknowledgements

This work was partly funded by NSF CCF-1535987 and IIS-1618662 and NSF GRFP DGE-1342536.

8



References
J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability. In COLT, 2009.

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm for bandit
linear optimization. In COLT, pages 263–274, 2008.

A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization with
multi-point bandit feedback. In COLT, pages 28–40, 2010.

S. Bubeck and R. Eldan. Multi-scale exploration of convex functions and bandit convex optimization.
CoRR, abs/1507.06580, 2015.

S. Bubeck, O. Dekel, T. Koren, and Y. Peres. Bandit convex optimization: sqrt {T} regret in one
dimension. CoRR, abs/1502.06398, 2015.

S. Bubeck, R. Eldan, and Y. T. Lee. Kernel-based methods for bandit convex optimization. CoRR,
abs/1607.03084, 2016.

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support
for non-strongly convex composite objectives. In NIPS, pages 1646–1654, 2014.

O. Dekel, R. Eldan, and T. Koren. Bandit smooth convex optimization: Improving the bias-variance
tradeoff. In NIPS, pages 2908–2916, 2015.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting:
Gradient descent without a gradient. In SODA, pages 385–394, 2005.

E. Hazan and Y. Li. An optimal algorithm for bandit convex optimization. CoRR, abs/1603.04350,
2016.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In NIPS, pages 315–323, 2013.

R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances in
Neural Information Processing Systems, pages 697–704, 2004.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer, New York,
NY, USA, 2004.

Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex Programming.
Studies in Applied Mathematics. Society for Industrial and Applied Mathematics, 1994. ISBN
9781611970791.

A. Rakhlin and K. Sridharan. Online learning with predictable sequences. In COLT, pages 993–1019,
2013.

A. Saha and A. Tewari. Improved regret guarantees for online smooth convex optimization with
bandit feedback. In AISTATS, pages 636–642, 2011.

M. W. Schmidt, N. L. Roux, and F. R. Bach. Minimizing finite sums with the stochastic average
gradient. CoRR, abs/1309.2388, 2013.

9


