
Supplementary material

S.1 Parametrization of noise covariance

We denote the noise of voxel i at time point t by εi,t, and denote the temporal covariance of the noise 
time series εi as Σϵi

.
Following AR(1) model,
ϵi , t=ρi ϵi , t−1+ηi , t (s-1) , 

where ηi , t∼N (0,σi
2
) is the “new” noise.

Then we have ϵt−ρi ϵt−1=ηt .

Denote Bi= I−ρi P1 ,  where  P1=[
0 0 0
1 0 0
0 1 0

...

... 0 0
1 0

] .  Multiplying  matrix  Bi to  the  noise  ϵi

removes the temporal correlation: Bi ϵi∼N (0,σi
2 Î ) . 

Î i is the same as an identity matrix except that its (1,1) element is
1

1−ρi
2

, because the variance of 

the AR(1) noise at any time point without knowing the noise at previous time points is
σi

2

1−ρi
2

.

We also know that Bi ϵi ~ N (0, Bi Σϵi
Bi

T
)

Therefore, Bi Σϵi
Bi

T
=σi

2 Î i , ΣY=σ2Bi
−1 Î i(Bi

T
)
−1

and

ΣY
−1

=
1

σ2
Bi

T Î i
−1 Bi (s-2)

Î i
−1 has  1-ρi

2 on element (1,1). In other words, Î i
−1

=I−ρi
2δ1 δ1

T . Here we use δk to denote a 
unit vector which is 1 at the k-th element and 0 in other elements.
We expand (s-2):

 Σϵi

−1
=σi

−2Bi
T Î i

−1 Bi

 =σi
−2

(I−ρi P1)
T
( I−ρi

2δ1δ1
T
)( I−ρi P1)

 =σi
−2

[ I−ρi P1
T
−ρi

2δ1δ1
T
+ρi

3 P1
T δ1δ1

T
−ρi P1+ρi

2 P1
T P1+ρi

3 δ1δ1
T P1−ρi

4 P1
T δ1 δ1

T P1]

 =σi
−2

[ I−ρi(P1
T
+P1)+ρi

2
( I−δ1 δ1

T
−δnδn

T
)]

The last equality is because P1
T δ1 is a zero vector, and that P1

T P1=I−δnδn
T

We can write D=P1
T
+P1 and F=I−δ1δ1

T
−δn δn

T

Then D and F are two template matrices which do not depend on any free parameters.
So we can write the inverse covariance matrix as 
Σϵi

−1
=σi

−2
[ I−ρi D+ρi

2 F ] (s-3)

We can further denote Ai=A (ρi)= I−ρi D+ρi
2 F , so Σϵi

−1=σi
−2 Ai (s-4)
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Because |Bi|=1 and |Î i
−1|=1−ρi

2 ，we have |Σϵi

−1|=σ i
−2 nT|Bi|| ^I i

−1||Bi|=σi
−2nT(1−ρi

2
)

S.2 Derivation of log likelihood
Following  the  notation  in  the  article,  for  voxel  i,  we  reparametrize βi=(si σi) Lαi ,αi∼N (0, I r) , 

where  r is the rank of U=L LT , the shared covariance matrix. The likelihood of observing data  Yi 

(time series of voxel i) is:

p(Y i∣L,αi , s iσi ,ρi) p(αi)

 =N (Y i; si σi X Lαi ,ρi)N (αi;0, I r)

 =(2π)
−

nT

2
|Σϵi

|
−

1
2 exp [−

1
2
(Y i−si σi X Lα i)

T Σϵi

−1
(Y i−si σi X Lαi)](2π)

−
r
2 exp[−

1
2
αi

T α i]

 =(2π)
−

(nT+r)
2

|Σϵi
|
−

1
2 exp [−

1
2
(si

2 σi
2αi

T LT XT Σϵi

−1 X Lαi−2 si σiY i
T Σϵi

−1 X Lαi+Y i
T Σϵi

−1Y i+αi
T αi)]

 =(2π)
−

(nT+r)
2

|Σϵi
|
−

1
2 exp [−

1
2
(αi

T
(s i

2σi
2 LT XT Σϵi

−1 X L+ I )αi−2 si σiY i
T Σϵi

−1 X Lαi+Y i
T Σϵi

−1Y i)]

 =(2π)
−

(nT+r)
2

|Σϵi
|
−

1
2 exp{−

1
2
[αi

T Λ i
−1 αi−2(si σi Λ i LT XT Σϵi

−1Y i)
T Λi

−1αi+Y i
T Σϵi

−1Y i]}

 =(2π)
−

(nT+r)
2

|Σϵi
|
−

1
2 exp [−

1
2
(αi−μ i)

T Λi
−1

(αi−μi)+
1
2
(si

2σi
2Y i

T Σϵi

−1 X LΛi LT XT Σϵi

−1Y i−Y i
T Σϵi

−1Y i)]

 =(2π)
−

nT

2
|Σϵi|

−
1
2|Λi|

1
2 exp[

1
2
(si

2 σi
2Y i

T Σϵi

−1 X LΛ i LT XT Σϵi

−1Y i−Y i
T Σϵi

−1Y i)]N (αi;μi ,Λ i)

 =(2π)
−

nT

2
|Σϵi

|
−

1
2|Λi|

1
2 exp[

1
2
(μi

T Λi
−1μi−Y i

T Σϵi

−1Y i)]N (α i;μi ,Λ i)

(s-5)
In the derivation above,
μi=si σi Λ i LT XT Σϵi

−1 Y i and Λ i=(si
2σ i

2 LT XT Σϵi

−1 X L+I )−1 are the posterior  mean and variance of 
αi .

I is identity matrix of size r by r, where r is the rank of U, and the number of columns of L.
By plugging in (s-4), we get
Λ i=(si

2 LT XT A i X L+ I )−1

μi=
si
σ i

Λi LT XT Ai Y i

(s-6)

Marginalizing αi :
 p(Y i∣L, si σi ,ρi)

 =∫d αi p(Y i∣L ,αi , si σi ,ρi) p(αi)

 =∫d αi N (αi ;μi ,Λ i)(2π)
−

nT

2
|Σϵi|

−
1
2|Λ i|

1
2 exp [

1
2
(μi

T Λi
−1μi−Y i

T Σϵi

−1Y i)]

 =(2π)
−

nT

2
|Σϵi|

−
1
2|Λi|

1
2 exp[

1
2
(μi

T Λi
−1μi−Y i

T Σϵi

−1Y i)]
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Therefore, the marginal log likelihood is
 log ( p(Y i∣L , si σi ,ρi))

 =log{(2π)
−

nT

2
|Σϵi|

−
1
2|Λ i|

1
2 exp [

1
2
(μi

T Λ i
−1μi−Y i

T Σϵi

−1Y i)]}

 =−
nT

2
log (2π)−

nT

2
logσ i

2
+

1
2

log (1−ρi
2
)−

1
2

log|si
2 LT XT Ai X L+ I|

    + 1

2σi
2
[ si

2 Y i
T A i X LΛi L

T XT Ai Y i−Y i
T Ai Y i]

(s-7)

If there are multiple runs, the temporal covariance matrix becomes block diagonal matrix, with each 
block on the diagonal corresponding to the covariance matrix of one run. Its determinant is the product 

of  the  determinant  of  each  block  on  the  diagonal.  Therefore,  the  term
1
2

log (1−ρi
2
) becomes 

nrun

2
log(1−ρi

2
) , where nrun is the number of fMRI runs.

 log ( p(Y i∣L , si σi ,ρi))

 =−
nT

2
log (2π)−

nT

2
logσ i

2
+

nrun

2
log (1−ρi

2
)−

1
2

log|Λ i
−1|

    + 1

2σi
2
[ si

2Y i
T A i X LΛi L

T XT Ai Y i−Y i
T Ai Y i]

(s-8)

In our implementation, we parametrize si with log(si
2), σi with log(σi

2), and ρi with ai= tan( π
2
ρi) . In 

this way, all free parameters become unbounded and we can use unrestricted gradient based algorithm 
to maximize the marginal log likelihood.

S.3 Gradient of the log likelihood

S.3.1 Gradient with respect to σi
2

 
∂ log ( p(Y i∣L , si σi ,ρi))

σi
2

 =−
nT

2σi
2 −

1

2σi
4 [s i

2Y i
T Ai X LΛ i L

T XT A iY i−Y i
T A iY i]

.

The maximum likelihood estimate of σi
2 given other parameters is achieved when the gradient above 

equals zero. Therefore,

 σi , ML
2

=
Y i

T Ai Y i−si
2Y i

T A i X LΛi L
T XT Ai Y i

nT

(s-9)

So we do not need to pursue gradient descent on  σi
2. This reduces the number of free parameters by 

close to one third.
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S.3.2 Gradient with respect to log(si
2)

 
∂ log ( p(Y i∣L , si σi ,ρi))

∂ si
2

 =−
1
2

Tr [(si
2 LT XT A i X L+ I )−1 ∂(si

2 LT XT Ai X L+ I )

∂ si
2 ]

    +
1
2

σi
−2Y i

T A i X L [ si
2 LT XT Ai X L+I ]−1 LT XT Ai Y i

    −
1
2

σi
−2 si

2Y i
T A i X L [ si

2 LT XT Ai X L+I ]−1

    ⋅
∂(si

2 LT XT Ai X L+ I )

∂ si
2 ⋅[ si

2 LT XT Ai X L+ I ]−1 LT XT A iY i

 =−
1
2

Tr [(si
2 LT XT A i X L+ I )−1 LT XT Ai X L]

    +
1
2

σi
−2Y i

T A i X LΛ i L
T XT Ai Y i

    −1
2

σi
−2 si

2Y i
T A i X LΛ i L

T XT Ai X LΛi LT XT Ai Y i

 =−
1
2

Tr [(si
2 LT XT A i X L+ I )−1

(si
2 LT XT Ai X L+ I−I )si

−2
]

    +1
2

σi
−2Y i

T A i X L(Λ i−si
2Λ i L

T XT Ai X LΛ i)LT XT A iY i

 =−
1

2 si
2 Tr [ I−(s i

2 LT XT Ai X L+ I )−1
]

    +
1
2

σi
−2Y i

T A i X L(Λ i−Λ i( I+ si
2 LT XT Ai X L−I )Λi)LT XT Ai Y i

 =
1

2 si
2 (−r+Tr [Λi])+

1
2
σi

−2Y i
T Ai X L(Λi−Λ i(Λi

−1
−I )Λ i)LT XT Ai Y i

 =
1

2 si
2 (−r+Tr [Λi])+

1
2
σi

−2Y i
T Ai X LΛi

2 LT XT A iY i

Therefore,

 
∂ log ( p(Y i∣L , si σi ,ρi))

∂ log s i
2

 =
∂ log (p(Y i∣L ,σi ,ρi , si))

∂ s i
2

∂ si
2

∂ log s i
2

 =1
2
(−r+Tr [Λi])+

si
2

2σ i
2
Y i

T A i X LΛ i
2 LT XT AiY i

(s-10)

S.3.3 Gradient with respect to a i= tan( π
2

ρ i)
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∂a i

∂ρi
=

2

π(1+ai
2
)

The derivative of Ai with respect to ρi is:
∂ Ai

∂ρi
=

∂( I−ρi D+ρi
2 F )

∂ρi
=−D+2ρi F (s-11)

The gradient of the marginal log likelihood with respect to ρi is :

 
∂ log ( p(Y i∣L , si σi ,ρi))

∂ρi

 =−
nrunρi

1−ρi
2−

1
2

Tr [(si
2 LT XT Ai X L+ I )−1 ∂(s i

2 LT XT Ai X L+I )
∂ρi

]

    +
1

2σi
2 [ si

2 Y i
T ∂ A i

∂ρi
X LΛi LT XT Ai Y i+ si

2Y i
T Ai X L

∂Λi

∂ρi
LT XT Ai Y i+ si

2Y i
T Ai X LΛ i L

T XT ∂ Ai

∂ρi
Y i]

     −
1

2σi
2 Y i

T ∂ Ai

∂ρi
Y i

 =−
nrunρi

1−ρi
2−

s i
2

2
Tr [Λi L

T XT ∂ Ai

∂ρi
X L ]

    +
s i

2

σi
2
Y i

T ∂ Ai

∂ρi
X LΛ i LT XT A iY i

    −
si

4

2σi
2
Y i

T Ai X LΛ i L
T XT ∂ A i

∂ρi
X LΛ i L

T XT Ai Y i−
1

2σi
2
Y i

T ∂ Ai

∂ρi
Y i

Therefore,

 
∂ log ( p(Y i∣L , si σi ,ρi))

∂ai

 =
∂ log (p(Y i∣L ,s iσi ,ρi))

∂ρi

∂ρi

∂ai

 = 2

π(1+ai
2
)
{−

nrunρi

1−ρi
2
−

si
2

2
Tr [Λi LT XT ∂ Ai

∂ρi
X L]

    +
s i

2

σi
2
Y i

T ∂ Ai

∂ρi
X LΛ i LT XT A iY i

    −
si

4

2σi
2 Y i

T Ai X LΛ i L
T XT ∂ A i

∂ρi
X LΛ i L

T XT Ai Y i−
1

2σi
2 Y i

T ∂ Ai

∂ρi
Y i}

(s-12)

S.3.4 Gradient with respect to L
We start with the gradient with respect to the (j, k) element Ljk of L (j ≤ k).

Note that
∂ L
L jk

=δ j δk
T
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∂ log ( p(Y i∣L , si σi ,ρi))

∂ L jk

 =−
1
2

Tr [Λ i

∂Λ i
−1

∂ L jk

]+
s i

2

2σi
2

∂(Y i
T Ai X LΛ i LT XT A iY i)

∂ L jk

 =−
1
2

Tr [Λ i

∂(si
2 LT XT A i X L+ I )

∂ L jk

]+
s i

2

2σi
2

∂(Y i
T Ai X L(s i

2 LT XT Ai X L+ I )−1 LT XT A iY i)

∂ L jk

 =−
si

2

2
Tr [Λ i(δk δ j

T XT Ai X L+LT XT A i X δ j δk
T
)]

    +
s i

2

2σi
2
Y i

T Ai X δ jδk
T
(s i

2 LT XT Ai X L+ I )−1 XT Ai Y i

    −
s i

2

2σi
2
Y i

T Ai X L(s i
2 LT XT Ai X L+ I )−1 ∂(si

2 LT XT A i X L+ I )

∂ L jk

(si
2 LT XT A i X L+ I )−1 LT XT Ai Y i

    +
s i

2

2σi
2 Y i

T Ai X L(s i
2 LT XT Ai X L+ I )−1 δk δ j

T XT A iY i

 =−
si

2

2
Tr [ δ j

T XT A i X LΛi δk]−
si

2

2
Tr [ δk

T Λ i LT XT Ai X δ j]

    +
s i

2

2σi
2 Tr [Y i

T Ai X δ j δk
T Λi X

T A iY i]

    −
si

4

2σi
2 Tr [Y i

T Ai X LΛi(δk δ j
T XT Ai X L+LT XT Ai X δ j δk

T
)Λi LT XT Ai Y i]

    +
s i

2

2σi
2
Tr [Y i

T Ai X LΛi δk δ j
T XT Ai Y i]
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 =−
si

2

2
{ XT Ai X LΛi } jk−

si
2

2
{Λ i LT XT Ai X }kj

    +
s i

2

2σi
2
Tr [δk

T Λ i X
T Ai Y iY i

T A i X δ j]+
si

2

2σi
2
Tr [δ j

T XT Ai Y iY i
T A i X LΛi δk]

    −
si

4

2σi
2 Tr [δ j

T XT A i X LΛi L
T XT Ai Y iY i

T A i X LΛi δk]−
s i

4

2σi
2 Tr [δk

T Λi LT XT Ai Y iY i
T A i X LΛi LT XT Ai X δ j]

 =−
si

2

2
{ XT Ai X LΛi } jk−

si
2

2
{Λ i LT XT Ai X }kj

    +
s i

2

2σi
2 {Λ i XT Ai Y Y i

T Ai X }kj+
si

2

2σi
2 { XT Ai Y i Y i

T Ai X LΛ i} jk

    −
si

4

2σi
2 { XT Ai X LΛ i L

T XT Ai Y i Y i
T Ai X LΛ i } jk−

si
4

2σ i
2 {Λi LT XT Ai Y iY i

T A i X LΛi LT XT Ai X }kj

 =−si
2 { XT Ai X LΛi } jk+

si
2

σi
2
{ XT Ai Y iY i

T A i X LΛi } jk

    −
si

4

σi
2
{ XT Ai X LΛ i L

T XT AiY i Y i
T Ai X LΛ i } jk

(s-13)
In the above derivation, we used the properties of Tr [ AB ]=Tr [BA] and that a number is the trace of 
itself considered as a one-element matrix. { M } jk means the (j,k) element of matrix M.
Notice that the derivative with respect to the (j,k) element L is equal to the (j,k) element of the matrix in 
the last equality. Therefore, we can see that the derivative with respect to L in the matrix form is:

 
∂ log ( p(Y i∣L , si σi ,ρi))

∂ L

 =−si
2 XT Ai X LΛ i+

si
2

σi
2 XT Ai Y iY i

T A i X LΛi

    −
si

4

σi
2 XT A i X LΛi L

T XT Ai Y iY i
T A i X LΛi

(s-14) , 

for the lower-triangular part. 

S.4 Gaussian Process prior on log(s)
The kernel of the Gaussain Process (GP) we use is the product of a squared exponential kernel defined 
on the spatial coordinates and one defined on the mean intensity of each voxel.
We denote Wspace as the matrix of squared spatial distance between voxels, and Winten as the matrix of 
squared intensity difference between voxels.
Then, in our GP prior, the random vector log (s)∈ℝ

nS  follows multivariate Gaussian distribution of 
log (s)∼N (0, τ2 K ) (s-15),

where

K=exp [−
1
2
(
W space

lspace
2

+
W inten

linten
2

)]+η I (s-16)

7



η is a small number added to the diagonal of the covariance kernel, in order to guarantee matrix K is 
invertible. In our implementation, we set it to 0.0001
lspace and  linten are  length scales  of the squared exponential  kernel  for  spatial  distance and intensity 
difference, respectively. τ2 is the variance of the GP.
This prior on log(s) adds additional term to the posterior of the parameters.

p(L ,σ ,ρ , s , τ , l space , linten∣Y )∝p(Y∣L,σ ,ρ , s) P(s∣τ , l space , linten)P(τ)P(l space)P(linten)

We assume uniform prior  for  other  parameters:  L,  σ  and ρ, because empirically   σ  and  ρ can  be 
recovered well, and we do not have a good principle to regularize L. 
To fit the model, we optimize the joint probability of both the parameters  L, σ, ρ and s, and the hyper-
parameters τ, lspace and linten. 
We parametrize  lspace  and  linten  with log(lspace

2) and log(linten
2) to keep all  parameters unconstrained. In 

practice, the optimization of parameters can be instable without regularizing τ, lspace and linten. Therefore, 
we introduced weakly informative half-Cauchy prior on these hyper-parameters:

p(τ)=
2γ τ
π

1

τ2
+γ τ

2
, p(l space)=

2 γlspace

π
1

lspace
2

+γlspace

2
, p(linten)=

2γl inten

π
1

linten
2

+γl inten

2

The scale parameters γ are set with reasonably large values which the user believe covers the plausible 
range of  τ,  lspace and linten. Since the GP is defined for log(s),  γτ = 5 is a reasonable scale parameter (

e5
∼150 ). We set γlspacec

and γlinten
as half of the maximal distance in space or intensity between all 

voxels in the ROI.
Therefore, the following term is added to the log of joint probability of all parameters (neglecting 
constant terms):

−
nS

2
log (2π τ2

)−
1
2

log|K|−
1

2 τ2
log (s)T K−1 log(s)−log (τ2

+γ τ
2
)−log(lspace

2
+γlspace

2
)−log (linten

2
+γl inten

2
)

(s-17).

−
1

2 τ2
K−1 log (s) is added to the gradient with respect to log(s2).

 
∂ p(L, si σi ,ρi , τ , lspace , linten∣Y )

τ2

 =−
ns

2 τ2
+

log (s)T K−1 log (s)

2 τ4
−

1

τ2
+γτ

2

The positive solution of the above term being equal to zero provides the maximum a posterior estimate 
of τ2 given other parameters:

τML
2

=
log (s)T K−1 log (s)−ns γ τ

2
+√nS

2 γτ
4
−(2n+8) γτ

2 log(s)T K−1 log (s)+[log (s)T K−1 log (s)]2

2(nS+2)
  

(s-18)
The gradient with respect to log(lspace

2) is:

 
∂ p(L, s ,σ ,ρ , τ , l space , linten∣Y )

log (l space
2

)

 =l space
2 {

1

2 τ2 log(s)T K−1 ∂ K

∂ l space
2 K−1 log(s)−

1
2

Tr [K−1 ∂ K

∂ l space
2 ]−

1

l space
2

+γlspace

}

(s-19)
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where the (j,k) element of
∂ K

∂ lspace
2

 is

{ ∂ K

∂ l space
2

} jk=
1

2 l space
4

{W space } jk⋅{exp [−
1
2
(
W space

lspace
2

+
W inten

linten
2

)]} jk (s-20)

And

 
∂ p(L, s ,σ ,ρ , τ , l space , linten∣Y )

log (linten
2

)

 =l inten
2 {

1

2 τ2 log(s)T K−1 ∂ K

∂ linten
2 K−1 log(s)−

1
2

Tr [K−1 ∂ K

∂ linten
2 ]−

1

linten
2

+γl inten

}

(s-21)

{ ∂ K

∂ l inten
2

} jk=
1

2 linten
4

{W inten } jk⋅{exp [−
1
2
(
W space

lspace
2

+
W inten

linten
2

)]} jk (s-22)

Practically, the smoothness of pseudo-SNR is usually over-estimated, sometimes resulting to almost 
equal estimation of pseudo-SNR over all  voxels. Therefore, we can also consider using an inverse 
Gamma distribution as a prior for τ2: τ2

∼inv -Gamma(ατ2 ,βτ2) Then, (s-17) becomes
 

−
nS

2
log (2π τ2

)−
1
2

log|K|−
1

2 τ2
log (s)T K−1 log(s)−(α

τ2+1) log (τ2
)−

βτ2

τ2
−log (l space

2
+γlspace

2
)−log(linten

2
+γlinten

2
)

(s-23)

 
∂ p(L, si σi ,ρi , τ , lspace , linten∣Y )

τ2

 =−
ns

2 τ2 +
log (s)T K−1 log (s)

2 τ4 −
(ατ2+2)

τ2 +
βτ2

τ4

(s-24)

So 

τMAP
2

=
2βτ2+log (s)T K−1 log(s)

2α
τ2+2+ns

(s-25)

S.5 Bias introduced by applying standard RSA on raw fMRI data
Instead  of  building  design  matrix  that  reflects  hypothetical  hemodynamic  response,  researchers 
sometimes take the raw fMRI signal (sometimes after pre-processing such as despiking and detrending) 
approximately 6 seconds after an event as the neural response “pattern” to that event. As mentioned in 
the main text at the end of Section 2, such approach also suffers from bias. The expected covariance 
matrix between such patterns is
(XT X )

−1 XT X true U X true
T X (XT X)

−1
+(XT X )

−1 XT Σϵ X (XT X)
−1 (s-26).

Where X true is the design matrix reflecting the true HRF in fMRI, and X is a design matrix which has 
a single-pulse 6 sec after each event. Such a design matrix with single-pulses is an implicit assumption 
when treating the raw fMRI data as neural pattern. It is easy to observe that averaging patterns of the  
same condition following this approach is equivalent as calculating β̂ with equation (2) but assuming 
single-pulse HRF.
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The first  term in (s-26)  is  introduced by implicitly  assuming an  unrealistic  HRF. Because  of  this 
assumption, the “patterns” obtained are in fact mixtures of the true neural patterns of adjacent neural 
events. Therefore, it alters the correlation between estimated patterns of temporally proximate neural 
events. To illustrate this bias, we simulate data which is generated by weighting the true design matrix 
reflecting realistic HRF with β's following the covariance structure in Fig 2A, but without adding any 
noise. If there were no noise, standard RSA on the estimates of β's would not introduce bias. However, 
with this approach on raw simulated data even without noise, we observe structured bias unrelated to 
the true covariance matrix shown in Fig S-1, which is due to the first term in (s-26).

Figure  S-1.  A bias  structure  is  obtained  by  applying 
standard  RSA on  the  raw  patterns  of  simulated  data 
without noise added.

The second term in (s-26) is introduced because of the autocorrelation structure of fMRI noise, together 
with the event timing. To illustrate this  bias,  we applied the raw pattern approach to preprocessed 
resting state fMRI data of 30 participants in the Human Connectome Project (HCP), pretending the 
participants took part in the task in  Fig 1A. These data have no relation with the task, so there is no 
chance of measuring any real neural activity related to the task. However,  we observe a similarity 
structure with many high correlations, as shown in Fig S-2. This clearly illustrates the bias introduced 
by treating raw fMRI data as neural patterns of events.

Figure S-2.  A bias structure is  obtained by applying 
standard  RSA on  the  raw  patterns  of  an  unrelated 
resting state fMRI dataset.

Data used for the illustration in  S.5 were provided by the MGH-USC Human Connectome Project 
(HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD). 
HCP funding was provided by the National Institute of Dental and Craniofacial Research (NIDCR), the 
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National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and 
Stroke (NINDS). HCP data are disseminated by the Laboratory of Neuro Imaging at the University of 
California, Los Angeles.
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