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Abstract

Recently, there has been a surge of interest in using spectral methods for estimating
latent variable models. However, it is usually assumed that the distribution of the
observations conditioned on the latent variables is either discrete or belongs to
a parametric family. In this paper, we study the estimation of an m-state hidden
Markov model (HMM) with only smoothness assumptions, such as Hölderian
conditions, on the emission densities. By leveraging some recent advances in
continuous linear algebra and numerical analysis, we develop a computationally
efficient spectral algorithm for learning nonparametric HMMs. Our technique is
based on computing an SVD on nonparametric estimates of density functions by
viewing them as continuous matrices. We derive sample complexity bounds via
concentration results for nonparametric density estimation and novel perturbation
theory results for continuous matrices. We implement our method using Chebyshev
polynomial approximations. Our method is competitive with other baselines on
synthetic and real problems and is also very computationally efficient.

1 Introduction

Hidden Markov models (HMMs) [1] are one of the most popular statistical models for analyzing time
series data in various application domains such as speech recognition, medicine, and meteorology. In
an HMM, a discrete hidden state undergoes Markovian transitions from one of m possible states to
another at each time step. If the hidden state at time t is ht, we observe a random variable xt 2 X
drawn from an emission distribution, Oj = P(xt|ht = j). In its most basic form X is a discrete set
and Oj are discrete distributions. When dealing with continuous observations, it is conventional to
assume that the emissions Oj belong to a parametric class of distributions, such as Gaussian.

Recently, spectral methods for estimating parametric latent variable models have gained immense
popularity as a viable alternative to the Expectation Maximisation (EM) procedure [2–4]. At a high
level, these methods estimate higher order moments from the data and recover the parameters via
a series of matrix operations such as singular value decompositions, matrix multiplications and
pseudo-inverses of the moments. In the case of discrete HMMs [2], these moments correspond
exactly to the joint probabilities of the observations in the sequence.

Assuming parametric forms for the emission densities is often too restrictive since real world
distributions can be arbitrary. Parametric models may introduce incongruous biases that cannot be
reduced even with large datasets. To address this problem, we study nonparametric HMMs only
assuming some mild smoothness conditions on the emission densities. We design a spectral algorithm
for this setting. Our methods leverage some recent advances in continuous linear algebra [5, 6]
which views two-dimensional functions as continuous analogues of matrices. Chebyshev polynomial
approximations enable efficient computation of algebraic operations on these continuous objects [7,
8]. Using these ideas, we extend existing spectral methods for discrete HMMs to the continuous
nonparametric setting. Our main contributions are:

⇤Joint lead authors.
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1. We derive a spectral learning algorithm for HMMs with nonparametric emission densities. While
the algorithm is similar to previous spectral methods for estimating models with a finite number
of parameters, many of the ideas used to generalise it to the nonparametric setting are novel, and,
to the best of our knowledge, have not been used before in the machine learning literature.

2. We establish sample complexity bounds for our method. For this, we derive concentration results
for nonparametric density estimation and novel perturbation theory results for the aforementioned
continuous matrices. The perturbation results are new and might be of independent interest.

3. We implement our algorithm by approximating the density estimates via Chebyshev polynomials
which enables efficient computation of many of the continuous matrix operations. Our method out-
performs natural competitors in this setting on synthetic and real data and is computationally more
efficient than most of them. Our Matlab code is available at github.com/alshedivat/nphmm.

While we focus on HMMs in this exposition, we believe that the ideas presented in this paper can be
easily generalised to estimating other latent variable models and predictive state representations [9]
with nonparametric observations using approaches developed by Anandkumar et al. [3].

Related Work: Parametric HMMs are usually estimated using maximum likelihood principle via EM
techniques [10] such as the Baum-Welch procedure [11]. However, EM is a local search technique,
and optimization of the likelihood may be difficult. Hence, recent work on spectral methods has
gained appeal. Our work builds on Hsu et al. [2] who showed that discrete HMMs can be learned
efficiently, under certain conditions. The key idea is that any HMM can be completely characterised
in terms of quantities that depend entirely on the observations, called the observable representation,
which can be estimated from data. Siddiqi et al. [4] show that the same algorithm works under slightly
more general assumptions. Anandkumar et al. [3] proposed a spectral algorithm for estimating more
general latent variable models with parametric observations via a moment matching technique.

That said, we are aware of little work on estimating latent variable models, including HMMs, when
the observations are nonparametric. A commonly used heuristic is the nonparametric EM [12], which
lacks theoretical underpinnings. This should not be surprising because EM is degenerate for most
nonparametric problems as a maximum likelihood procedure [13]. Only recently, De Castro et al.
[14] have provided a minimax-type of result for the nonparametric setting. In their work, Siddiqi et al.
[4] proposed a heuristic based on kernel smoothing, to modify the discrete algorithm for continuous
observations. Further, their procedure cannot be used to recover the joint or conditional probabilities
of a sequence, which would be needed to compute probabilities of events and other inference tasks.

Song et al. [15, 16] developed an RKHS-based procedure for estimating the Hilbert space embedding
of an HMM. While they provide theoretical guarantees, their bounds are in terms of the RKHS
distance of the true and estimated embeddings. This metric depends on the choice of the kernel and it
is not clear how it translates to a suitable distance measure on the observation space such as an L1 or
L2 distance. While their method can be used for prediction and pairwise testing, it cannot recover the
joint and conditional densities. On the contrary, our model provides guarantees in terms of the more
interpretable total variation distance and is able to recover the joint and conditional probabilities.

2 A Pint-sized Review of Continuous Linear Algebra
We begin with a pint-sized review on continuous linear algebra which treats functions as continuous
analogues of matrices. Appendix A contains a quart-sized review. Both sections are based on [5, 6].
While these objects can be viewed as operators on Hilbert spaces which have been studied extensively
in the years, the above line of work simplified and specialised the ideas to functions.

A matrix F 2 Rm⇥n is an m⇥n array of numbers where F (i, j) denotes the entry in row i, column j.
m or n could be (countably) infinite. A column qmatrix (quasi-matrix) Q 2 R[a,b]⇥m is a collection
of m functions defined on [a, b] where the row index is continuous and column index is discrete.
Writing Q = [q

1

, . . . , qm] where qj : [a, b] ! R is the j th function, Q(y, j) = qj(y) denotes the value
of the j th function at y 2 [a, b]. Q> 2 Rm⇥[a,b] denotes a row qmatrix with Q>

(j, y) = Q(y, j).
A cmatrix (continuous-matrix) C 2 R[a,b]⇥[c,d] is a two dimensional function where both row and
column indices are continuous and C(y, x) is the value of the function at (y, x) 2 [a, b] ⇥ [c, d].
C> 2 R[c,d]⇥[a,b] denotes its transpose with C>

(x, y) = C(y, x). Qmatrices and cmatrices permit
all matrix multiplications with suitably defined inner products. For example, if R 2 R[c,d]⇥m and
C 2 R[a,b]⇥[c,d], then CR = T 2 R[a,b]⇥m where T (y, j) =

R d

c
C(y, s)R(s, j)ds.

2

https://github.com/alshedivat/nphmm


A cmatrix has a singular value decomposition (SVD). If C 2 R[a,b]⇥[c,d], it decomposes as an
infinite sum, C(y, x) =

P1
j=1

�juj(y)vj(x), that converges in L2. Here �
1

� �
2

� · · · � 0

are the singular values of C. {uj}j�1

and {vj}j�1

are functions that form orthonormal bases for
L2

([a, b]) and L2

([c, d]), respectively. We can write the SVD as C = U⌃V > by writing the singular
vectors as infinite qmatrices U = [u

1

, u
2

. . . ], V = [v
1

, v
2

. . . ], and ⌃ = diag(�
1

,�
2

. . . ). If only
m < 1 first singular values are nonzero, we say that C is of rank m. The SVD of a qmatrix
Q 2 R[a,b]⇥m is, Q = U⌃V > where U 2 R[a,b]⇥m and V 2 Rm⇥m have orthonormal columns
and ⌃ = diag(�

1

, . . . ,�m) with �
1

� · · · � �m � 0. The rank of a column qmatrix is the number
of linearly independent columns (i.e. functions) and is equal to the number of nonzero singular
values. Finally, as for the finite matrices, the pseudo inverse of the cmatrix C is C†

= V ⌃

�1U>

with ⌃

�1

= diag(1/�
1

, 1/�
2

, . . . ). The pseudo inverse of a qmatrix is defined similarly.

3 Nonparametric HMMs and the Observable Representation

Notation: Throughout this manuscript, we will use P to denote probabilities of events while p will
denote probability density functions (pdf). An HMM characterises a probability distribution over a
sequence of hidden states {ht}t�0

and observations {xt}t�0

. At a given time step, the HMM can
be in one of m hidden states, i.e. ht 2 [m] = {1, . . . ,m}, and the observation is in some bounded
continuous domain X . Without loss of generality, we take2 X = [0, 1]. The nonparametric HMM
will be completely characterised by the initial state distribution ⇡ 2 Rm, the state transition matrix
T 2 Rm⇥m and the emission densities Oj : X ! R, j 2 [m]. ⇡i = P(h

1

= i) is the probability
that the HMM would be in state i at the first time step. The element T (i, j) = P(ht+1

= i|ht = j)
of T gives the probability that a hidden state transitions from state j to state i. The emission
function, Oj : X ! R

+

, describes the pdf of the observation conditioned on the hidden state j, i.e.
Oj(s) = p(xt = s|ht = j). Note that we have Oj(x) > 0, 8x and

R
Oj(·) = 1 for all j 2 [m]. In

this exposition, we denote the emission densities by the qmatrix, O = [O
1

, . . . , Om] 2 R[0,1]⇥m
+

.

In addition, let eO(x) = diag(O
1

(x), . . . , Om(x)), and A(x) = T eO(x). Let x
1:t = {x

1

, . . . , xt}
be an ordered sequence and xt:1 = {xt, . . . , x1

} denote its reverse. For brevity, we will overload
notation for A for sequences and write A(xt:1) = A(xt)A(xt�1

) . . . A(x
1

). It is well known [2, 17]
that the joint probability density of the sequence x

1:t can be computed via p(x
1:t) = 1>

mA(xt:1)⇡.

Key structural assumption: Previous work on estimating HMMs with continuous observations
typically assumed that the emissions, Oj , take a parametric form, e.g. Gaussian. Unlike them, we
only make mild nonparametric smoothness assumptions on Oj . As we will see, to estimate the HMM
well in this problem we will need to estimate entire pdfs well. For this reason, the nonparametric
setting is significantly more difficult than its parametric counterpart as the latter requires estimating
only a finite number of parameters. When compared to the previous literature, this is the crucial
distinction and the main challenge in this work.

Observable Representation: The observable representation is a description of an HMM in terms of
quantities that depend on the observations [17]. This representation is useful for two reasons: (i) it
depends only on the observations and can be directly estimated from the data; (ii) it can be used to
compute joint and conditional probabilities of sequences even without the knowledge of T and O and
therefore can be used for inference and prediction. First, we define the joint densities, P

1

, P
21

, P
321

:

P
1

(t) = p(x
1

= t), P
21

(s, t) = p(x
2

= s, x
1

= t), P
321

(r, s, t) = p(x
3

= r, x
2

= s, x
1

= t),

where xi, i = 1, 2, 3 denotes the observation at time i. Denote P
3x1(r, t) = P

321

(r, x, t) for all x. We
will find it useful to view both P

21

, P
3x1 2 R[0,1]⇥[0,1] as cmatrices. We will also need an additional

qmatrix U 2 R[0,1]⇥m such that U>O 2 Rm⇥m is invertible. Given one such U , the observable
representation of an HMM is described by the parameters b

1

, b1 2 Rm and B : [0, 1] ! Rm⇥m,

b
1

= U>P
1

, b1 = (P>
21

U)

†P
1

, B(x) = (U>P
3x1)(U

>P
21

)

† (1)

As before, for a sequence, xt:1 = {xt, . . . , x1

}, we define B(xt:1) = B(xt)B(xt�1

) . . . B(x
1

). The
following lemma shows that the first m left singular vectors of P

21

are a natural choice for U .
Lemma 1. Let ⇡ > 0, T and O be of rank m and U be the qmatrix composed of the first m left
singular vectors of P

21

. Then U>O is invertible.
2 We discuss the case of higher dimensions in Section 7.
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To compute the joint and conditional probabilities using the observable representation, we maintain
an internal state, bt, which is updated as we see more observations. The internal state at time t is

bt =
B(xt�1:1

)b
1

b>1B(xt�1:1

)b
1

. (2)

This definition of bt is consistent with b
1

. The following lemma establishes the relationship between
the observable representation and the internal states to the HMM parameters and probabilities.

Lemma 2 (Properties of the Observable Representation). Let rank(T ) = rank(O) = m and U>O
be invertible. Let p(x

1:t) denote the joint density of a sequence x
1:t and p(xt+1:t+t0 |x1:t) denote the

conditional density of xt+1:t+t0 given x
1:t in a sequence x

1:t+t0 . Then the following are true.

1. b
1

= U>O⇡

2. b1 = 1>
m(U>O)

�1

3. B(x) = (U>O)A(x)(U>O)

�1 8x 2 [0, 1].

4. bt+1

= B(xt)bt/(b>1B(xt)bt).
5. p(x

1:t) = b>1B(xt:1)b1.
6. p(xt+t0:t+1

|x
1:t) = b>1B(xt+t0:t+1

)bt.

The last two claims of the Lemma 2 show that we can use the observable representation for computing
the joint and conditional densities. The proofs of Lemmas 1 and 2 are similar to the discrete case and
mimic Lemmas 2, 3 & 4 of Hsu et al. [2].

4 Spectral Learning of HMMs with Nonparametric Emissions

The high level idea of our algorithm, NP-HMM-SPEC, is as follows. First we will obtain density
estimates for P

1

, P
21

, P
321

which will then be used to recover the observable representation b
1

, b1, B
by plugging in the expressions in (1). Lemma 2 then gives us a way to estimate the joint and
conditional probability densities. For now, we will assume that we have N i.i.d sequences of triples
{X(j)}Nj=1

where X(j)
= (X(j)

1

, X(j)
2

, X(j)
3

) are the observations at the first three time steps. We
describe learning from longer sequences in Section 4.3.

4.1 Kernel Density Estimation
The first step is the estimation of the joint probabilities which requires a nonparametric density
estimate. While there are several techniques [18], we use kernel density estimation (KDE) since it is
easy to analyse and works well in practice. The KDE for P

1

, P
21

, and P
321

take the form:

bP
1

(t) =
1

N

NX

j=1

1

h
1

K

 
t�X(j)

1

h
1

!
, bP

21

(s, t) =
1

N

NX

j=1

1

h2

21

K

 
s�X(j)

2

h
21

!
K

 
t�X(j)

1

h
21

!
,

bP
321

(r, s, t) =
1

N

NX

j=1

1

h3

321

K

 
r �X(j)

3

h
321

!
K

 
s�X(j)

2

h
321

!
K

 
t�X(j)

1

h
321

!
. (3)

Here K : [0, 1] ! R is a symmetric function called a smoothing kernel and satisfies (at the very
least)

R
1

0

K(s)ds = 1,
R
1

0

sK(s)ds = 0. The parameters h
1

, h
21

, h
321

are the bandwidths, and are
typically decreasing with N . In practice they are usually chosen via cross-validation.

4.2 The Spectral Algorithm

Algorithm 1 NP-HMM-SPEC
Input: Data {X(j)

= (X(j)
1

, X(j)
2

, X(j)
3

)}Nj=1

, number of states m.

• Obtain estimates bP
1

, bP
21

, bP
321

for P
1

, P
21

, P
321

via kernel density estimation (3).
• Compute the cmatrix SVD of bP

21

. Let bU 2 R[0,1]⇥m be the first m left singular vectors of bP
21

.
• Compute the parameters observable representation. Note that bB is a Rm⇥m valued function.

bb
1

=

bU> bP
1

, bb1 = (P>
21

bU)

† bP
1

, bB(x) = (

bU> bP
3x1)(

bU> bP
21

)

†
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The algorithm, given above in Algorithm 1, follows the roadmap set out at the beginning of this
section. While the last two steps are similar to the discrete HMM algorithm of Hsu et al. [2], the
SVD, pseudoinverses and multiplications are with q/c-matrices. Once we have the estimates bb

1

, bb1,
and bB(x) the joint and predictive (conditional) densities can be estimated via (see Lemma 2):

bp(x
1:t) =

bb>1 bB(xt:1)
bb
1

, bp(xt+t0:t+1

|x
1:t) =

bb>1 bB(xt+t0:t+1

)

bbt. (4)

Here bbt is the estimated internal state obtained by plugging in bb
1

,bb1, bB in (2). Theoretically, these
estimates can be negative in which case they can be truncated to 0 without affecting the theoretical
results in Section 5. However, in our experiments these estimates were never negative.

4.3 Implementation Details

C/Q-Matrix operations using Chebyshev polynomials: While our algorithm and analysis are
conceptually well founded, the important practical challenge lies in the efficient computation of the
many aforementioned operations on c/q-matrices. Fortunately, some very recent advances in the
numerical analysis literature, specifically on computing with Chebyshev polynomials, have rendered
the above algorithm practical [6, Ch.3-4]. Due to the space constraints, we provide only a summary.
Chebyshev polynomials is a family of orthogonal polynomials on compact intervals, known to be
an excellent approximator of one-dimensional functions [19, 20]. A recent line of work [5, 8] has
extended the Chebyshev technology to two dimensional functions enabling the mentioned operations
and factorisations such as QR, LU and SVD [6, Sections 4.6-4.8] of continuous matrices to be carried
efficiently. The density estimates bP

1

, bP
21

, bP
321

are approximated by Chebyshev polynomials to
within machine precision. Our implementation makes use of the Chebfun library [7] which provides
an efficient implementation for the operations on continuous and quasi matrices.

Computation time: Representing the KDE estimates bP
1

, bP
21

, bP
321

using Chebfun was roughly
linear in N and is the brunt of the computational effort. The bandwidths for the three KDE estimates
are chosen via cross validation which takes O(N2

) effort. However, in practice the cost was
dominated by the Chebyshev polynomial approximation. In our experiments we found that NP-
HMM-SPEC runs in linear time in practice and was more efficient than most alternatives.

Training with longer sequences: When training with longer sequences we can use a sliding window
of length 3 across the sequence to create the triples of observations needed for the algorithm. That
is, given N samples each of length `(j), j = 1, . . . , N , we create an augmented dataset of triples
{ {(X(j)

t , X(j)
t+1

, X(j)
t+2

)}`(j)�2

t=1

}Nj=1

and run NP-HMM-SPEC with the augmented data. As is with
conventional EM procedures, this requires the additional assumption that the initial state is the
stationary distribution of the transition matrix T .

5 Analysis
We now state our assumptions and main theoretical results. Following [2, 4, 15] we assume i.i.d
sequences of triples are used for training. With longer sequences, the analysis should only be modified
to account for the mixing of the latent state Markov chain, which is inessential for the main intuitions.
We begin with the following regularity condition on the HMM.
Assumption 3. ⇡ > 0 element-wise. T 2 Rm⇥m and O 2 R[0,1]⇥m are of rank m.

The rank condition on O means that emission pdfs are linearly independent. If either T or O are
rank deficient, then the learner may confuse state outputs, which makes learning difficult3. Next,
while we make no parametric assumptions on the emissions, some smoothness conditions are used
to make density estimation tractable. We use the Hölder class, H

1

(�, L), which is standard in the
nonparametrics literature. For � = 1, this assumption reduces to L-Lipschitz continuity.
Assumption 4. All emission densities belong to the Hölder class, H

1

(�, L). That is, they satisfy,

for all ↵  b�c, j 2 [m], s, t 2 [0, 1]

����
d

↵Oj(s)

ds↵
� d

↵Oj(t)

dt↵

����  L|s� t|��|↵|.

Here b�c is the largest integer strictly less than �.
3 Siddiqi et al. [4] show that the discrete spectral algorithm works under a slightly more general setting.

Similar results hold for the nonparametric case too but will restrict ourselves to the full rank setting for simplicity.
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Under the above assumptions we bound the total variation distance between the true and the estimated
densities of a sequence, x

1:t. Let (O) = �
1

(O)/�m(O) denote the condition number of the
observation qmatrix. The following theorem states our main result.
Theorem 5. Pick any sufficiently small ✏ > 0 and a failure probability � 2 (0, 1). Let t � 1. Assume
that the HMM satisfies Assumptions 3 and 4 and the number of samples N satisfies,

N

log(N)

� Cm1+

3
2�

(O)

2+

3
�

�m(P
21

)

4+

4
�

✓
t

✏

◆
2+

3
�

log

✓
1

�

◆
1+

3
2�

.

Then, with probability at least 1 � �, the estimated joint density for a t-length sequence satisfiesR
|p(x

1:t)� bp(x1:t)|dx1:t  ✏. Here, C is a constant depending on � and L and bp is from (4).

Synopsis: Observe that the sample complexity depends critically on the conditioning of O and P
21

.
The closer they are to being singular, the more samples is needed to distinguish different states and
learn the HMM. It is instructive to compare the results above with the discrete case result of Hsu et al.
[2], whose sample complexity bound4 is N & m (O)

2

�m(P21)
4
t2

✏2 log
1

� . Our bound is different in two
regards. First, the exponents are worsened by additional ⇠ 1

� terms. This characterizes the difficulty
of the problem in the nonparametric setting. While we do not have any lower bounds, given the
current understanding of the difficulty of various nonparametric tasks [21–23], we think our bound
might be unimprovable. As the smoothness of the densities increases � ! 1, we approach the
parametric sample complexity. The second difference is the additional log(N) term on the left hand
side. This is due to the fact that we want the KDE to concentrate around its expectation in L2 over
[0, 1], instead of just point-wise. It is not clear to us whether the log can be avoided.

To prove Theorem 5, first we will derive some perturbation theory results for c/q-matrices; we will
need them to bound the deviation of the singular values and vectors when we use bP

21

instead of
P
21

. Some of these perturbation theory results for continuous linear algebra are new and might be of
independent interest. Next, we establish a concentration result for the kernel density estimator.

5.1 Some Perturbation Theory Results for C/Q-matrices

The first result is an analog of Weyl’s theorem which bounds the difference in the singular values
in terms of the operator norm of the perturbation. Weyl’s theorem has been studied for general
operators [24] and cmatrices [6]. We have given one version in Lemma 21 of Appendix B. In addition
to this, we will also need to bound the difference in the singular vectors and the pseudo-inverses
of the truth and the estimate. To our knowledge, these results are not yet known. To that end, we
establish the following results. Here �k(A) denotes the kth singular value of a c/q-matrix A.
Lemma 6 (Simplified Wedin’s Sine Theorem for Cmatrices). Let A, ˜A,E 2 R[0,1]⇥[0,1] where
˜A = A+ E and rank(A) = m. Let U, ˜U 2 R[a,b]⇥m be the first m left singular vectors of A and ˜A

respectively. Then, for all x 2 Rm, k ˜U>Uxk
2

� kxk
2

q
1� 2kEk2L2/�m(

˜A)

2.

Lemma 7 (Pseudo-inverse Theorem for Qmatrices). Let A, ˜A,E 2 R[a,b]⇥m and ˜A = A+E. Then,

�
1

(A† � ˜A†
)  3 max{�

1

(A†
)

2,�
1

(A†
)

2}�
1

(E).

5.2 Concentration Bound for the Kernel Density Estimator

Next, we bound the error for kernel density estimation. To obtain the best rates under Hölderian
assumptions on O, the kernels used in KDE need to be of order �. A � order kernel satisfies,

Z
1

0

K(s)ds = 1,

Z
1

0

s↵K(s)ds = 0, for all ↵  b�c,
Z

1

0

s�K(s)ds  1. (5)

Such kernels can be constructed using Legendre polynomials [18]. Given N i.i.d samples from a d
dimensional density f , where d 2 {1, 2, 3} and f 2 {P

1

, P
21

, P
321

}, for appropriate choices of the
bandwidths h

1

, h
21

, h
321

, the KDE ˆf 2 { bP
1

, bP
21

, bP
321

} concentrates around f . Informally, we show

P
⇣
k ˆf � fkL2 > "

⌘
. exp

⇣
� log(N)

d
2�+dN

2�
2�+d "2

⌘
. (6)

4 Hsu et al. [2] provide a more refined bound but we use this form to simplify the comparison.
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Figure 1: The upper and lower panels correspond to m = 4 m = 8 respectively. All figures are in log-log
scale and the x-axis is the number of triples used for training. Left: L1 error between true conditional density
p(x6|x1:5), and the estimate for each method. Middle: The absolute error between the true observation and a
one-step-ahead prediction. The error of the true model is denoted by a black dashed line. Right: Training time.

for all sufficiently small " and N/ logN & "�2+

d
� . Here .,& denote inequalities ignoring constants.

See Appendix C for a formal statement. Note that when the observations are either discrete or
parametric, it is possible to estimate the distribution using O(1/"2) samples to achieve " error in a
suitable metric, say, using the maximum likelihood estimate. However, the nonparametric setting is
inherently more difficult and therefore the rate of convergence is slower. This slow convergence is
also observed in similar concentration bounds for the KDE [25, 26].

A note on the Proofs: For Lemmas 6, 7 we follow the matrix proof in Stewart and Sun [27] and
derive several intermediate results for c/q-matrices in the process. The main challenge is that several
properties for matrices, e.g. the CS and Schur decompositions, are not known for c/q-matrices. In
addition, dealing with various notions of convergences with these infinite objects can be finicky. The
main challenge with the KDE concentration result is that we want an L2 bound – so usual techniques
(such as McDiarmid’s [13, 18]) do not apply. We use a technical lemma from Giné and Guillou [26]
which allows us to bound the L2 error in terms of the VC characteristics of the class of functions
induced by an i.i.d sum of the kernel. The proof of theorem 5 just mimics the discrete case analysis
of Hsu et al. [2]. While, some care is needed (e.g. kxkL2  kxkL1 does not hold for functional
norms) the key ideas carry through once we apply Lemmas 21, 6, 7 and (6). A more refined bound on
N that is tighter in polylog(N) terms is possible – see Corollary 25 and equation 13 in the appendix.

6 Experiments
We compare NP-HMM-SPEC to the following. MG-HMM: An HMM trained using EM with the
emissions modeled as a mixture of Gaussians. We tried 2, 4 and 8 mixtures and report the best result.
NP-HMM-BIN: A naive baseline where we bin the space into n intervals and use the discrete spectral
algorithm [2] with n states. We tried several values for n and report the best. NP-HMM-EM: The
Nonparametric EM heuristic of [12]. NP-HMM-HSE: The Hilbert space embedding method of [15].

Synthetic Datasets: We first performed a series of experiments on synthetic data where the true
distribution is known. The goal is to evaluate the estimated models against the true model. We
generated triples from two HMMs with m = 4 and m = 8 states and nonparametric emissions. The
details of the set up are given in Appendix E. Figure 1 presents the results.

First we compare the methods on estimating the one step ahead conditional density p(x
6

|x
1:5

). We
report the L1 error between the true and estimated models. In Figure 2 we visualise the estimated one
step ahead conditional densities. NP-HMM-SPEC outperforms all methods on this metric. Next, we
compare the methods on the prediction performance. That is, we sample sequences of length 6 and test
how well a learned model can predict x

6

conditioned on x
1:5

. When comparing on squared error, the
best predictor is the mean of the distribution. For all methods we use the mean of bp(x

6

|x
1:5

) except
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Figure 2: True and estimated one step ahead densities p(x4|x1:3) for each model. Here m = 4 and N = 104.

Dataset MG-HMM NP-HMM-BIN NP-HMM-HSE NP-HMM-SPEC
Internet Traffic 0.143± 0.001 0.188± 0.004 0.0282± 0.0003 0.016± 0.0002
Laser Gen 0.33± 0.018 0.31± 0.017 0.19± 0.012 0.15± 0.018
Patient Sleep 0.330± 0.002 0.38± 0.011 0.197± 0.001 0.225± 0.001

Table 1: The mean prediction error and the standard error on the 3 real datasets.

for NP-HMM-HSE for which we used the mode since the mean cannot be computed. No method can
do better than the true model (shown via the dotted line) in expectation. NP-HMM-SPEC achieves
the performance of the true model with large datasets. Finally, we compare the training times of all
methods. NP-HMM-SPEC is orders of magnitude faster than NP-HMM-HSE and NP-HMM-EM.

Note that the error of MG-HMM—a parametric model—stops decreasing even with large data. This
is due to the bias introduced by the parametric assumption. We do not train NP-HMM-EM for longer
sequences because it is too slow. A limitation of the NP-HMM-HSE method is that it cannot recover
conditional probabilities, so we exclude it from that experiment. We could not include the method
of [4] in our comparisons since their code was not available and their method is not straightforward
to implement. Further, their method cannot compute joint/predictive probabilities.

Real Datasets: We compare all the above methods (except NP-HMM-EM which was too slow) on
prediction error on 3 real datasets: internet traffic [28], laser generation [29] and sleep data [30]. The
details on these datasets are in Appendix E. For all methods we used the mode of the conditional
distribution p(xt+1

|x
1:t) as the prediction as it performed better. For NP-HMM-SPEC, NP-HMM-

HSE,NP-HMM-BIN we follow the procedure outlined in Section 4.3 to create triples and train with
the triples. In Table 1 we report the mean prediction error and the standard error. NP-HMM-HSE
and NP-HMM-SPEC perform better than the other two methods. However, NP-HMM-SPEC was
faster to train (and has other attractive properties) when compared to NP-HMM-HSE.

7 Conclusion
We proposed and studied a method for estimating the observable representation of a Hidden Markov
Model whose emission probabilities are smooth nonparametric densities. We derive a bound on the
sample complexity for our method. While our algorithm is similar to existing methods for discrete
models, many of the ideas that generalise it to the nonparametric setting are new. In comparison
to other methods, the proposed approach has some desirable characteristics: we can recover the
joint/conditional densities, our theoretical results are in terms of more interpretable metrics, the
method outperforms baselines and is orders of magnitude faster to train.

In this exposition only focused on one dimensional observations. The multidimensional case is
handled by extending the above ideas and technology to multivariate functions. Our algorithm and the
analysis carry through to the d-dimensional setting, mutatis mutandis. The concern however, is more
practical. While we have the technology to perform various c/q-matrix operations for d = 1 using
Chebyshev polynomials, this is not yet the case for d > 1. Developing efficient procedures for these
operations in the high dimensional settings is a challenge for the numerical analysis community and is
beyond the scope of this paper. That said, some recent advances in this direction are promising [8, 31].

While our method has focused on HMMs, the ideas in this paper apply for a much broader class
of problems. Recent advances in spectral methods for estimating parametric predictive state repre-
sentations [32], mixture models [3] and other latent variable models [33] can be generalised to the
nonparamatric setting using our ideas. Going forward, we wish to focus on such models.
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