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1 Proof of Theorem 1

Definition 1. The average causal effect on objective R at time t of the new policy relative to the
baseline is denoted by CE(t) and is defined as

CE(t) = E (R(α1(t; 1))−R(α0(t; 0))) . (1)

Assumption 1 (Finite set of possible behaviors). There is a fixed and finite set of behaviors B such
that for every time t, assignment Z and agent i, it holds that Bi(t;Z) ∈ B; i.e., every agent can only
adopt a behavior from B.

Assumption 2 (Stability of initial behaviors). Let ρZ =
∑
i∈I Zi/|I| be the proportion of agents

assigned to the new policy under assignment Z. Then there exists a fixed population behavior β(0)

such that for every possible assignment Z,

ρZβ1(0;Z) + (1− ρZ)β0(0;Z) = β(0). (2)

Assumption 3 (Behavioral ignorability). The assignment is independent of population behavior at
time t, conditional on policy and behavioral history up to t; i.e., for every t > 0 and policy j,

Z |= βj(t;Z) | Ft−1, Gj .

Algorithm 1 Estimation of long-term causal effects
Input: Z, T,A,B, G1, G0,D1 = {a1(t;Z) : t = 0, . . . , t0},D0 = {a0(t;Z) : t = 0, . . . , t0}.
Output: Estimate of long-term causal effect CE(T ) in Eq. (1).

1: By Assumption 3, define φj ≡ φj(Z), ψj ≡ ψj(Z).
2: Set µ1 ← 0 and µ0 ← 0, both of size |A|; set ν0 = ν1 = 0.
3: for iter = 1, 2, . . . do
4: For j = 0, 1, sample φj , ψj from prior, and sample βj(0;Z) conditional on φj .
5: Calculate β(0) = ρZβ1(0;Z) + (1− ρZ)β0(0;Z).
6: for j = 0, 1 do
7: Set βj(0; j1) = β(0).
8: Sample Bj = {βj(t; j1) : t = 0, . . . , T} given ψj and βj(0, j1). # temporal model
9: Sample αj(T ; j1) conditional on βj(T ; j1). # behavioral model

10: Set µj ← µj + P (Dj |Bj , Gj) ·R(αj(T ; j1)).
11: Set νj ← νj + P (Dj |Bj , Gj).
12: end for
13: end for
14: Return estimate ĈE(T ) = µ1/ν1 − µ0/ν0.
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Theorem 1 (Estimation of long-term causal effects). Suppose that behaviors evolve according to a
known temporal model, and actions are distributed conditionally on behaviors according to a known
behavioral model. Suppose that Assumptions 1, 2 and 3 hold for such models. Then, for every policy
j ∈ {0, 1} as the iterations of Algorithm 1 increase, µj/νj → E (R(αj(T ; j1))|Dj) . The output ĈE(T )
of Algorithm 1 asymptotically estimates the long-term causal effect, i.e.,

E(ĈE(T )) = E (R(α1(T ; 1))−R(α0(T ; 0))) ≡ CE(T ).

Proof. Fix a policy j in Algorithm 1 and drop the subscript j in the notation of the algorithm.
Therefore we can write:

ω ≡ (φj , ψj , Bj)

α ≡ αj(T ; j1)

P (D|ω) ≡ P (Dj |Bj , Gj). (3)

The way Algorithm 1 is defined, as the iterations increase the variable µ is estimating

limµ =

∫
R(α)P (D|ω)p(α, ω)dωdα.

We now rewrite this integral as follows.

limµ =

∫
R(α)P (D|ω)p(α, ω)dωdα =

∫
R(α)P (D|α, ω)p(α, ω)dωdα [because p(D|α, ω) = P (D|ω)]

=

∫
R(α)P (α, ω|D)P (D)dωdα [by Bayes theorem]

= P (D)

∫
R(α)P (α|D)dα [ω is marginalized out]

= P (D)E (R(α)|D) . (4)

The first equation, p(D|α, ω) = P (D|ω), holds by definition of the behavioral model: the history
of latent behaviors is sufficient for the likelihood of observed actions. Another way to phrase this is
that conditional on latent behavior the observed action is independent from any other variable.

Similarly, as the iterations increase the variable ν is estimating

lim ν =

∫
P (D|ω)p(α, ω)dωdα.

We now rewrite this integral as follows.

lim ν =

∫
P (D|ω)p(α, ω)dωdα =

∫
P (D|α, ω)p(α, ω)dωdα [because p(D|α, ω) = P (D|ω)]

=

∫
P (α, ω|D)P (D)dωdα [by Bayes theorem]

= P (D)

∫
P (α|D)dα

= P (D). (5)

By the continuous mapping theorem we conclude that

limµ/ν → E (R(α)|D) .

Thus E (limµ1/ν1) = E (R(α1(T ; 1))) and E (limµ0/ν0) = E (R(α0(T ; 0))) and so

E (limµ1/ν1)− E (limµ0/ν0)→ E (R(α1(T ; 1)))− E (R(α0(T ; 0))) ,

i.e., Algorithm 1 consistently estimates the long-term causal effect.
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2 Connection of assumptions to policy invariance

Assumption 3 in our framework is related to policy invariance assumptions in econometrics of policy
effects [14, 13]. Intuitively, policy invariance posits that given the choice of policy by an agent, the
initial process that resulted in this choice does not affect the outcome. For example, given that an
individual chooses to participate in a tax benefit program, the way the individual was assigned to the
program (e.g., lottery, recommendation, or point of a gun) does not alter the outcome that will be
observed for that individual. Our assumption is different because we have a temporal evolution of
population behavior and there is no free choice of an agent about the assignment, since we assume a
randomized experiment. But our assumption shares the essential aspect of conditional ignorability of
assignment that is crucial in causal inference.

3 Discussion of related methods

Consider the estimand for the Rapoport-Boebel experiment [18]:

τ = cᵀ(α1(T ; 1)− α0(T ; 0)). (6)

Here we discuss how standard methods would estimate (6). Our goal is to illustrate the fundamental
assumptions underpinning each method, and compare with our Assumptions 2 and 3. To illustrate
we will assume a specific value c = (0, 1, 0, 2, 0, 0, 0, 0, 1, 1)ᵀ. In discussing these methods, we will
mostly be concerned with how point estimates compare to the true value of the estimand, which here
is τ = $0.054 using the experimental data in Table 2.

The naive approach would be to consider only the latest observed time point (t0 = 2) under the
experiment assignment Z, and use the observed population actions under Z as an estimate for τ ; i.e.,

τ̂naive = cᵀ(α1(t0;Z)− α0(t0;Z)) = −$0.051. (7)

But this estimate to be unbiased for τ , we generally require that

α1(t0;Z)− α0(t0;Z) = α1(T ; 1)− α0(T ; 0).

The naive estimate therefore makes a direct extrapolation from t = t0 to t = T and from the observed
assignment Z to the counterfactual assignments Z = 1 and Z = 0. This ignores, among other things,
the dynamic nature of agent actions.

A more sophisticated approach is to analyze the agent actions as a time series. For example,
Brodersen et. al. [6] developed a method to estimate the effects of ad campaigns on website visits.
Their method was based on the idea of “synthetic controls”, i.e., they created a time-series using
different sources of information that would act as the counterfactual to the observed time-series after
the intervention. However, their problem is macroeconometric and they work with observational
data. Thus, there is neither experimental randomized assignment to games, nor strategic interference
between agents, nor dynamic agent actions. More crucially, they do not study long-term equilbrium
effects. By construction, in our problem we can leverage behavioral game theory to make more
informed predictions of counterfactuals to time points after the intervention at which the distribution
of outcomes has stabilized.

Another approach, common in econometrics, is the difference-in-differences (DID) estimator [7,
10, 16]. In our case, this method is not perfectly applicable because there are no observations before
the intervention, but we can still entertain the idea by considering period t = 1 as the pre-intervention
period. The DID estimator compares the difference in outcomes before and after the intervention for
both the treated and control groups. In our application, this estimator takes the value

τ̂did = cᵀ(α1(t0;Z)− α1(1;Z))︸ ︷︷ ︸
change in revenue for game 2

− cᵀ(α0(t0;Z)− α0(1;Z))︸ ︷︷ ︸
change in revenue for game 1

= −$0.164. (8)
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This estimate is also far from the true value similar to the naive estimate. The DID estimator
is unbiased for τ only if there is an additive structure in the actions [1], [3] (Section 5.2), e.g.,
αj(t;Z) = µj + λt + εjt, where µj is a policy-specific parameter, λt is a temporal parameter, and ε is
noise. The DID estimator thus captures a linear trend in the data by assuming a common parameter
for both treatment arms (λt) that is canceled out in subtraction in Eq. (8). The extent to which
an additivity assumption is reasonable depends on the application, however, by definition, it implies
ignorability of the assignment (i.e., Z does not appear in the model of aj(t;Z)), and thus it relies on
assumptions that are stronger than our assumptions [1, 3].

In a structural approach, Athey et. al. [4] studied the effects of timber auction format (ascending
versus sealed bid) on competition for timber tracts. They estimated bidder valuations from observed
data in one auction and imputed counterfactual bid distributions in the other auction, under the as-
sumption of equilibrium play in both auctions. This approach makes two critical implicit assumptions
that together are stronger than Assumption 3. First, the bidder valuation distribution is assumed to
be a primitive that can be used to impute counterfactuals in other treatment assignments. In other
words, the assignment is independent of bidder values, and thus it is strongly ignorable. Second,
although imputation is performed for potential outcomes in equilibrium, which captures the notion
of long-term effects, inference is performed under the assumption of equilibrium play in the observed
outcomes, and thus temporal dynamic behavior is assumed away.

Finally, another popular approach to causality is through directed acyclical graphs (DAGs) between
the variables of interest [17]. For example, Bottou et. al. [5] studied the causal effects of the machine
learning algorithm that scores online ads in the Bing search engine on the search engine revenue.
Their approach was to create a full DAG of the system including variables such as queries, bids, and
prices, and made a Causal Markov assumption for the DAG. This allows to predict counterfactuals for
the revenue under manipulations of the scoring algorithm, using only observed data generated from
the assumed DAG. However, a key assumption of the DAG approach is that the underlying structural
equation model is stable under the treatment assignment, and only edges coming from parents of the
manipulated variable need to be removed; as before, assignment is considered strongly ignorable. As
pointed out by Dash [9] this might be implausible in equilibrium systems. Consider, for example,
a system where X → Y ← Z, and a manipulation that sets the distribution of Y independently of
X,Z. Then after manipulation the two edges will need to be removed. However, if in an equilibrium
it is required that Y ≈ XZ, then the two arrows should be reversed after the manipulation. Proper
causal inference in equilibrium systems through causal graphs remains an open area without a well-
established methodology [8].

Finally we note that there exists the concept of Granger causality [11], which remains important in
econometrics. The central idea in Granger causality is predictability, in particular the ability of lagged
iterates of a time series x(t) to predict future values of the outcome of interest, which in our case is
the population action αj(t;Z). This causality concept does not take into account the randomization
from the experimental design, which is key in statistical causal inference.
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4 Application: Experiment of Rapoport and Boebel [18]

The following tables report the payoff matrix structure (Table 1 used by Rapoport and Boebel and
the observed data (Table 2), as reported by McKelvey and Palfrey [15].

Table 1: Normal-form game in the experiment of Rapoport and Boebel (values L and W are specified
as described in the body of the paper) [18].

a′1 a′2 a′3 a′4 a′5
a1 W L L L L

a2 L L W W W

a3 L W L L W

a4 L W L W L

a5 L W W L L

Table 2: Experimental data of Rapoport and Boebel [18], as reported by McKelvey and Palfrey [15].
The data includes frequency of actions for the row agent and the column agent in the experiment,
broken down by game and session. Gray color indicates that we assume the data to be long-term and
thus we hold them out of data analysis and only use them to measure predictive performance. (Note:
There are five total actions available to every player according to the payoff structure in Table 1. The
frequencies for actions a5, a

′
5 can be inferred because

∑5
i=1 ai = 1 and

∑5
i=1 a

′
i = 1.)

row agent column agent

Game Period a1 a2 a3 a4 a′1 a′2 a′3 a′4
1 1 0.308 0.307 0.113 0.120 0.350 0.218 0.202 0.092

1 2 0.293 0.272 0.162 0.100 0.333 0.177 0.190 01.40

1 3 0.273 0.350 0.103 0.123 0.353 0.133 0.258 0.102

1 4 0.295 0.292 0.113 0.135 0.372 0.192 0.222 0.063

2 1 0.258 0.367 0.105 0.143 0.332 0.115 0.245 0.140

2 2 0.290 0.347 0.118 0.110 0.355 0.198 0.208 0.108

2 3 0.355 0.313 0.082 0.100 0.355 0.215 0.187 0.110

2 4 0.323 0.270 0.093 0.105 0.343 0.243 0.168 0.107

5 More details on Bayesian computation

Here we offer more details about the choices in implementing Algorithm 1 in Section 4.1 of the main
paper. For convenience we repeat the content of Section 4.1 in the main paper and then expand with
our details.

Step 1: Model parameters. For simplicity we assume that the models in the two games share
common parameters, and thus (φ1, ψ1, λ1) = (φ0, ψ0, λ0) ≡ (φ, ψ, λ), where λ are the parameters of
the behavioral model to be described in Step 8. Having common parameters also acts as regularization
and thus helps estimation. We emphasize that this simplification is not necessary as we could have two
different set of parameters for each game. It is crucial, however, that the parameters are stable with
respect to the treatment assignment because we need to extrapolate from the observed assignment to
the counterfactual ones.

Step 4: Sampling parameters and initial behaviors As explained later we assume that there
are 3 different behaviors and thus φ, ψ, λ are vectors with 3 components. Let x ∼ U(m,M) denote
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that every component of x is uniform on (m,M), independently. We choose diffuse priors for our
parameters, specifically, φ ∼ U(0, 10), ψ ∼ U(−5, 5), and λ ∼ U(−10, 10). Given φ we sample the
initial behaviors in the two games as β1(0;Z) ∼ Dir(φ) and β0(0;Z) ∼ Dir(φ), independently.

Regarding the particular choices of these distributions, we first note that φ needs to have positive
components because it is used as an argument to the Dirichlet distribution. Larger values than
10 could be used for the components of φ but the implied Dirichlet distributions would not differ
significantly than the ones we use in our experiments. Regarding λ we note that its components are
used in quantities of the form eλ[k]u and so it is reasonable to bound them, and the interval [−5, 5] is
diffuse enough given the values of u implied by the payoff matrix in Table 1. Finally the prior for the
temporal model parameters, ψ, is also diffuse enough. An alternative would be to use a multivariate
normal distribution as the prior for ψ but this would not alter the procedure significantly.

Steps 5 & 7: Pivot to counterfactuals. Since we have a completely randomized experiment
(A/B test) it holds that ρZ = 0.5 and therefore β(0) = 0.5(β1(0;Z) + β0(0;Z)). Now we can pivot to
the counterfactual population behaviors under Z = 1 and Z = 0 by setting β1(0; 1) = β0(0; 0) = β(0).

Step 8: Sample counterfactual behavioral history. As the temporal model, we adopt the
lag-one vector autoregressive model, also known as VAR(1). We transform1 the population behavior
into a new variable wt = logit(β1(t; 1)) ∈ R2 (also do so for β0(t; 0)). Such transformation with a
unique inverse is necessary because population behaviors are constrained on the simplex, and thus
form so-called compositional data [2, 12]. The VAR(1) model implies that

wt = ψ[1]1 + ψ[2]wt−1 + ψ[3]εt, (9)

where ψ[k] is the kth component of ψ and εt ∼ N (0, I) is i.i.d. standard bivariate normal. Eq. (9) is
used to sample the behavioral history, Bj , from t = 0 to t = T , as described in Step 8 of Algorithm 1.

Such sampling is straightforward to do. We simply need to sample the random noises εt for every
t ∈ {0, . . . , T}, and then compute each wt successively. Given the sample {wt : t = 0, . . . , T} we can
then transform back to calculate the population behaviors β1(t; 1) = {logit−1(wt) : t = 0, . . . , T}—for
B0 we repeat the same procedure with a new sample of εt since the two games share the same temporal
model parameters ψ.

Step 9: Behavioral model. Here we rewrite the specifics of the behavioral model with more
details. In QLp agents possess increasing levels of sophistication. Following earlier work [19], we adopt
p = 3, and thus consider a behavioral space with three different behaviors B = {b0, b1, b2}.

Recall that a behavior ∈ B represents the distribution of actions that an agent will play conditional
on adopting that behavior. In QLp such distributions depend on an assumption of quantal response,

which is defined as follows. Let u ∈ R|A| denote a vector such that ua is the expected utility of
an agent taking action a ∈ A, and let Gj denote the payoff matrix in game j as in Table 1. If an
agent is facing another agent with strategy (distribution over actions) b, then u = Gjb. The quantal
best-response with parameter x determines the distribution of actions that the agent will take facing
expected utilities u, and is defined as

QBR(u;x) = expit(xu), (10)

where, for a vector y with elements yi, expit(y) is a vector with elements exp(yi)/
∑
i exp(yi). The

parameter x ≥ 0 is called the precision of the quantal best-response. If x is very large then the
response is closer to the classical Nash best-response, whereas if x = 0 the agent ignores the utilities
and randomizes among actions.

Let λ = (λ[1], λ[2], λ[3]) be the precision parameters. Let α(b) denote the distribution over actions
implied for an agent who adopts behavior. Given λ the model QL3 calculates α(bk), for k = 0, 1, 2,
as follows:

1The map y = logit(x) is defined as the function ∆m → Rm−1 such that, for vectors y = (y1, . . . , ym−1) and
x = (x1, . . . , xm),

∑
i xi = 1, and x1 6= 0 wlog, indicates that yi = log(xi+1/x1), for i = 1, . . . , n− 1.
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• Agents who adopt b0, termed level-0 agents, have precision λ0 = 0, and thus will randomly pick
one action from the action space A. Thus,

α(b0) = QBR(u; 0) = (1/|A|)1,

regardless of the argument u.

• An agent who adopts b1, termed level-1 agent, has precision λ[1] and assumes that is playing
against a level-0 type agent. Thus, the agent is facing a vector of utilities u1 = Gjb0, and so

α(b1) = QBR(u1;λ[1]).

• An agent who adopts b2, termed level-2 agent, has precision λ[3] and assumes is playing
against a level-1 agent with precision λ[2]. Thus, it estimates that it is facing strategy α(1)2 =
QBR(u1;λ[2]), where u1 = Gjb0 as above. The expected utility vector of the level-2 agent is
u2 = Gjα(1)2, and thus

α(b2) = QBR(u2;λ[3]).

Given Gj and λ we can therefore write down a 5 × 3 matrix Qj = [α(b0), α(b1), α(b2)] where the
kth column is the distribution over actions played by an agent conditional on adopting behavior bk−1.

Conditional on population action βj(t;Z) the expected population action is ᾱj(t;Z) = Qjβj(t;Z).
The population action αj(t;Z) is distributed as a multinomial with expectation ᾱj(t;Z), and so
P (αj(t; 1)|βj(t; 1), Gj) = Multi(|I| ·αj(t; 1); ᾱj(t; 1)), where Multi(n, p) is the multinomial density of
observations n = (n1, . . . , nK) with expected frequencies p = (p1, . . . , pK). Hence, the full likelihood
for observed actions in game j required in Steps 10 and 11 of Algorithm 1 is given by the product

P (Dj |Bj , λj , Gj) =

T−1∏
t=0

Multi(|I| · αj(t; j1); ᾱj(t; j1)).

References

[1] Alberto Abadie. Semiparametric difference-in-differences estimators. The Review of Economic
Studies, 72(1):1–19, 2005.

[2] John Aitchison. The statistical analysis of compositional data. Springer, 1986.

[3] Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s
companion. Princeton university press, 2008.

[4] Susan Athey, Jonathan Levin, and Enrique Seira. Comparing open and sealed bid auctions:
Evidence from timber auctions. The Quarterly Journal of Economics, 126(1):207–257, 2011.
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